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We study the carrier-mediated exchange interaction, the so-called Ruderman-Kittel-Kasuya-Yoshida
�RKKY� coupling, between two magnetic impurity moments in graphene using exact diagonalization on the
honeycomb lattice. By using the tight-binding nearest-neighbor band structure of graphene we also avoid the
use of a momentum cutoff which plagues perturbative results in the Dirac continuum model formulation. We
extract both the short and long impurity-impurity distance behavior and show on a qualitative agreement with
earlier perturbative results in the long-distance limit but also report on a few new findings. In the bulk the
RKKY coupling is proportional to 1 / �R�3 and displays �1+cos�2kD ·R�� -type oscillations. A-A sublattice
coupling is always ferromagnetic whereas A-B subattice coupling is always antiferromagnetic and three times
as large. We also study the effect of edges in zigzag graphene nanoribbons �ZGNRs�. We find that for
impurities on the edge the RKKY coupling decays exponentially because of the localized zero-energy edge
states and we also conclude that a nonperturbative treatment is essential for these edge impurities. For impu-
rities inside a ZGNR the bulk characteristics are quickly regained.
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I. INTRODUCTION

Graphene is a two-dimensional honeycomb lattice of car-
bon and has since its isolation in 2004 �Ref. 1� generated a
lot of attention �see, e.g., Ref. 2 and references therein�. Its
two dimensionality, linear-energy dispersion, where the qua-
siparticles are massless Dirac fermions, and chemical poten-
tial tunable by a gate voltage are all novel features in an,
essentially table top, condensed-matter system. Together
with a very high mobility, these properties have helped to
raise the expectation of graphene being a postsilicon era
candidate.3–6 For this, functionalization of graphene using,
for example, finite geometries, adatoms, hydrogen chemi-
sorption, or intrinsic defects such as vacancies has become
an important goal. Adding magnetic atoms or defects have
the added benefit of opening the possibility for spintronics
where not only the electron charge but also its spin is ac-
tively used in devices.7,8 One of the most important property
of magnetic impurities is the effective interaction between
them propagated by the conduction electrons in the bulk
host, the so-called Ruderman-Kittel-Kasuya-Yoshida
�RKKY� coupling.9–11 This coupling is crucial for magnetic
ordering of the impurities, but also offers access to the in-
trinsic magnetic properties of the host.

Previous work on the RKKY coupling in graphene12–16

have exclusively used a field-theory continuum model where
the graphene band structure is approximated with a Dirac
spectrum at each of the two inequivalent Brillioun zone cor-
ners. Using perturbation theory, the RKKY coupling has then
been calculated analytically from the static spin susceptibil-
ity of this model. The earliest work12,13 failed to recognize
the importance of the bipartite lattice and predicted that the
RKKY coupling is always ferromagnetic. Later it was, how-
ever, shown by Saremi14 that for all bipartite lattices at half-
filling the RKKY coupling is ferromagnetic �FM� only for
impurities on the same sublattice but antiferromagnetic
�AFM� for impurities on different sublattices. A perturbative
approach also requires an explicit use of an ultraviolet mo-

mentum cut-off scheme for the noninteracting graphene band
structure. It was recently shown that a regular sharp cutoff
does not produce the correct results, thus demonstrating the
need for a carefully chosen regularization scheme.14 This
most likely explains the discrepancies in the later results for
the RKKY coupling.14,15 Furthermore, any results from a
continuum model does not fully resolve the lattice structure,
which are likely to be important for short impurity-impurity
distances R. In fact, the later work14,15 on the RKKY cou-
pling in graphene have only considered the long-distance
limit. While this is the traditional RKKY limit, knowledge of
the short-distance behavior is important in nanostructures as
well as when comparing with ab initio results where the unit
cell always has a finite size.

To circumvent the use of perturbation theory, the ultravio-
let cut-off dependency, and to also get results for finite im-
purity distances we will here explicitly calculate the RKKY
coupling on the honeycomb lattice using exact diagonaliza-
tion in a finite system. We show that by using a large enough
system it is possible to extract both short-range and long-
range behavior of the RKKY coupling. We report on a quali-
tative agreement between our results and one of the pertur-
bative results in the long-distance limit14 but also report on a
few new findings, including a phase shift for different sub-
lattice coupling. This establishes not only that the standard
perturbative approach to RKKY coupling in graphene is, in
general, valid but also finally settles the issue of the exact
form of the RKKY coupling. Furthermore, we also study the
RKKY coupling in zigzag graphene nanoribbons �ZGNRs�
and show that the zigzag edge will significantly modify the
results due to the presence of the localized zero-energy edge
state.17–20 In contrast to the bulk, a nonperturbative treatment
seems to be essential for impurities along the zigzag edge.
For impurities inside a ZGNR bulklike behavior is, however,
achieved even for narrow ribbons.

The rest of the paper is organized as follows. In the next
section we introduce the model and solution method. Then
we discuss the results for on-site and plaquette impurities,
followed by the results for impurities on the edge and inside
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ZGNRs. We end with comparing our results with the previ-
ous perturbative results, and a discussion on how to experi-
mentally achieve magnetic impurities in graphene as well as
on the importance of electron-electron interactions.

II. METHOD

We are here focusing on how impurity magnetic mo-
ments, or spins, interact with each other on a graphene sur-
face. We are not concerned with the details of the interaction
between the moments and graphene nor about how the mo-
ments are originally formed. We will therefore model the
interaction between an impurity moment and graphene with
a simple Kondo coupling term. Using the nearest-neighbor
tight-binding Hamiltonian for the pz orbitals in graphene, the
system can be formulated as

H = − t �
�i,j�,�

�ai�
† bj� + H.c.� + Jk �

i=imp
Si · si, �1�

where ai� �bi�� annihilates an electron on sublattice A �B� in
unit cell i �see Fig. 1�a��, �i , j� means nearest neighbors, and
� is the spin index. Moreover, S= �Sẑ is the impurity spin
and s= 1

2a�
†���a�, with ��� being the Pauli matrices, is the

electron spin �for sublattice B interchange a→b�. The con-
stants entering are the nearest-neighbor hopping in graphene
t	2.7 eV and the Kondo coupling Jk which depends on the
particular impurity moment. We consider here only undoped
graphene and thus no chemical potential term enters in Eq.
�1�.

In standard RKKY perturbation theory21 the leading inter-
action between two impurity moments at sites i and j is
given by

HRKKY = JijSi · S j �2�

with the effective RKKY coupling constant Jij proportional
to the static spin susceptibility of the imbedding bulk, Jij
��ij

0 .

Exact diagonalization

Instead of using the above perturbative result for the
RKKY coupling we will calculate Jij by exact diagonaliza-

tion of Eq. �1� in a finite system with two impurity spins
either aligned ferromagnetically �FM� or antiferromagneti-
cally �AFM�. Then Jij can be expressed as the energy differ-
ence between the two configurations:22 Jij = �E�FM�
−E�AFM�� / �2S2�. We will for simplicity set S=1. This solu-
tion method is nonperturbative, automatically avoids any ar-
tificial ultraviolet cut-off dependencies, and is also capable
of generating results for any R. However, solving in a finite
system creates its own problems. We apply periodic bound-
ary conditions �PBCs� to avoid the effects of edge states but
then have to deal with the two impurities in one unit cell also
interacting with the impurities in neighboring cells. By sys-
temically increasing the “padding” p around the two impuri-
ties, see Fig. 1�b�, we can determine the necessary size of the
unit cell for converged results for Jij. As seen later on in
Figs. 3 and 4, p=2R is, in general, sufficient. We have also
ensured convergence with respect to the number of k points
in the reciprocal space.

Apart for studying the RKKY interaction in the bulk, we
have also looked at ZGNRs and strips. Here the graphene
lattice is terminated along the zigzag direction with saturated
� bonds whereas the pz orbital on the edge atom is unsatur-
ated because of the one missing nearest neighbor. We have
primarily studied narrow symmetric ZGNRs with width W
=8 /
3a, where a is the lattice constant, see Fig. 1. As is well
established, the zigzag graphene edge hosts localized states

FIG. 1. �Color online� �a� The graphene honeycomb lattice with
the two sublattices A and B in dark and light colors, respectively.
The lattice unit vectors c1 and c2, lattice constant a=2.46 Å, as
well as the two most common directions, the zigzag and the arm-
chair, are displayed. �b� Unit-cell setup in the AFM configuration
with the distance R between impurity spins shown as well as the
padding p surrounding them.

(a) (b)

(c) (d)

FIG. 2. �Color online� Two impurity spins along the zigzag di-
rection positioned ��a� and �b�� on site on the B-B sublattice and ��c�
and �d�� in the plaquette site in the ��a� and �c�� FM and ��b� and
�d�� AFM configurations. The impurity spins are marked with white
or black arrows and the area of the circles on each site is propor-
tional to the spin polarization, where excess spin-↑ �spin-↓� density
is red/gray �black�.
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at zero energy which significantly changes many of the
physical properties compared to the bulk.17–20 However, the
armchair edge does not have any such zero energy localized
states and we find that for large enough unit cells, the results
for a ZGNR, where PBCs are applied in the direction of the

ribbon, are the same as those for a strip, where instead arm-
chair edges terminate the strip.

III. RESULTS

We start with displaying in Fig. 2 the spin polarization,
sA

z = �a↑
†a↑−a↓

†a↓� /2 and sB
z , induced into the graphene from

two impurity spins positioned ��a� and �b�� on site and ��c�
and �d�� in a plaquette site, in the FM ��a� and �c�� and AFM
��b� and �d�� configurations, respectively. Below we will dis-
cuss each of these results.

A. On-site impurities

An on-site positioning of the impurity spins, where the
spins sit directly on top of an A or B atom of the graphene
lattice, has so far been the dominating setup for RKKY stud-
ies in graphene.14–16 Since on-site positioning breaks the
symmetry of the lattice, it is important to distinguish be-
tween A-A and A-B positioning of the two impurity spins.
We have studied both of these configurations along both the
zigzag and armchair directions as well as verified our predic-
tions for the asymptotic large-R behavior for several other,
chiral, directions. Figures 2�a� and 2�b� show typical spin-
polarization patterns of two impurity spins both on the B
sublattice and along the zigzag direction. We clearly see that
the spin polarization has different signs on the two sublat-
tices close to an impurity and therefore one would expect
A-A �B-B� impurities to prefer a FM coupling whereas AFM
coupling should be the case for A-B �B-A� impurities.

Figure 3 shows Jij as a function of the impurity distance R
for all four different configurations of sublattice and zigzag/
armchair directions for on-site impurities. First of all we can
directly verify that the RKKY coupling is always FM for
A-A sites and AFM for A-B sites as seen in the sign differ-
ence of Jij. This has been predicted before14,15 and is a prop-
erty of the bipartite lattice.14 Second, we conclude that pad-
ding p=2R is enough for well-converged results. Third, we
extract the following functional dependence in the large R
= �R� limit:

Jij,A-A�R� = − C
Jk

2

t

1 + cos�2kD · R�
�R�3

, �3�

Jij,A-B�R� = C
3Jk

2

t

1 + cos�2kD · R + ��
�R�3

�4�

for R measured in units of the lattice constant a. In Fig. 3
these results are plotted as black �’s using the numerical
prefactor C=1 / �72
3�� and, as seen, there is essentially a
perfect agreement at larger R. In the above equations kD is
the reciprocal vector for the Dirac points, i.e., the corners of
the Brillouin zone. There are six such vectors and for the
A-A configuration the result is independent of the particular
choice of kD since R is then a lattice translation vector, i.e.,
R=n1c1+n2c2, where n1 and n2 are integers. However, for
the A-B configuration R is not a lattice translation vector and
cos�2kD ·R� can then depend on the choice of kD. Equation
�4� is only correct when kD ·R is maximized, i.e., when kD is
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FIG. 3. �Color online� −t /Jk
2Jij for ��a� and �b�� A-A and t /Jk

2Jij

for ��c� and �d�� A-B on-site positioning of the impurity spins along
the ��a� and �c�� zigzag and ��b� and �d�� armchair directions as
function of impurity distance R. Solid curves represent calculated
results with padding p=1R−4R �black 	, blue 
, green �, and red
��, where the lines are only a guide to the eye, whereas the large-R
dependence in Eqs. �3� and �4� with C=1 / �72
3�� is displayed
with black �’s.
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FIG. 4. �Color online� −t /Jk
2Jij,plaq for impurities in the plaquette

site along �a� the zigzag and �b� the armchair direction. Same color
coding as in Fig. 3.
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chosen to be as parallel as possible to R. Equations �3� and
�4� are very similar to the results derived earlier by Saremi14

using perturbation theory in a continuum model except for
the addition of the �-phase factor and the need for specifying
kD in the A-B result, as just discussed. The �-phase factor is
essential for reproducing the numerical results for A-B sub-
lattice coupling as these are 180° out of phase with the A-A
results. These two discrepancies stem from the fact that in all
previous work R has improperly been treated as a lattice
translation vector even for A-B impurities. As seen in our
results, choosing R to be the correct impurity-impurity dis-
tance not only changes the RKKY coupling at short dis-
tances, as one might have expected, but also produces the
�-phase shift and a need for an explicit choice of kD for all
R. We strongly believe that a proper handling of R in a
perturbative treatment in the continuum model will also in-
clude these two additional corrections found in our numeri-
cal results. Our numerical prefactor C=1 / �72
3�� also
agrees with the results of Saremi14 if one explicitly use a
factor of t=8 /3�2.67 eV to produce the proper energy di-
mension of their results. We thus conclude that our nonper-
turbative results agree, up to a few small, and traceable dif-
ferences, with the perturbative results of Saremi. They firmly
establish that the RKKY coupling is oscillatory for certain R
vectors, although never changes sign on the same sublattice,
which is contrary to some other recent RKKY results.15

However, note that due to the impurities only appearing at
lattice sites, the �1+cos�2kD ·R�� oscillation is, in general,
undersampled. For the zigzag direction the period is 3a in-
stead of 3a /4 whereas for the armchair direction the period
is infinitely long. Also, for the cases reported in Fig. 3, it is
only for the zigzag A-B configuration that the RKKY cou-
pling completely disappears at certain sites. What makes the
RKKY coupling in graphene unusual is this nonsign chang-
ing oscillation on the same sublattice as well as the 1 /R3

decay as compared to Jij �sin�2kFR� / �2kFR�2 for an ordinary
two-dimensional metal.23,24 Finally, we are not only able to
extract the long-distance behavior but can also directly see
the deviations from this behavior at short impurity distances.
As seen in Fig. 3, the results along the zigzag direction are
well converged toward the large-R results around R	10a.
The exceptions are the results for every third lattice site in
the A-B configuration which are zero in Eq. �4�. Along the
armchair direction the convergence is even faster and, except
for nearest-neighbor impurity spins, Eqs. �3� and �4� give
correct results for any R. We thus conclude that the large-R
limit is reached for surprisingly small impurity distances R.

B. Plaquette impurities

For magnetic atoms deposited on graphene, the on-site
position might not the most energetically favorable but in-
stead the atoms can prefer to sit in the middle of the hexa-
gon, in the plaquette site.25,26 We will here first study the
simple situation where the impurity spin couples incoher-
ently, and with the same coupling constant Jk, to all six near-
est neighbors in the honeycomb lattice. Representative spin
polarization maps in this case are shown in Figs. 2�c� and
2�d� which have plaquette impurities along the zigzag direc-

tion. For this incoherent, symmetric, coupling to the lattice
the large-R result can, in fact, be directly derived from the
on-site results in Eqs. �3� and �4� by summing the interac-
tions between all combinations of nearest neighbors of each
impurity spin. Doing so, it turns out that the oscillations
cancel, the AFM coupling prevails, and the asymptotic
large-R result is given by

Jij,plaq�R� = C
36Jk

2

t

1

�R�3
. �5�

This is the same result as derived by Saremi14 despite the
additional �-phase factor in Eq. �4�. Figure 4 shows our
exact diagonalization results together with Eq. �5�. As before,
we see that p=2R is enough to reach converged numerical
results. For plaquette impurities along the armchair direction,
Fig. 4�b�, there is a systematic increase in Jij,plaq for small R
compared to the long-distance result but the asymptotic be-
havior is nonetheless reached before R=10a. For the zigzag
direction, Fig. 4�a�, there are some oscillations around the
asymptotic value for short R but convergence with respect to
this value is reached already at R	4a.

While the incoherent case above is straightforward to de-
rive from the results of on-site impurities, coherent coupling,
where of a plaquette impurity spin couples to a linear coher-
ent combination of the nearest-neighbor conduction elec-
trons, is physically more realistic. Saremi14 showed that the
same cancellation of the oscillations that occur in Eq. �5�
also makes the 1 /R3 contribution disappear altogether for
coherent coupling. Since we get the same cancellation in the
incoherent case when we properly treat the impurity dis-
tance, we conclude that this conclusion is still valid. Coher-
ent plaquette impurities thus have a significantly weaker, and
thus less relevant, RKKY coupling than the other configura-
tions studied here.

C. Impurities in ZGNRs

Zigzag edges in graphene have proven to be an exciting
new playground for magnetism since this termination leads
to a localized, flat-band, zero-energy edge state and is thus
extremely prone to spin polarization.17–20 This zero-energy
singularity in the local density of states has been claimed to
significantly change the perturbative RKKY coupling result
because of a qualitatively modified behavior of the spin sus-
ceptibility at the edge.16 It is therefore of large interest to
further study these systems and establish the consequences
of zigzag edges on the RKKY behavior in an exact, nonper-
turbative setting. We have found that an armchair edge does
not significantly effect the RKKY coupling and thus it is
only necessary to study the zigzag edge in order to establish
the qualitative effect of edges on the RKKY coupling.

Figure 5 shows the spin polarization for two prototypical
situations in a narrow ZGNR: impurities inside the ZGNR
��a� and �b�� and along the edge ��c� and �d��. The RKKY
coupling −Jij for the configurations in Fig. 5 is shown in Fig.
6�a� for the parameters t=Jk=1. While this is a rather un-
physically high value for Jk it helps displaying the essential
features in a numerically accessible R range. We have for
comparison also included the results for Jk= t /100, and, as
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discussed below, the same physical behavior is governing
both Jk values, although all significant features get extended
over a longer R range for smaller Jk, making a complete
numerical study harder. For reference in Fig. 6, the
asymptotic zigzag result in the bulk is shown in black and we
directly see that impurities in narrow ZGNRs behave signifi-
cantly different. The coupling between edge impurities �red,
�� is larger than in the bulk for small distances and also
displays some oscillations in that regime, but then decays
exponentially for larger R which is in sharp contrast to the
power-law decay in the bulk. Displayed is also Jij for the
RKKY coupling between opposite edges, the opposite sign

being a consequence of the two edges belonging to different
sublattices. As seen, after an initial short distance, where the
width of the ZGNR is important, same edge and opposite
edge impurities couple with equal strength. This is another
difference compared to the bulk results where the AFM cou-
pling is three times larger than the FM coupling. We thus
draw the conclusion that the edges are dominating the re-
sponse for edge impurities. This could have been anticipated
already from Figs. 5�c� and 5�d� where the spin polarization
is seen to be large only in the vicinity of the impurity and
only along the edge, it does not spread significantly into the
bulk. The essential features of the RKKY coupling along the
edge can be understood from the following argument. A mag-
netic impurity will always force a spin polarization of the
graphene in its vicinity. For a zigzag edge impurity this spin
polarization can trivially, and essentially without energy pen-
alty, be achieved by polarizing the localized edge state at
zero energy without much polarization of the surrounding
bulk. Consequently, away from the impurity, the edge state
will also quickly become unpolarized, much more quickly
than the bulk can lose its spin polarization, and thus the
RKKY coupling between two edge impurity spins decays
much faster than in the bulk. With this argument one would
expect the total amount of polarization in the B sublattice for
the FM configuration, ��sB�, to be large for small R, as then
the two impurities interact very strongly with each other, but
then rapidly decay with R until its flattens out to a value
equal to the sum of the total spin polarization of two un-
coupled edge impurity spins. This behavior is confirmed in
Fig. 6�b� where the asymptotic value is shown to be reached
already around R=7a for Jk= t. This should be compared to
the evolution of the spin polarization for the equivalent con-
figuration in the bulk where the total spin polarization is
almost constant, as displayed by the black curve in Fig. 6�b�.
The exponential decay of Jij is in sharp contradiction to ear-
lier calculations on the same width ZGNR by Bunder and
Lin16 who used an analytical approach to the tight-binding
structure of graphene to calculate the spin susceptibility and
thus obtained perturbative results for the RKKY coupling.
Both methods predict an equivalence between same and op-
posite edge impurity spins but Bunder and Lin reported an
almost linear decay with distance for small distances fol-
lowed by sign oscillations in the RKKY coupling. Despite a
thorough investigation of the RKKY coupling for R�130a,
we were not able to detect any deviations from the exponen-
tial decay, and thus no sign changes, within the numerical
accuracy which was a factor of 10−11 of the RKKY coupling
at R	0. We thus conclude that when studying these edge
states, a nonperturbative method appears to be essential
when calculating the RKKY coupling.

In the bulk Jij �Jk
2 and ��sB��Jk but for edge impurities

these simple relations do not longer hold. For all Jk� t /10
we have found that the asymptotic large-R-induced spin po-
larization from edge impurities is ��sB��1.1 and even for
Jk= t the asymptotic value of ��sB� is only slightly higher due
to a finite amount of induced polarization in the nearby bulk,
see Fig. 6�b�. Thus even in the limit of vanishing Jk, edge
impurities are going to elicit a finite spin-polarization re-
sponse of the ZGNR. This is again due to the extreme easi-
ness of polarizing the zero-energy edge state. However, when

(a) (b) (c) (d)

FIG. 5. �Color online� Two on-site impurity spins ��a� and �b��
inside a narrow ZGNR and ��c� and �d�� on the edge of the same
ZGNR in the ��a� and �c�� FM and ��b� and �d�� AFM configura-
tions, respectively. Same color coding as in Fig. 2.
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FIG. 6. �Color online� �a� −Jij for impurities along the zigzag
direction on the zigzag edge of a narrow ZGNR �red, ��, inside the
same ZGNR �green, ��, and the asymptotic behavior in the bulk
�black, 	� as function of impurity distance R. In �blue, 
� is Jij for
impurities on opposite edges of the ZGNR. Here t=Jk=1 expect the
gray line where t=1, Jk= t /100. �b� The total spin polarization in
sublattice B, ��sB�, for the same situations as in �a� in the FM-
impurity configuration. A large-enough unit cell was used to ensure
convergence of ��sB� in the R range displayed.
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Jk decreases the spin polarization per edge site naturally goes
down so the polarization now instead have to be spread over
more edge sites. This has an interesting consequence for the
RKKY coupling. When Jk decreases, the more elongated po-
larization response causes the oscillations in the RKKY cou-
pling for small R to be spread out over a longer R range.
Eventually, however, an exponential decay is achieved for
large enough R for any Jk, as also seen in the gray curve in
Fig. 6�a� for Jk= t /100. But note that the exponential decay
rate also becomes smaller when the spin polarization gets
more elongated along the edge, thus making the RKKY cou-
pling at large R larger for decreasing Jk. As a direct conse-
quence, the RKKY coupling between edge impurities is go-
ing to be larger than the coupling between bulk impurities
over a larger R distance the smaller the Jk. Of course in the
extreme large-R limit the exponential decay is always going
to make the edge-impurity RKKY coupling smaller than the
bulk coupling. It is worth pointing out before leaving the
treatment of same edge impurities that for all of the effects
described above, the width of the ribbon is not essential and
we thus expect the same behavior even for much wider rib-
bons.

Physically in between zigzag edge and bulk impurities we
find impurities positioned inside a narrow ZGNR. The spin
polarization for this situation is displayed in Figs. 5�a� and
5�b�. Here the bulk is polarized in the direction parallel to the
ZGNR but this bulk polarization also induces an edge polar-
ization. Thus the absolute value of the polarization is here
very large and it grows with the distance R since all the bulk
between the two impurities is at least lightly polarized and
any amount of bulk polarization is going to elicit a large
polarization of the edge state. This behavior is clearly seen in
Fig. 6�b� where the total spin polarization increases linearly
with R. However, the edge states are also very easily unpo-
larized, as discussed above, so the effect on the RKKY cou-
pling from the edges is not expected to be very large com-
pared to the bulk contribution. This prediction is confirmed
in Fig. 6�a� where we see that, while the coupling is some-
what larger than in the bulk and lacks oscillations, it decays
with approximately the same power law as in the bulk. Also,
Jij �Jk

2 and ��sB��Jk for these impurities, which further es-
tablish the bulklike behavior of impurities inside a narrow
ZGNR. We anticipate that for wider ZGNRs all bulk proper-
ties are fully recovered.

IV. DISCUSSION

Our results above are obtained without any approxima-
tions except the finite size of the system, assuming a nonin-
teracting picture for the electrons in graphene, and using a
nearest-neighbor hopping band structure. The first approxi-
mation we have taken care to handle systematically and as
long as the padding p around the impurities are twice or
larger than the impurity-impurity distance R in each direc-
tion, the results are well converged. Also, since the
asymptotic behavior is reached for relatively small R we
have been able to extract the large R limit to make a com-
parison with earlier, partly disagreeing, results12–15 obtained
using a perturbative approach within the continuum field-

theory model. Equations �3� and �4� are our results for large
R for bulk impurities and these are closely related to one of
the results in the literature14 although a �-phase factor and
the need for explicitly choosing kD for the A-B configuration
are new findings. This difference is most likely due to a
previous improper treatment of the impurity distance for im-
purities on different sublattices. Thus our results establish
both that the usual perturbative treatment of RKKY coupling
is appropriate in the bulk and, that, while the RKKY cou-
pling in graphene does not undergo sign changes with dis-
tance on the same sublattice, it still has a �1+cos�2kD ·R��
oscillation, a fact that has only been pointed out in one of the
previous works.14 Despite these oscillations, the facts that the
AFM A-B coupling is three times larger than the FM A-A
coupling and that the coupling is stronger at short distances
result in a strong tendency toward AFM order for any ran-
dom configuration of impurities. Thus these new results still
support the conclusion of magnetic defects in graphene cre-
ating a dilute antiferromagnet at low-enough temperatures.15

The moments will here be oriented in opposite directions on
the two sublattices with the total magnetic moment equal to
zero. Since the RKKY coupling is always AFM �incoherent
coupling� or very small �coherent coupling� for plaquette im-
purities a dilute AFM state could also be present for
plaquette impurities. We have also studied ZGNRs where we
have shown that the zero-energy edge state present on the
zigzag graphene edge significantly modifies the coupling be-
tween impurity spins. We show that defects along the edges
couple very strongly at short distances but that the coupling
finally decays exponentially with distance in contrast to the
R−3 power-law decay in the bulk. The exponential decay is a
consequence of the extreme easiness of polarizing and unpo-
larizing the localized zero-energy state. This result disagrees
with earlier perturbative results16 where they found the decay
to be almost linear for small R followed by oscillatory sign
changes. So while the standard perturbative RKKY treatment
is approximately valid in the bulk, we have here shown that
for ZGNR edge impurities a numerical nonperturbative treat-
ment is essential.

The approximation of ignoring electron-electron interac-
tion in graphene is on the other hand harder to motivate. The
noninteracting picture has been predominant in the study of
RKKY coupling13–16 as well as in other theoretical work on
magnetic adatoms in graphene.27–30 However, there seem to
be growing evidence for the importance of electron-electron
interactions in graphene with theoretical results pointing to
graphene being close to a Mott insulator state.31–39 Electron
interactions could thus potentially significantly modify the
magnetic properties of graphene and therefore also the
RKKY coupling. One such example would be if the insulat-
ing state is a Néel phase.37 While a comprehensive treatment
of electron interactions in graphene is extremely hard, a
density-functional theory �DFT� calculation of a carefully
chosen system should be able to offer insight into the impor-
tance of interactions for the RKKY coupling. However, not
only will the magnetic moment and its coupling to graphene
be more complicated in a real system than in the idealized
Eq. �1� but also a large unit cell is needed, making the DFT
calculation highly computationally intensive. Nonetheless,
some DFT results exist for short distances40 and line
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defects,41 both pointing to a slower power-law decay than
R−3. A detailed comparison of such results with our short-
distance RKKY coupling may offer insights in the applica-
bility of the noninteracting approximation and is the goal of
a future study. In fact, initial data points to the possibility of
electron-electron interactions producing strong enough cor-
rections to the noninteracting results that it is reasonable to
then ignore any corrections to the nearest-neighbor hopping
band structure in comparison. In a ZGNR the effect of
electron-electron interaction is possibly larger than in the
bulk as here any electron-electron interaction will drive a
spontaneous spin polarization of the edges.42–47 Thus, in a
real ZGNR the edge is already polarized and an impurity
spin can then not as easily polarize the edge as found in the
noninteracting picture, especially since Jk is usually a small
parameter. A recent DFT study48 has shown on an almost
exponentially decaying RKKY coupling for nearby impuri-
ties inside a narrow ZGNR, which points to the importance
of electron-electron interactions even inside ZGNRs. This
would be in contrast to the noninteracting picture where im-
purities inside a ZGNR behave essentially bulklike. Detailed
results on the influence of electron-electron interactions for
ribbons is also a subject of the future study.

We have here also explicitly ignored the issue of how an
external magnetic moment is created in graphene, but for any
experimental verification or use of our results such consider-
ations have to be taken into account. The simplest implemen-
tation is probably to deposit a magnetic adatom on top of
graphene, such as Co or Fe.25,26 We also expect the long-
distance behavior to be qualitatively similar for substitutional
magnetic atoms, of which at least Co has been shown to be
magnetic in graphene.40 Single-atom vacancies and hydrogen
chemisorption defects have also both been shown to possess
a magnetic moment in graphene41,49–53 and should behave
similarly to substitutional magnetic atoms. In fact, for vacan-
cies, Lieb’s theorem54 gives the same AFM/FM state as

found here. It has even been proposed that the FM state
found in proton-radiated graphite55,56 is due to excess va-
cancy creation on one sublattice, which is in agreement with
our findings.51 At very short impurity distances, however,
annihilation of vacancies as well as direct exchange between
magnetic moments can also be of importance. In aggregate,
there exist multiple possibilities for experimentally studying
the RKKY coupling in graphene. Moreover, the critical cou-
pling for the Kondo effect is likely too high in undoped
graphene26,28,30,57 and therefore the Kondo effect should not
compete with the RKKY coupling in any of these systems.

In summary we have studied the RKKY coupling between
two impurity spins on graphene for any impurity distance R
using exact diagonalization. Our results largely agree with an
earlier perturbative result in the large R limit where Jij
� � �1+cos�2kD ·R�� / �R�3 with A-A sublattice arrangement
FM and A-B sublattice arrangement AFM, although an addi-
tional �-phase shift for the A-B sublattice arrangement is a
new finding. The large-R limit is reached within a few lattice
unit constants and the deviations are, in general, not large
even for small R in the bulk. We have also studied the effect
of zigzag edges and found that impurities along this edge
display an exponentially decaying coupling at large R due to
the easiness of polarization of the zero-energy edge state in
an noninteracting picture. This result for edge impurities is,
however, in contrast with earlier perturbative results,16 point-
ing to the importance of an exact, nonperturbative, treatment
of the RKKY coupling in ZGNRs. Impurities away from the
edge, even in narrow ZGNRs, regain most of the bulk char-
acteristics.
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