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Using a first-principles classical many-body simulation of a Hall bar, we study the necessary conditions for
the formation of the Hall potential: �i� Ohmic contacts with metallic reservoirs, �ii� electron-electron interac-
tions, and �iii� confinement to a finite system. By propagating thousands of interacting electrons over million
time-steps we capture the build-up of the self-consistent potential. The microscopic model sheds light on the
current injection process and directly links the Hall effect to specific boundary conditions at the particle
reservoirs.
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I. INTRODUCTION

The calculation of self-consistent potentials of an interact-
ing many-body system is of paramount importance for un-
derstanding the transport phenomena occurring in nanostruc-
tures and to develop realistic semiconductor device-models
reaching from the classical to the quantum regime.1 Ground
state density-functional theory is not always suitable to treat
transport phenomena in semiconductors2 and time-dependent
density-functional theory is still limited to rather small sys-
tems �less than hundreds of electrons�. On the other hand,
classical theories for interacting electronic systems are well
established, i.e., Thomas-Fermi screening and its extensions3

have been successfully used to obtain the effective mean-
field potential of electrons in a semiconductor device. The
presence of a stationary current through a device requires
implementing an open system, where the contacts provide
sources and sinks for electrons. The contacts form an indis-
pensable part of the simulated system. The methods de-
scribed above are only partially able to address this situation,
even for a purely classical system.4 An interesting example is
the classical Hall effect which gives rise to an unusual
potential-theory problem.5 In a Hall bar, the voltages at the
source and drain contacts are externally given and the current
flow has to be calculated under the condition that the elec-
trons do not cross the sample edges. These constraints on the
current in the device and the voltages at the contacts have to
be satisfied simultaneously. The resulting Hall potential �Fig.
1�b�� has been obtained via conformal mapping.6,7 The con-
formal map yields a unidirectional current flow, without
counterpropagating currents along the edges. Instead a diag-
onal current flow from one corner of the device to the oppo-
site corner emerges. Recently within the nonequilibrium net-
work approach similar potentials were obtained.8,9

Mainly due to the lack of computational feasibility, first-
principles, microscopic model of the Hall effect has been
lacking. But only such a model allows us to study and
change important parameters �density, donor layer distance,
device geometry, gates, etc.� and to finally understand which
characteristics of a device, microscopic forces, and boundary
conditions are necessary to generate the experimentally ob-

served Hall potentials.10 To achieve this step, we have devel-
oped a computational approach utilizing graphics processing
units and adapted many-body algorithms used to study gal-
axy formation to nanodevices. In addition, our particle-based
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FIG. 1. �Color online� �a� System setup. The metallic reservoirs
R supply and remove electrons through the contact stripes C to/
from the two-dimensional electronic subsystem S, which sits above
the positively charged donor layer D. �b� Hall potential obtained
from the conformal mapping method, where electrons enter the Hall
device from the left source contact and drift to the right one. The
contacts are metallic equipotential surfaces. The black lines denote
equipotential lines at −4, −2, 0, 2, and 4 mV. The dots at the left and
right sides denote the positions of 500 contact points Ci used in the
numerical simulation to model the Ohmic contact connecting the
metallic reservoir with the electronic subsystem-layer. �c� Time-
averaged potential obtained from the microscopic particle simula-
tion described in Sec. IV.
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simulations highlight the dynamical nature of electron trans-
port in a device, where we study the time-dependent build up
of the self-consistent particle distribution.

The manuscript is organized as follows: in Sec. II we
describe the general idea of the particle-based simulation
scheme and give the details of our method in Sec. III. Results
are discussed in Secs. IV and V and finally we present con-
clusion and an outlook for future research in Sec. VI.

II. INTERACTING PARTICLES SIMULATION OF
SEMICONDUCTOR DEVICES

Our first-principles model works in the spirit of molecular
dynamics11 by using microscopic equations for the motion of
electrons in a charge field and highlights the importance of
electron-electron interactions together with the boundary
conditions at particle reservoirs. In the classical microscopic
model, the force Fk on the kth electron consists of the forces
Fk

C due to all other N=Ne+Nd electrons and donors, the con-
fining potential Vw, and the velocity dependent Lorentz force
Fk

L,

Fk = Fk
C + Fk

L − �Vw�r��r=rk
,

Fk
C =

q

4��0�
�
l=1

l�k

N
ql�rl − rk�
�rl − rk�3

,

Fk
L = qkṙk � B , �1�

where B denotes the magnetic field. Each particle state vec-
tor contains the position rk, velocity ṙk, and charge qk �nega-
tive for electrons, positive for the stationary donors�. In the
following simulations we set the dielectric constant �=8 and
use an effective mass m�=0.067 me approximately matching
electrons in a GaAs heterostructure.

Microscopic models of open systems present a recent de-
velopment in theory.4 Only the computationally very de-
manding particle-based simulations are able to accurately
treat electronic transport on the classical level and to go be-
yond simplified drift-diffusion or hydrodynamic
approaches.1 Our simulations of large systems �103–104 in-
teracting classical particles� rely on a 200–1 000 fold im-
provement of computational speed due to the use of high-
performance graphics processing units, which allow us to
simulate micrometer-size devices at realistic electron densi-
ties. A quantum-mechanical calculation for such big open
systems is still an impossible task. However, classical simu-
lations have always provided guidance for future quantum-
mechanical simulations and are needed for understanding the
quantum-to-classical transition happening at higher tempera-
tures. Especially for the understanding of the relation be-
tween classical and integer quantum Hall effect �IQHE� such
simulations are required, since often for simplified quantum-
mechanical calculations the Fermi-liquid approximation is
used, where interactions are effectively not present between
the quasiparticles. Notable exceptions are theories of the
fractional quantum Hall effect �FQHE� and the analysis of

small systems with Coulomb-blockade physics.4 Interest-
ingly, electron-electron interactions are the cornerstone of the
theory of the classical Hall effect and have to be considered
in realistic semiconductor simulations at higher
temperatures.1 The particular shape of the classical Hall po-
tential �Fig. 1� has also been observed in the IQHE �see Fig.
2 in Ref. 10�.

Also in graphene devices the absence of the integer and
fractional QHE in a four-terminal measurement in small
samples is attributed to the influence of the Ohmic contacts,
demonstrating the need to include the finite geometry, the
contacts, and the interactions in the device model.12 The
theory of the IQHE in a finite graphene Hall device is dis-
cussed in Ref. 13. Additionally, the IQHE displays a strong
influence of the filling factor on the Hall potential, which is
absent in classical models.

III. BOUNDARY CONDITIONS, CONTACTS, AND
RESERVOIRS IN OPEN SYSTEMS

Our system Fig. 1�a� consists of several connected parts:
two metallic three-dimensional electron reservoirs R �source�
and R �drain�, two two-dimensional contact stripes C
�source� over the complete device width between x
= �0,0.1� �m, and C �drain� between x= �2.4,2.5� �m
where electrons from the reservoir are injected into a two-
dimensional electron subsystem S. Uniformly distributed
Nd=8094 positive background charges are located in the pla-
nar donor layer D 10 nm beneath the electronic layer, whose
extension exactly matches the extension of the electronic
subsystem S. The resulting positive potential in the unfilled
electronic layer �Fig. 2� is bulged outward due to the finite
extension of the system and has a range of 2.2–3.0 V. The
motion of the electrons in the two-dimensional �2D� sub-
system is confined by a rectangular box-potential at y=0, y
=1 �m, x=0, and x=2.5 �m, which represents the etched
borders of the nanodevice. Perpendicular to the plane, a ho-
mogeneous magnetic field B is present. The electrons sitting
in the three-dimensional reservoirs are not part of our simu-
lation and do not contribute to the potential calculation in the
two-dimensional contact region, see Ref. 14, model M4. The
contact points Ci shown in Fig. 1�b� mark the positions of
metallic spikes where electrons get transferred from the res-
ervoirs to the subsystem S and vice versa.
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FIG. 2. �Color online�. Left panel: potential V�x ,y ,0� in the
electronic subsystem S at z=0 due to the donor layer located at z
=−10 nm. Right panel: cut through the donor potential in the
middle of the bar �see bright line in the left panel at x=1.25 �m�
showing oscillations with amplitudes of 2 meV due to the regular
donor lattice.
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To find the self-consistent stationary electron flow through
the system and the corresponding potential, we put initially
7 800 electrons at random positions in the electronic system
S. The initial distribution of the electrons was chosen to
counterbalance the positive donor charges, but we do not
enforce equal numbers of electrons and donors in the system,
since we want to obtain the self-consistent solution. The res-
ervoirs are connected to the contact points and enforce an
equipotential surface within the contact stripes C. In a typical
Hall measurement the source and drain reservoirs and con-
tacts are kept on fixed potentials and one probes the Hall
voltage in the transverse direction along the y axis. In meso-
scopic physics, interactions are often considered to be absent
in the semi-infinite leads connecting the device region with
the reservoirs. In our setup, we find that the electron-electron
interactions within the contact stripes, from the moment of
injection on, are crucial for the build-up of the self-consistent
Hall potential. We allow the number of electrons within the
subsystem to change due to injection and removal events in
the contact stripes C. Several techniques have been proposed
to establish a microscopic model of carrier injection from an
Ohmic contact.1,14 Our introduction of contact points is mo-
tivated by studies of the microscopic nature of Ohmic
contacts.15 Ohmic contacts to quasi two-dimensional electron
gases �2DEG� in AlGaAs/GaAs heterostructures consist of
metallic spikes which penetrate the cap-layer and reach down
to the layer of the 2DEG.16 In one dimension, the most real-
istic results have been obtained by using the reservoir
method, where electrons can enter the contact stripe from a
reservoir in order to maintain the applied bias-voltage locally
in the contact stripe.14 We have generalized the one-
dimensional �1D� model to two dimensions and sample the
potential in both contact stripes C at 500 contact points Ci.
We specify the target value for the respective contact poten-
tials �here Vsource=−5 mV and Vdrain=+5 mV�. Initially, the
electron and donor charges produce an on �spatial� average
flat potential over the device region, which does in general
not match the target potentials at the contacts.

Next we integrate the equations of motion of the interact-
ing N-body system in a magnetic field of B=4 T with a time
step of �t=5�10−17 s using a modified Euler algorithm

ṙk�t + �t� =
1 − �l

2�t2

1 + �l
2�t2 ṙ�t� +

2�l�t

1 + �l
2�t2�0 − 1

1 0
�ṙ�t�

+ 	Fk
C�rk�t�� − �Vw�r��r=rk�t�
�t/m*, �2a�

rk�t + �t� = rk�t� + �tṙk�t + �t� , �2b�

where �l=
eB

2m* denotes the Larmor frequency. During the
propagation we keep track of the time-averaged potential at
all contact points Ci

V̄�Ci� =
1

4��0��T
�

t0

t0+�T

dt�
l=1

l�k

N
ql

�rl�t� − r�Ci��
+ Vw�r�Ci�� ,

�3�

where r�Ci� denotes the position of the contact point Ci. The
starting point of the integration is initially set to t0=0. The

integration loop gets interrupted each 200�t and we deter-
mine for source and drain separately the contact point with
the maximum value of the time-averaged potential

V̄�Ci,source
max �, V̄�Ci,drain

max � and the point with the minimum value

V̄�Ci,source
min � and V̄�Ci,drain

min �. However, we discard the selected
points in case the integration time is smaller than a cyclotron
period �T�Tc in order to average out momentary potential
fluctuations. Next we inject an electron at location r�Ci,source

max �
in case V̄�Ci,source

max �	Vsource and we mark the electron closest

to r�Ci,source
min � for removal if V̄�Ci,source

min ��Vsource. The same
process takes place at the drain contact. The rate of four
possible removals and additions every 200�t corresponds to
a maximum possible current of 16 �A. After an injection or
removal event, the lower limit t0 of the time integration in
Eq. �3� is set to the time of event. In our simulations we
obtain currents of the order of 1 �A, demonstrating that
convergence was achieved and that there is no need to inject
or remove electrons every 200�t in order to maintain equi-
potential surfaces in the contact regions. Between injection
and removal, the electrons move under the forces given by
Eq. �1�.

The specific advantage of the used NVIDIA Tesla GPU
board lies in the simultaneous calculation of 240 two-body
interaction forces, which yields performances in the tera-
FLOPS �1012 floating point operations per second� range.17

The limitation to single-precision arithmetic is of no major
concern for the highly chaotic classical simulation, since we
are interested in statistical averages. We perform 200 itera-
tions steps on the GPU, before we transfer the instantaneous
positions and velocities of all electrons to the CPU host. On
the CPU, we calculate the potentials in the contact regions
and inject and remove particles according to the rules given
above. Subsequently the updated set of particles is sent back
to the GPU for propagating another 200 steps. The technical
details of our hybrid GPU-CPU scheme will be described
elsewhere.

Finally, we calculate the resulting �time-averaged� poten-
tial at all points of the electron subsystem S. Our injection
and removal procedure ensures that the potentials at the
source and drain contacts converge toward their respective
target values �see Fig. 3�, which are physically enforced by
the presence of the metallic particle reservoirs. If instead
electrons are injected with equal probability across the con-
tact stripe, no Hall voltage across the device emerges.

IV. TIME-AVERAGED POTENTIALS AND ROLE
OF INTERACTIONS

We track the total number and the position of the elec-
trons in the Hall bar. After a transient behavior �lasting ca.
0.1 ns� at the beginning of the simulation, a steady-state
situation is reached where the electron number fluctuates
around the value Ne=7975
5, giving rise to an average
electron density of ne=3.19�1015 m−2. The current is ob-
tained by introducing a flux-surface across the subsystem S
or alternatively by counting the injection and removal events
at each contact.1 The net-current inflow from the source con-
tact is +1.07 �A, while the drain contact supports a net out-
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flow of −1.07 �A. The expected Hall voltage Vxy =RxyI
across the device is related to ne via

Rxy =
B

ene
= 7826 � . �4�

The calculated Hall voltage Vxy =8.4 mV is in good agree-
ment with the target potential difference of 10 mV and the
time-averaged value �see Fig. 4�. Figure 5 shows the histo-
gram of the injection and removal events in the contact
stripes, where for each bin we display only the net-result
�number of injection events minus removal events� out of
105 events. The source contact predominantly injects elec-
trons in the lower left corner, while the drain contact re-
moves most electrons in the upper right corner. Thus the
mean electron flow follows a diagonal path across the device
as displayed in Fig. 6�b�. The trajectory of an individual
electron �Fig. 6�a�� can deviate considerably from the aver-
age behavior. Figure 7 shows the distribution of the flight
times of the electrons between the contacts. From the time-

of-flight distribution we infer that most electrons are short
lived and get absorbed within the same contact in which they
got injected. These electrons do not contribute to the total
current, but they are important to establish the mean Hall
potential and the average current density field. The average
time-of-flight from source to drain contact is t̄tof=0.6 ns, and
sets the time-scale required in order to obtain the converged
result shown in Fig. 1�c�. Starting the time average at a later
point t	 t̄tof does not alter the picture.

We also studied the importance of the electron-electron
interactions by changing the dielectric constant � in a range
from 1–8 and by additionally introducing a short-range cut-
off of the Coulomb interactions. We find that for decreased
Coulomb interactions ��	10� the resulting potential does
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not resemble the conformal map result, but instead electrons
start to pile up next to the converged contact region, while at
the other side the electron density is reduced and results in a
too positive value of the potential. Our finding shows that the
electron must have a minimum degree of incompressibility
in order to yield the classical Hall effect. Antisymmetrization
and the Pauli principle �which are not part of the classical
simulation� can provide other mechanisms to keep electrons
apart and give an effective “Pauli incompressibility.”

V. CONNECTION BETWEEN CLASSICAL AND QUANTUM
HALL EFFECT

As exemplified by our particle-simulation of a Hall bar,
the incorporation of the metallic boundary conditions to-
gether with the electron-electron interactions in the whole
device �including the contact stripes� and the finite size of
the system are all mandatory ingredients for the formation of
a classical Hall potential. These facts were already noted by
Hall in 1879,18 p. 287, but the precise way how these ingre-
dients lead to the Hall effect could not been elucidated before
due to the lack of computational methods.

An intriguing problem is the passage from the classical to
the IQHE and the role of interactions in the IQHE. Recently,
it has been suggested that interactions are actually an impor-
tant ingredient for the IQHE in order to calculate the critical
exponents of percolation theories of the IQHE.19 The experi-
mental observation of the “classical” Hall potential10 under
conditions where the resistivity is quantized provides another
hint that electron interactions and the boundary conditions at
the reservoir/subsystem interface plays an important role in
the IQHE. Interactions enter the picture on two different
length scales: while the Coulomb repulsion, the specific
boundary conditions set by the device geometry, and the me-
tallic contacts are seen to enforce the global shape of the Hall
potential, small clusters of neighboring electrons perform a
highly correlated dancing pattern, which could be seen as the
classical analog to the FQHE.20 The interactions between the
donors and the electrons result in the screening of the posi-
tive donor charges, which become visible after performing
the time-average of the instantaneous potential snapshots.

A direct translation of the classical calculations to the
quantum regime is not easily possible, since in the quantum

case at low-temperatures scattering events strongly depend
on the occupation of initial states and the availability of final
ones. Furthermore exchange and correlation effects have to
be taken into account21 and the Coulomb interaction is modi-
fied due to the orbital extension of the electronic Landau
levels. As a first step toward the incorporation of quantum
effects, we have repeated the simulations using a classical
Hartree approach, where Gaussian-shaped charge clouds rep-
resent the density of an electron within the first Landau level.
The Gaussian distribution cuts off the Coulomb interactions
at short distances, but does still lead to the buildup of the
Hall potential shown in Fig. 1�c�. In all our classical calcu-
lation, skipping orbits play only a minor role for the transport
and the frequent collisions with other electrons lead to a
detachment of the trajectories from the edges.

This observation poses the question whether in an inter-
acting quantum-mechanical many-body calculation edge-
states prevail. The electric Hall field and dissipation at the
contacts increase with increasing current and inelastic scat-
tering events may provide another mechanism to change
from an edge-transport picture to bulk transport diagonally
across the device. The experimental observations of the Hall
potential similar to the one shown in Fig. 1�b� on a QHE
plateau demonstrates that a quantized resistivity can occur
hand-in-hand with the diagonal transport picture. Transport
along the edges is in our classical model not compatible with
the equipotential boundary conditions at the contacts, since
the arrival of edge current in the contact would increase the
electron density locally and lead to deviations of the poten-
tial from the prescribed value. If in the quantum-mechanical
case a self-consistent calculation22 can remedy this situation
requires further investigations.

VI. CONCLUSIONS AND OUTLOOK

In conclusion, we have developed a highly efficient clas-
sical particle-based simulation scheme for semiconductor de-
vices, which incorporates the spatial and temporal sequence
of injection and removal events happening at Ohmic con-
tacts. The classical Hall potential did emerge from our cal-
culation as the time-averaged self-consistent potential. The
choice of local boundary conditions within the metallic con-
tacts has a crucial influence on the resulting global particle
distribution inside a Hall bar. Our method extends previous
models1,4 and can be readily adapted to include charged gates
and different device geometries. We expect that our compu-
tational method opens a window toward a first-principles
treatment of interaction effects in semiconductor devices and
accelerates the development of the next generation of trans-
port codes for realistic device settings.
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