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We show that the decorated honeycomb �star� lattice supports a number of topological insulating phases with
a nontrivial Z2 invariant and time-reversal symmetry protected gapless edge modes. We investigate the stability
of these phases with respect to various symmetry-breaking perturbations and demonstrate the connection to the
recent discovery of an exactly solvable S=1 /2 chiral spin-liquid model �Yao and Kivelson, Phys. Rev. Lett.
99, 247203 �2007�� with non-Abelian and Abelian excitations on the same lattice at strong interaction strength.
Our work highlights the relationship between noninteracting topological band insulators and strongly interact-
ing topologically ordered spin systems, and points to promising avenues for enlarging the number of known
examples of both.

DOI: 10.1103/PhysRevB.81.205115 PACS number�s�: 71.10.Fd, 71.10.Pm, 73.20.�r

I. INTRODUCTION

In recent years, the study of various types of topological
order in condensed matter physics has dramatically
increased.1–3 The interest in this topic has been driven in
large part by the fractional quantum-Hall effect and efforts to
understand the high-temperature superconductors. In both
cases electron interactions are fundamental to the phenom-
ena. However, a new class of systems, noninteracting Z2 to-
pological band insulators �TBI� with time-reversal symmetry
�TRS�, has diverted attention to topological properties that
do not depend on interactions �but are robust to weak
interactions�.4,5 The existence of topological properties in
models that can be exactly solved in the noninteracting limit
and treated to a high degree of accuracy by conventional-
band-theory methods in the interacting limit, has led to pre-
cise predictions for experiment.6–9 An unusually rapid veri-
fication of many of these predictions in experiment has
followed, and there are now several known examples of this
state of matter in both two-dimensional10,11 and three-
dimensional systems.12–14 In some of these materials, topo-
logical properties are expected to be robust up to room tem-
perature and therefore hold great promise as components of
future electronic devices.12

Current theoretical research on topological insulators is
proceeding along several parallel tracks. On the one hand,
there is great interest in identifying new physical systems
that will possess topologically nontrivial phases15–21 while
on the other hand there are fundamental questions about the
fate of topological properties as the strong electron-
interaction limit is approached.22,23 In this work, we contrib-
ute to both directions by providing several other examples of
Z2 TBIs on a lattice where they have not been reported
before—the decorated honeycomb lattice. We also establish
a topological connection at 1/2 filling between the noninter-
acting limit and the strongly interacting limit where an ex-
actly solvable electron model �the Kitaev spin model� is re-
alized on the same lattice.24 We are unaware of any other
model that realizes exactly solvable states at weak and strong
interaction, both with topological properties. Moreover, via
explicit calculation, we show these two limits share topologi-
cal properties, even though their symmetries are very differ-
ent.

Our discussion focuses on a tight-binding model of fermi-
ons hopping on the two-dimensional-decorated honeycomb
lattice shown in Fig. 1. This lattice is a “cousin” of both the
honeycomb lattice and the kagome lattice, each of which is
known to support TBI phases.4,15,25–27 In a certain regard, the
decorated honeycomb lattice can be viewed as an “interpo-
lating” lattice between the honeycomb and the kagome: if
one shrinks the triangles at the vertices of the underlying
honeycomb lattice �sites with hopping parameter t in the fig-
ure� to their center point, the honeycomb lattice is recovered,
while expanding the triangles until their corners touch pro-
duces the kagome lattice. One might consider this geometri-
cal property to be the key reason the decorated honeycomb
lattice supports topological insulator phases, given that the
honeycomb and kagome lattices also support topological
phases. However, because the unit cell of the decorated hon-
eycomb lattice contains six sites �compared to three for the
kagome and two for the honeycomb� its phase diagram is
much richer than that of either of its cousins and some novel
features appear that we will discuss in more detail below.
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FIG. 1. �Color online� �a� The decorated honeycomb lattice has
a triangle at each vertex of the honeycomb lattice. The six-site unit
cell with sublattices A and B is contained in the parallelogram in-
dicated by a1 and a2. Nearest-neighbor hopping on vertex triangles
occurs with amplitude t, between triangles with amplitude t�, and
with �i�SO for second neighbor hopping as indicated in �b�. Topo-
logical phases occur at a number of filling fractions �see Fig. 3�, as
well as in the case that �SO�0 and t is allowed to be complex
corresponding to finite flux through vertex triangles. �c� The first
Brillouin zone including a path along the high-symmetry lines.
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II. TIGHT-BINDING MODEL

The Hamiltonian for our �initially noninteracting� prob-
lem is

H = H0 + HSO + HCDW + HR. �1�

The nearest-neighbor hopping is described by

H0 = − t �
�ij�,�,�

ci�
† cj� − t� �

�ij�,�,�→�

ci�
† cj� + H.c. �2�

with amplitude t on the triangles “�” and with amplitude t�
between triangles “�→�,” as shown in Fig. 1�a�. The intrin-
sic spin-orbit coupling

HSO = i�SO �
��ij��,�,�

e�ij · s���ci�
† cj� + H.c. �3�

describes the second-neighbor hopping with amplitude
�i�SO, see Fig. 1�b�. The sign of the amplitude is different
for different spin orientations sz= �1, s� is the vector of Pauli
matrices and e�ij = �dij

1 �dij
2 � / 	dij

1 �dij
2 	 is a vector normal to

the x-y plane describing how the path ��ij�� was traversed
using the standard conventions.4 In Eq. �1�, HCDW and HR are
charge-density wave �CDW� and Rashba spin-orbit terms,
respectively. The CDW Hamiltonian is

HCDW = �
i,�

�vici�
† ci� �4�

and the Rashba Hamiltonian is

HR = i�R �
�ij�,�,�

ci�
† �s��� � d̂ij�zcj� + H.c., �5�

where �vi is an on-site potential possibly differing on each of
the six unit-cell sites labeled in Fig. 1, �R is the strength of

the Rashba coupling, and d̂ij is the unit vector connecting site
i to j.

III. PHASE DIAGRAMS

The six �doubly degenerate� bands coming from the six-
site unit cell �see Fig. 1� for H0+HSO are shown in Fig. 2
along the various high-symmetry directions. The first Bril-
louin zone is identical to that of the honeycomb and kagome
lattices which share the same underlying triangular Bravais
lattice,4,15 see Fig. 1�c�. There are Dirac points at K and K�,
two quadratic band crossing points �QBCP� at 	, and two flat
bands present when �SO=0. We note that the lower QBCP
appears at filling fraction f =1 /2 for t�
3t /2 and at f =1 /3
for t��3t /2. Similar band features are also found on the
kagome lattice at the same Brillouin-zone points.15,27 When
the second neighbor hopping �SO�0, a gap opens at the
Dirac and the QBCP and topologically nontrivial phases ap-
pear; denoted as quantum spin-Hall insulator in Figs. 2 and
3. By explicitly computing the Z2 invariant using the parity
eigenvalues at the time-reversal invariant moment6 and
checking for helical edge states in a strip geometry,4 we have
found the phase diagrams for different filling fractions, f .
The results are summarized in Fig. 3.

One feature of the decorated honeycomb lattice that dif-
fers from the kagome and honeycomb lattices is the natural

presence of two �t and t��, rather than one, nearest-neighbor
hopping parameters. This effectively adds an additional de-
gree of freedom to the phase diagram and can lead to tran-
sitions to topologically nontrivial phases even when there is
not an obvious Dirac point or quadratic band crossing in-
volved in the nearest-neighbor hopping model, such as occur
at filling fraction 1/3 in Fig. 2�a�. As Fig. 2�b� shows, when
�SO is turned on, an “incipient” band touching point develops
at the 	 point for filling fraction 1/3 and this effectively
drives the transition to the topologically nontrivial state.
Thus, the band structures with zero spin-orbit coupling do
not always clearly reveal potential topological transitions for
strong spin-orbit coupling.

At f =1 /3, 1/2, and 2/3 there are �electron-hole compen-
sated� intervening metallic phases between topologically
trivial and nontrivial insulators. This also indicates that a
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FIG. 2. �a� and �b� show the band structure of the tight-binding
model H0+HSO with t= t� along the path shown in Fig. 1�c�. In �a�
�SO=0 and in �b� �SO=0.1t. There are Dirac points at K and K� �not
shown� and QBCP at 	 in �a� while in �b� �SO�0 opens up a gap at
each of these points and destroys the flat bands. �c� The phase
diagram at f =1 /2 �involving QBCP� with �SO=0.1t. �d� The phase
diagram at f =1 /6 �involving Dirac points� for �SO=0.1t. We have
chosen a staggered sublattice potential configuration where all the
sites in A�b�-triangle �see Fig. 1� have potentials �v �−�v�. In �c�
and �d�, BI denotes an ordinary band insulator while QSH denotes
the quantum spin Hall phase.
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FIG. 3. Phase diagrams for the decorated honeycomb lattice
with t and t� real in the absence of a staggered on-site potential and
no Rashba coupling. Several filling fractions f are shown �lower left
corner�. For fixed f and �SO it is possible to drive a transition
between a topological insulator and a nontopological phase by vary-
ing the ratio t� / t.
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“direct” transition coming from a band inversion is not ge-
neric in this model.28 The filling fractions with such an in-
tervening metallic phase mimic the behavior of disorder on
the honeycomb lattice in the presence of finite Rashba
coupling.29 Also note that varying the ratio of t� / t at fixed
�SO can lead to a transition between a TBI and a trivial
insulator. More surprisingly, increasing �SO for fixed value of
t� / t can trigger a transition between a TBI and a trivial insu-
lator, as seen for f =1 /3 and 1/2.

Next we turn to an analysis of the stability of the topo-
logical phases indicated in Fig. 3 in the presence of Rashba
interaction and on-site �CDW� potentials. The stability of the
topological phases at f =1 /6 and f =1 /2 is shown in Figs.
2�c� and 2�d�, where we used �vi=�v on “sublattice” A and
�vi=−�v on “sublattice” B as shown in Fig. 1. Consequently,
the stability regions are qualitatively similar to the analogous
model on the honeycomb lattice.4,30 The stability region of
the QBCP at f =1 /2 is larger than that for the Dirac point at
f =1 /6, which we attribute to a larger value of the gap �
3
times� at the QBCP when �R=�v=0.31

IV. EFFECTIVE LOW-ENERGY DESCRIPTION
AT DIRAC POINTS

At the Dirac points it is straightforward to derive an ef-
fective low-energy description for arbitrary �vi in the six-site
unit cell. Setting the zero of energy to be right at the Dirac
point �either at f =1 /6 or f =2 /3� for �SO=�R=�vi=0, the
effective low-energy Hamiltonian is given by

H� = H0� + HSO� + HR� + HCDW� �6�

with

H0� = �vF��kx
z�x + ky�y� , �7�

HSO� = − 4�w�t�/t��SO�z
zsz, �8�

HR� = − �wR�t�/t��R��x
zsy − �ysx� , �9�

HCDW� = g0I + ��gx�x + gy
z�y + gz�z� . �10�

We have adopted a 
z ,�i ,si notation similar to Ref. 32: the

z= �1 describes states at either the K or K� points, the �z
= �1 describes the two bands that are involved in the Dirac
band crossing �analog of A and B sublattice bands on the
honeycomb lattice�, and sz= �1 represents the electron spin
as it did in Eqs. �3� and �5�. The parameter �= �1 refers to
the Dirac point at f =1 /6, and f =2 /3, respectively. We have
also defined two functions describing the dependence of the
effective low-energy theory on the parameter x= t� / t

w�x� =
�3	x	

2�9 + 4x2
,

wR�x� =
3 + 2�3x
�9 + 4x2

.

The effective Fermi velocity entering Eq. �7� is

vF = w�t�/t�v0,

where v0= ta /� and a is the length of the unit cell vector. It
follows from Eq. �9� that for �vi=�R=0 the spin-orbit cou-
pling opens up a gap with magnitude Egap=8	w�t� / t��SO	.
The parameters entering the low-energy description of the
CDW term, Eq. �10�, are given by

g0 =
�v1 + �v2 + �v3 + �v4 + �v5 + �v6

6
,

gx = w�t�/t�
�v1 + �v2 − 2�v3 + �v4 + �v5 − 2�v6

3�3
,

gy = w�t�/t�
− �v1 + �v2 − �v4 + �v5

3
,

gz = w�t�/t�
− �v1 − �v2 − �v3 + �v4 + �v5 + �v6

�3�t�/t�
.

A finite g0 can be absorbed in a shift of the chemical poten-
tial.

It is useful to consider a few important limits of the gen-
eral low-energy form of HCDW. First take �vi=�v for sites on
the A triangle and �vi=−�v for sites on the B triangle. In this
case

HCDW = − �
2�3w�t�/t��v

t�/t
�z,

which is identical to the form of the expression for the hon-
eycomb lattice and will generically open a gap at the Dirac
point.4 We have verified that the low-energy description
given above produces the same stability phase diagram and
phase boundary shown in Fig. 2�d� as a direct diagonaliza-
tion of the full six-band Hamiltonian. Another important
limit to consider is that of general �vi. In that case, the phys-
ics more closely resembles the kagome lattice where an ef-
fective axial gauge field appears15 with

Ax
l = −

�v1 + �v2 − 2�v3 + �v4 + �v5 − 2�v6

3�3
l ,

Ay
l =

�v1 − �v2 + �v4 − �v5

3
l ,

when �v1+�v2+�v3−�v4−�v5−�v6=0, where l= �1 refers
to the two Dirac points K and K�. If, on the other hand,
�v1+�v2+�v3−�v4−�v5−�v6�0 a gap

Egap =
	��1 + ��2 + ��3 − ��4 − ��5 − ��6	

�9 + 4�t�/t�2

opens with a smallest direct gap at shift Ax
l ,Ay

l with respect
to K or K�. Thus, the behavior of the decorated honeycomb
lattice with respect to HCDW is another example of the ways
in which this lattice “interpolates” between the honeycomb
and kagome lattices, and we expect, for example, analogs of
the kekule phase to be realized as well.15,33

TOPOLOGICAL INSULATORS ON THE DECORATED… PHYSICAL REVIEW B 81, 205115 �2010�

205115-3



V. ADIABATIC DEFORMATIONS
AND THE KITAEV MODEL

We now turn our attention to one of the features of the
decorated honeycomb lattice which is related to its geom-
etry: topological phases exist even in the absence of second
neighbor hopping when t is made complex �obtained by put-
ting a flux through the vertex triangles�. Below we show by
an explicit calculation for spinless fermions that the model
obtained in the absence of second neighbor hopping but with
complex t �and possibly also complex t�� can be adiabati-
cally deformed into a model with real t, t�, and �SO. An
example of such an adiabatic deformation is illustrated in
Fig. 4 and in the last part of this section we will describe
each step of the deformation in detail.

The adiabatic connection we establish also holds for time
reversal invariant models of electrons with spin: for sz con-
serving models on the honeycomb lattice, Kane and Mele4,32

showed that one can view a Z2 TBI in two dimension as two
copies of Haldane’s model26 with different effective mag-
netic fluxes �with a net zero flux through the unit cell� for
different spins �so that under time reversal each copy is
transformed into the other, thus preserving TRS overall�.
Moreover, as long as the gap does not close, sz nonconserv-
ing terms are also allowed. With this insight, it is evident that
any lattice model that supports a quantum Hall effect for
spinless fermions will support a Z2 TBI for electrons with
spin �by taking the appropriate “second copy”�.

There is an interesting consequence of the above-
mentioned adiabatic connection. It allows us to topologically
relate the phases in the noninteracting tight-binding model at
half-filling, see Fig. 3, to the chiral spin-liquid phases re-
cently reported in the Kitaev model24,34 on the same lattice
which can be viewed as a strongly interacting electron model

with spin-orbit coupling.35 The Kitaev model on the deco-
rated honeycomb lattice is defined in the following way:24,36

H = �
x link

Jx�i
x� j

x + �
y link

Jy�i
y� j

y + �
z link

Jz�i
z� j

z + �
x� link

Jx��i
x� j

x

+ �
y� link

Jy��i
y� j

y + �
z� link

Jz��i
z� j

z.

In the summation, i and j are nearest-neighboring sites con-
nected by a � link ��=x ,y ,z ,x� ,y� ,z�� as shown in Fig. 1�a�.
After a Jordan-Wigner transformation this model can be
mapped onto a model of free Majorana fermions hopping in
the background of static Z2 fluxes. The ground state sponta-
neously breaks time-reversal symmetry and is described by a
chiral spin liquid with either Abelian or non-Abelian vortex
excitations.24 In the following we set Jx=Jy =Jz=J�0 and
Jx�=Jy�=Jz�=J��0. The ground-state sector corresponds to a
uniform flux configuration. It possesses a representative free
fermion model25

HCSL = ��
k

�k�
† H��

�o��k��k� �11�

and �= �1 specifies the way the time-reversal symmetry is
spontaneously broken. Here, �k�

�†�, �=1, . . . ,6 are fermionic
annihilation �creation� operators and we have defined the
matrix

H�o�

=�
0 iJ iJ − iJ�e−ik2 0 0

− iJ 0 − iJ 0 iJ�eik1 0

− iJ iJ 0 0 0 iJ�

iJ�eik2 0 0 0 iJ − iJ

0 − iJ�e−ik1 0 − iJ 0 iJ

0 0 − iJ� iJ − iJ 0


 .

The flux pattern derived from the matrix H�o� is illustrated in
�o� of Fig. 4. The spectrum of Eq. �11� is gapped at half
filling as long as J���3J and the Chern number is �=−� for
J�
�3J and �=0 for J���3J.24 The two sectors connected
by time-reversal symmetry and characterized by the param-
eter �= �1 are similar to the two “copies” characterized by
sz= �1 in the Kane-Mele-type model. However, in the
strongly interacting limit �Kitaev model� the system sponta-
neously chooses one sector whereas the noninteracting TBI
model involves a summation over the two sectors �spin�.

We now discuss the adiabatic connection of the model
H�o� to the spinless model with real t, t�, and �SO; model H�v�

in Fig. 4. As the starting point for the continuous deforma-
tion we use a gauge equivalent pattern �i� obtained from �o�
by replacing �k4→−�k4 and �k5→−�k5. From �i� to �ii� the
phase difference for hopping between the triangles is gradu-
ally reduced to zero. This can be achieved by replacing �iJ�
in H�i� by exp��is��J� and continuously reducing s from 1
to 0. This process does not change the fluxes through the
triangles and the dodecagons; instead the global fluxes are
modified and the whole spectrum is moved in k space ac-
cording to k1→k1+ �1−s�� and k2→k2. Consequently, the
direct gap stays constant. From �ii� to �iii� a continuous

: phase
difference

(o) (i) (ii) (iii)

(iv)(v)

π/6

: phase
differenceπ/2

FIG. 4. �Color online� Schematic illustration of the continuous
path which adiabatically connects the model �o� and �i� lacking
second neighbor hopping but having complex t �the representative
free fermion model of the ground-state sector of the Kitaev model
on the decorated Honeycomb lattice� with the spinless model �v�
with real t, t�, and �SO, denoted by �v�. Along this path, the con-
tinuous deformation does not lead to a gap closing and the Chern
number stays constant. This establishes the topological connection
between the two models.
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gauge transformation is applied to change the phase differ-
ence for hopping within the triangles from �� /2 to � /6
�this does not modify any flux and the gap remains constant�.
From �iii� to �v� we turn on �SO as shown in �iv� and make t
real. Along this path the value of the gap varies, in general.
Explicitly, we can define the set of matrices

	��,�SO�

=�
0 e−i�J ei�J J�e−ik2 D − E

ei�J 0 e−i�J − D J�eik1 F

e−i�J ei�J 0 E − F J�

J�eik2 − D� E� 0 e−i�J ei�J

D� J�e−ik1 − F� ei�J 0 e−i�J

− E� F� J� e−i�J ei�J 0


 .

Here we have introduced

D = − i�SO�e−ik1 + e−ik2� ,

E = − i�SO�1 + e−ik1� ,

F = − i�SO�1 + e−ik2� .

Clearly, 	�� /6,0�=H�iii� and 	�0,�SO�=H�v�. By numerical
examination of the gap and of the Chern number37 at half-
filling we find that there is a large range of parameters which
allows one to adiabatically connect the model �iii� with the
model �v�. This is shown in Fig. 5 where we plot the Chern
number in �a� and the value of the gap in �b� obtained for
J=J�.

The model defined by 	�� ,�SO� shows a complex phase
diagram with a variety of topological phases distinguished
by different values of the Chern number. As long as there is
a direct gap, the Chern number is well defined and regions
with different values are necessarily separated by gap clos-
ings. However, there are also regions in parameter space
where an indirect gap is closed indicating the presence of
partially filled bands at half-filling, see Fig. 5�b�. The phase
diagram of 	�� ,�SO� also depends on the ratio J� /J. For
J���3J the Chern number of H�iii� is zero and the connec-
tion �iii� to �v� holds between topologically trivial phases.

These arguments demonstrate the adiabatic connection
between the strongly interacting chiral spin-liquid phases of
the Kitaev model and the phases obtained from the spinless
model at half-filling with real t, t�, and �SO. In this sense, we
also establish a connection to the Z2 TBI when two copies of
the spinless model are taken. It can be shown that a general-
ized spin-3/2 Kitaev model on the kagome lattice also sup-
ports a chiral spin-liquid ground state with non-Abelian
excitations38 and similar arguments can be made for connec-
tions to other topological phases.39

VI. SUMMARY

In summary, we have shown that the decorated honey-
comb lattice supports Z2 topological phases at various filling
fractions, discussed their stability, and described the similari-
ties and differences with the Z2 topological phases on the
kagome15 and honeycomb lattices.4 The limit of weak spin-
orbit coupling yields phase diagrams which are very similar
to the ones observed on the honeycomb or kagome lattice.
This observation is in agreement with the conclusions drawn
from the effective low-energy theory at the Dirac points. The
situation for strong spin-orbit coupling can be quite different
and leads to novel aspects. One surprising observation is that
a large �SO can trigger a transition from a TBI to a trivial
insulator.

We have also shown that the tight-binding models with
real t, t�, and �SO can be adiabatically connected to models
without second-neighbor hopping but with complex t �and
possibly also complex t��. This property was explicitly dem-
onstrated at half-filling by a calculation of the gap and the
Chern number. Moreover, we have argued that this adiabatic
connection allows us to topologically relate the chiral spin-
liquid phases recently discovered on the decorated honey-
comb lattice to the phases obtained at half-filling in the non-
interacting TBI model. Our work therefore provides an
example of a noninteracting and a strongly interacting model
defined on the same lattice which are both exactly solvable
and show topologically related states. To determine the pre-
cise form of the spin-orbit interaction, the number, and the
size �coupling strength� of the terms needed in a generalized
extended Hubbard model at half-filling to interpolate be-
tween the topological band insulator and the Kitaev model
on the decorated honeycomb lattice is an interesting open
problem beyond the scope of this work. However, based on
our results here and related studies that realize Kitaev models
in certain low-energy limits35,40 we believe that such an in-
teracting microscopic model can be found.

Finally, we note that an underlying “star” lattice has been
experimentally reported for a polymeric Iron�III� acetate,41

and some of our results may be relevant for this solid state
example of a decorated honeycomb lattice. We also believe it
is possible to realize much of the discussed physics �includ-
ing Kitaev models�, in cold atomic gases, given that its two
cousins, the honeycomb and kagome lattices, can be realized
in optical lattices.42,43

ACKNOWLEDGMENTS

We gratefully acknowledge support from ARO under
Grant No. W911NF-09-1-0527.

�� ���� � ��� �
��

�

�

�� ���� � ��� �
��

�

�

��

�

�

�

���

�

(iii)

(iv)
(v)

1

1

0

00

-1

-1

0

1

-3

-3

-3

-3

3

3

3

3

-2

-22

2

(iv)

(iii)
(v)

-1
1

-1

(a)

(b)

λ
S
O
/
J

λ
S
O
/
J

φ/π

φ/π

FIG. 5. �Color online� Contour plot of �a� the Chern number and
�b� the gap of the model defined by 	�� ,�SO� at half-filling for J
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