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The orbital diamagnetic susceptibility is calculated in monolayer and bilayer graphenes with band gap as
well as in three-dimensional Dirac systems. It is demonstrated that the pseudospin degree of freedom such as
valleys produces paramagnetic susceptibility analogous to contribution from real spin, and it dominates over
the Landau diamagnetism. The pseudospin paramagnetism explains the origin of a singular diamagnetism
which is present only in the band-gap region and disappears rapidly inside the conduction and valence bands.
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I. INTRODUCTION

The magnetism of conventional metal is composed of two
different contributions: the spin component known as the
Pauli paramagnetism and the orbital component known as
the Landau diamagnetism. In condensed-matter systems, the
orbital magnetism sensitively depends on the detail of the
electronic band structure, and sometimes largely deviates
from the Landau diamagnetism. Particularly, narrow gap ma-
terials such as graphite1–3 or bismuth4–6 exhibit a singular
behavior in the orbital susceptibility near the energy gap. In
this paper, we show that the anomalous orbital magnetism in
narrow gap systems can be understood in terms of pseu-
dospin paramagnetism, which arises from the extra degree of
freedom in the orbital motion of electrons.

Graphene monolayer recently fabricated7–9 is a zero-gap
system in which the conduction and valance bands stick to-
gether at K and K� points located at inequivalent corners of
the Brillouin zone, called valleys.1,10–17 The system is char-
acterized by chiral quasiparticles with opposite chirality in
each valley and a linear dispersion reminiscent of massless
Dirac fermions. At the Dirac point where two bands cross
each other, the magnetic susceptibility has a singularity ex-
pressed as a � function in Fermi energy �F.1,18–24 Bilayer
graphene composed of a pair of graphene layers25–28 has a
zero-gap structure with a finite mass,29–37 leading to a less
singular logarithmic peak of the susceptibility.38,39 The or-
bital magnetism was also studied for related materials, such
as graphite intercalation compounds,38,40–42 carbon
nanotube,43–46 few-layer graphenes,39,47,48 and organic com-
pounds having Dirac-like spectrum.49

In this paper, we calculate the orbital magnetism of sev-
eral Dirac-like systems with an energy gap and show that the
pseudospin degree of freedom such as valleys in graphene
produces paramagnetism, which gives an essential contribu-
tion to the singular diamagnetic behavior. In Sec. II, we cal-
culate the susceptibility of the monolayer graphene with
varying gap. The singular susceptibility change in varying �F
is understood in terms of valley-induced paramagnetism. We
extend the analysis to the bilayer graphene in Sec. III and to
a three-dimensional Dirac system corresponding to
bismuth4–6,50 in Sec. IV. A brief conclusion is presented in
Sec. V.

II. MONOLAYER GRAPHENE

Graphene is composed of a honeycomb network of carbon
atoms, where a unit cell contains a pair of sublattices, de-

noted by A and B. Electronic states in the vicinity of K and
K� points in the Brillouin zone are well described by the
effective-mass approximation.1,10–17 Let �A� and �B� be the
Bloch functions at the K point, corresponding to the A and B
sublattices, respectively. In a basis ��A� , �B��, the Hamiltonian
for the monolayer graphene around the K point
becomes1,10–17

HK = � � v�−

v�+ − �
� , �1�

where v�1�106 m /s is the band velocity,8,9 ��

=�x� i�y, and �=−i��+�e /c�A with vector potential A
giving external magnetic field B=��A. In the following,
we shall completely neglect the spin Zeeman energy because
the spin splitting is much smaller than Landau-level separa-
tions. The Hamiltonian at the K� point is obtained by ex-
changing �� in Eq. �1�.

The diagonal terms �� represent the potential asymmetry
between A and B sites, which opens an energy gap at the
Dirac point.12,51 This can arise in graphene placed on a cer-
tain substrate material, where the interaction between the
graphene and the substrate lattice produces different poten-
tials between A and B. In fact, a band gap on the order of 0.1
eV has been observed in graphene epitaxially grown on a
SiC substrate.52,53 From a theoretical point of view, the sin-
gular behavior in ideal graphene with vanishing gap is better
understood by taking the limit �→0, as will be shown be-
low. We can safely assume �	0 without loss of generality.

The energy band at B=0 is given by

�s�p� = s�v2p2 + �2 �s = � 1� , �2�

with electron momentum p= �px , py� and p=�px
2+ py

2. The
density of states is51

D��� =
gvgs���
2��2v2
���� − ���� , �3�

where gs=2 and gv=2 represent the degrees of freedom as-
sociated with spin and valley, respectively, and 
�t� is a step
function, defined by


�t� = 	1 �t � 0�
0 �t � 0� .


 �4�

PHYSICAL REVIEW B 81, 195431 �2010�

1098-0121/2010/81�19�/195431�9� ©2010 The American Physical Society195431-1

http://dx.doi.org/10.1103/PhysRevB.81.195431


The Landau-level spectrum can be found using the rela-
tion �+= ��2� / lB�a† and �−= ��2� / lB�a, where lB

=�c� / �eB� is magnetic length and a† and a are raising and
lowering operators for usual Landau-level wave functions,
respectively. The eigenenergy at K point becomes

�n
K = sgn−�n����B�2�n� + �2 �n = 0, � 1, � 2, . . .� , �5�

where �B=�2�v / lB and

sgn��n� = �+ 1 �n � 0�
�1 �n = 0�
− 1 �n � 0� .

� �6�

The corresponding wave function is

�n
K = �sin��n/2���n�−1

cos��n/2���n�
� , �7�

where �n satisfies

sin �n =
�B

��n� sgn−�n�
���B�2�n� + �2

, �8�

cos �n = −
� sgn−�n�

���B�2�n� + �2
, �9�

and �n is the usual Landau-level wave function, where �n
with n�0 should be regarded as zero.

The Landau level n=0 lies just at the top of the valence
band, i.e., �0

K=−� because �0=0, and its amplitude is only at
the B site. Similarly, for Landau levels lying in the vicinity of
the valence-band top, i.e., n�0 satisfying �B

��n���, we
have �n�0, showing that the amplitude of the wave function
is significant only at the B site. For those in the conduction
band n�0, on the other hand, we have �n��, showing that
the amplitude is significant only at the A site.

For the K� point, on the other hand, the eigenenergy is
given by Eq. �5� with sgn−�n� being replaced with sgn+�n�
and the eigenfunction is given by

�n
K� = � sin��n�/2���n�

cos��n�/2���n�−1
� , �10�

where �n� is obtained from �n by replacing sgn−�n� with
sgn+�n�. The Landau level n=0 lies just at the bottom of the

conduction band, i.e., �0
K�=+� because �0�=�, and its ampli-

tude is only at the A site. Similarly, for low-lying Landau
levels in the conduction band n	0, we have �n���, show-
ing that the amplitude of the wave function is significant
only at the A site. For those in the valence band n�0, on the
other hand, we have �n��0, showing that the amplitude is
significant only at the B site.

The Landau levels of n�0 are doubly degenerate be-
tween the K and K� valleys, while those of n=0 are not.
Therefore, by defining

�s�xn� = s�xn + �2, �11�

xn = ��B�2n , �12�

the thermodynamical potential at temperature T then be-
comes

� = −
1

�

gvgs

2�lB
2 

s=�

n=0

�

���s�xn���1 −
�n0

2
� , �13�

where �=1 /kBT and

���� = ln�1 + e−���−��� , �14�

with � being the chemical potential.
In weak magnetic field, using the Euler-Maclaurin for-

mula, the summation in n in Eq. �13� can be written as an
integral in continuous variable x and a residual term as

� = −
1

�

gvgs

4�2�2v2 
s=�

��
0

�

���s�x��dx

−� ��B�4

12

����s�x��
�x

�
x=0
� + O���B�6� . �15�

The expansion is valid when �B�kBT, or the Landau-level
spacing is smaller than the thermal energy. The magnetiza-
tion is given by

M = − � ��

�B
�

�

, �16�

and the magnetic susceptibility by

� = lim
B→0

M

B
= −�� �2�

�B2 �
�

�
B=0

. �17�

In Eq. �15�, the first term represents the thermodynamic
potential in the absence of a magnetic field and only the
second term depends on the magnetic field. We have

� =� d��−
� f

��
����� , �18�

with

���� = − gvgs
e2v2

6�c2

1

2���

���� − ���� , �19�

where f��� is the Fermi distribution function. The suscepti-
bility at zero temperature is given by ���F� with �F being the
Fermi energy. In the limit of �→0, the susceptibility ap-
proaches a � function,

���� = − gvgs
e2v2

6�c2���� , �20�

in agreement with the previous result.1,21,23,40

The susceptibility and the density of states, given by Eqs.
�19� and �3�, respectively, are shown in Fig. 1. Note that the
upward direction represents negative �i.e., diamagnetic� sus-
ceptibility. The susceptibility is not zero at zero electron den-
sity, −1�� / ����+1, because the completely filled valence
band gives a constant diamagnetic susceptibility. When the
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Fermi energy enters the conduction band, the susceptibility
jumps downs to zero, resulting in zero total magnetism. In
the limit of �→0, the step height at the band edge increases
in proportion to �−1 and the susceptibility approaches a �
function.

Because the Hamiltonian is equivalent to that of a Dirac
electron with a nonzero mass, the magnetic susceptibility
around the band edge should correspond to that of a conven-
tional electron. This is clearly illustrated by the effective
Hamiltonian expanded in the vicinity of k=0. For the con-
duction band, s=+1, the effective Hamiltonian for the A site
near the band bottom ��=�� is written apart from the con-
stant energy as

HK �
v2

2�
�−�+ =

�2

2m�
−

1

2
g��BB , �21�

HK� �
v2

2�
�+�− =

�2

2m�
+

1

2
g��BB , �22�

where �B is the Bohr magneton, given by e� / �2mc� with m
being the free-electron mass, and we used the relation
��x ,�y�= i�eB /c and defined

m� =
�

v2 , g� = 2
m

m�
. �23�

For instance, the g factor is estimated at g��60 at �
=0.1 eV, and diverges as ��−1 as the gap decreases. The
last term in each Hamiltonian can be regarded as the pseu-
dospin Zeeman term, where the different valleys K and K�
serve as pseudospin up ��=+1� and down ��=−1�, respec-
tively. This agrees with the Zeeman energy expected for an
intrinsic magnetic moment that originates from the self-
rotation of the wave packet in Bloch electron.54,55 The com-
bined Hamiltonian is written as

H �
�2

2m�
−

�

2
g��BB . �24�

Obviously, the pseudospin Zeeman term gives the Pauli
paramagnetism and the first term containing �2 gives the
Landau diamagnetism in the usual form as

�P��� = �g�

2
�2

�B
2D��� , �25�

�L��� = −
1

3
� m

m��2

�B
2D��� , �26�

with density of states

D��� =
gvgsm

�

2��2 
��� . �27�

The total susceptibility �P+�L actually agrees with the
amount of the jump at the conduction band bottom in � of
Eq. �19�. Because g=2m /m� in the present case, we have
�L=−�P /3�1 /m� as in the free electron, giving the para-
magnetic susceptibility in total. Therefore, the susceptibility
exhibits a discrete jump toward the paramagnetic direction
when the Fermi energy moves off the Dirac point. The jump
height goes to infinity as the gap closes, because the suscep-
tibility is inversely proportional to the effective mass. It
should be noted that the quadratic approximation, Eq. �24�,
correctly gives a discrete jump at the band edge, while not
the linear dependence on � of the density of states off the
edge, because the order of � /� is neglected in this treatment.

In the original Hamiltonian, the Landau-level energies in
Eq. �5� can be rewritten as

��,s,n� = s���B�2�n� +
1

2
+

�s

2
� + �2 �n� = 0,1,2, . . .� .

�28�

Figure 2 shows energy levels for �B=2� and the relation-
ship between the different labeling schemes of Eqs. �5� and
�28�. For the conduction band, the levels of the same n� with
opposite pseudospins �= �1 share the same Landau-level
function �n� on the A site, on which the states near the
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FIG. 1. Orbital susceptibility �solid line� and density of states
�dashed line� of monolayer graphene with band gap �. Note that the
upward direction represents negative �i.e., diamagnetic�
susceptibility.
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conduction-band bottom ��=�� have most of the amplitude
as has been discussed above. For the valence band, similarly,
n� describes the index of the Landau-level function at the B
site.

III. BILAYER GRAPHENE

Bilayer graphene is a pair of graphene layers arranged in
AB �Bernal� stacking and includes A1 and B1 atoms on layer
1 and A2 and B2 on layer 2.29–37 The low-energy states are
again given by the states around K and K� points in the
Brillouin zone. The Hamiltonian at the K point for the basis
��A1� , �B1� , �A2� , �B2�� is given by

HK =�
� v�− 0 0

v�+ � �1 0

0 �1 − � v�−

0 0 v�+ − �
� , �29�

where �1�0.39 eV �Ref. 56� represents interlayer coupling
between B1 and A2,29,30,57 and � describes potential asymme-
try between layers 1 and 2 �not A and B sites�, which gives
rise to an energy gap.29–33,35,57,58 The Hamiltonian at the K�
point is obtained by exchanging �� in Eq. �29�. Experimen-
tally the potential asymmetry can be induced by applying an
electric field perpendicular to the layer,26–28,59,60 and the en-
ergy gap as large as 0.2 eV was actually observed in spec-
troscopic measurements.26,59,60

The energy band at B=0 is given by

�s��p� = s��1
2

2
+ v2p2 + �2 + ���1

4

4
+ v2p2��1

2 + 4�2��1/2�1/2

,

�30�

with �= �1.33 The indices �=+1 and −1 give a pair of
bands further and closer to zero energy, respectively, and s
=+1 and −1 in each pair represent the electron and hole
branches, respectively. The band-edge energies correspond-
ing to p=0 are given by ���=�� for �= �1, where

�+ = ��1
2 + �2, �− = ��� . �31�

For �=−1, the band minimum becomes

�0 =
�1���

��1
2 + 4�2

, �32�

which corresponds to an off-center momentum.30 The density
of states diverges here as D���� ��−�0�−1/2. The energy
bands and the density of states with several �’s are plotted in
Figs. 3�a� and 3�b�, respectively. Vertical lines in Fig. 3�a�
indicate the energies of �0, �−, and �+ for �=0.5�1.

In a magnetic field, the eigenfunction of the Hamiltonian
at the K point is written as �c1�n−1 ,c2�n ,c3�n ,c4�n+1� with
integer n	−1. For n	1, the Hamiltonian matrix for
�c1 ,c2 ,c3 ,c4� becomes30,61

Hn	1
K =�

� �B
�n 0 0

�B
�n � �1 0

0 �1 − � �B
�n + 1

0 0 �B
�n + 1 − �

� ,

�33�

For n=0, the first component does not actually exist because
�−1=0. The matrix for �c2 ,c3 ,c4� becomes

H0
K = �� �1 0

�1 − � �B

0 �B − �
� . �34�

For n=−1, only the component c4 survives and the Hamil-
tonian is

H−1
K = − � . �35�
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For the K� point, the eigenfunction is written as
�c1�n+1 ,c2�n ,c3�n ,c4�n−1�. For n	1, the Hamiltonian ma-
trix for �c1 ,c2 ,c3 ,c4� is

Hn	1
K� =�

� �B
�n + 1 0 0

�B
�n + 1 � �1 0

0 �1 − � �B
�n

0 0 �B
�n − �

� .

�36�

For n=0, the matrix for �c1 ,c2 ,c3� becomes

H0
K� = � � �B 0

�B � �1

0 �1 − �
� , �37�

and for n=−1 that for c1 is

H−1
K� = � . �38�

If we extend the definition of the matrix of Eq. �33� to
n=0, its three eigenvalues agree with those of H0

K and the

rest with that of H−1
K�. Similarly, the matrix of Eq. �36� with

n=0 gives eigenvalues of H0
K� and H−1

K . Thus, we can use
Eqs. �33� and �36� with n	0 to produce the full spectrum.
By introducing the pseudospin variable �= �1, the Hamil-
tonian is combined into a single expression,

Hn
� =�

� �xn− 0 0

�xn− � �1 0

0 �1 − � �xn+

0 0 �xn+ − �
� , �39�

with

xn� = xn �
1

2
�� , �40�

xn = �n +
1

2
��, � = ��B�2. �41�

We write the eigenvalues of Hn
� as

� j�xn,��� �j = 1,2,3,4� , �42�

in the ascending order in energy �j=1 and 2 for valence
bands, and j=3 and 4 for the conduction bands�. The second
argument in � j�xn ,��� represents the dependence on B which
is not included in xn.

Figure 4 shows the example of the Landau-level spectrum
at � /�1=0.2 and �B /�1=0.5, where the thick dashed lines
represent the Landau level which originally belongs to n
=−1 at opposite valleys. The correspondence between quan-
tum numbers j and �s ,�� are indicated in the figure.

The thermodynamic potential becomes

� = −
1

�

gs

2�lB
2 

�,j

n=0

�

��� j�xn,����

= −
1

�

gs

4��2v2
�,j
��

0

�

��� j�x,����dx

+� �2

24

���� j�x,0��
�x

�
x=0
� + O��3� , �43�

where we used the Euler-Maclaurin formula in the second
equation. The first term in the bracket can be transformed by
changing the integral variable from x to � as

1

�
�

0

�

��� j�x,����dx = �
−�

�

f���nj��,���d� , �44�

where we used �����=−�f��� and defined

nj��,��� � sj��,���xj��,��� , �45�

where xj�� ,��� is a real and positive solution of
�=� j�x ,��� and

sj��,��� � sgn� �xj��,���
��

� . �46�

If there are more than one solution of xj, we regard nj as their
sum. The quantity nj�� ,��� / �4��2v2� represents the electron
density below � for the conduction band and the hole density
above � for the valence band.

By expanding

nj��,��� = nj
�0���� + nj

�1������ +
1

2
nj

�2�����2 + ¯ , �47�

we can further expand � of Eq. �43� in terms of ��B. We
have

���� = gsgv
e2v2

�c2 
j
��

−�

�

nj
�2�����d��

−� 1

12

�� − � j�0,0��

�� j�x,0�
�x

�
x=0
� . �48�
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For the Hamiltonian of Eq. �39�, the eigenequation det��
−Hn

��=0 can be solved for x��xn� as

x� = �2 + �2 �
1

2
��4�� − ���2 + 4�1

2��2 − �2� , �49�

which gives xj�� ,��� when being real and positive. Let us
first consider the case ���+, where two conduction bands
are occupied by electrons. In this case x� are both real and
positive and we have x1=x2=0, x3=x+, and x4=x−. Then, we
have


j

nj��,��� = x+ + x− = 2��2 + �2� , �50�

independent of ��. Therefore,  jnj
�2���� identically vanishes,

resulting in susceptibility independent of energy in the region
���+. The same is true for ��−�+. Because �=0 for �
= ��, i.e., in the case of empty or filled band, we can con-
clude that the susceptibility vanishes for ���+ and ��−�+
independent of interlayer interaction �1 and asymmetry �.

Similarly, the density of states for �����+ is independent
of �1 and � and becomes twice as large as that of monolayer.
In fact, we have

D��� �
�

��


j

nj��,0� = 4� . �51�

This feature of the density of states is apparent in Fig. 3�b�.
In the vicinity of the bottom of the excited conduction

band, �=�+, we have

n4
�2���� =� �2

��2x−
�x−��
�=0

= � �2x−

��2 
�x−� + � �x−

��
�2

��x−��
�=0

,

�52�

where we used x−��x−�=0 and x−���x−�=−��x−�. Using Eq.
�48�, we find that the susceptibility makes a discrete jump at
�+ as

���+ + 0� − ���+ − 0� = gvgs
e2v2

�c2 � �2��2 + �1
2

�1
2�2�2 + �1

2�

−
2�2 + �1

2

12�1
2��2 + �1

2� , �53�

where the first term in the brackets comes from the integral
of the � function in Eq. �52� and the second term from the
step function in Eq. �48�.

Near �+, the eigenstates are given primarily by the dimer
states composed of �B1� and �A2�. The effective Hamiltonian
is described by the second order in interband interaction with
the conduction-band bottom �A1� and the valence-band top
�B2�, where each process gives a term ��+�− or ��−�+. In
symmetric bilayer with �=0, the terms �+�− and �−�+ have
the same coefficient and the pseudospin Zeeman term iden-
tically vanishes. When � becomes nonzero, the two coeffi-
cients shift from each other linearly in � because of the
band-gap opening, leading to a nonzero Zeeman term. The
resulting effective Hamiltonian is given by Eq. �24� with

m� =
�1

2��2 + �1
2

2v2�2�2 + �1
2�

, g� =
4���2 + �1

2

2�2 + �1
2

m

m�
. �54�

In the region ���1, the typical magnitude of the effective
mass m� is on the order of ��1 / �2v2��0.035m.

The susceptibility is written as Pauli and Landau magne-
tism in Eqs. �25� and �26�, respectively, which together give
a susceptibility jump of Eq. �53�. The paramagnetic compo-
nent �P is zero at �=0 and monotonically increases as �
becomes larger. At g�= �2 /�3��m /m�� or ��0.34�1, �P ex-
ceeds �L and the susceptibility step changes from diamag-
netic to paramagnetic. In the limit �→�, we have g�

=2m /m� as in the monolayer. This is to be expected, because
the bilayer graphene in this limit can be regarded as a pair of
independent monolayer graphenes, where interlayer coupling
�1 opens an energy gap at each Dirac point. Similar argu-
ment also applies to the behavior around �−.

In the energy region −�−���−�0 near the top of the
valence band, both x+ and x− are real and positive, giving the
states at outer and inner equienergy circles of the band j=2,
respectively. Then we have

n2
�2���� =� �2

��2 �− x+ + x−��
�=0

=
�1

2��2 − �2�
2��4�2 + �1

2���2 − �0
2��3/2 .

�55�

When the energy approaches −�0 from the negative side, the
integral of n2

�2����, thus the susceptibility, diverges in positive
direction as ���+�0�−1/2 in the same manner as the density
of states. The same divergence occurs at the bottom of the
conduction band, +�0, because of the electron-hole symme-
try.

Full analytical expression of the susceptibility ���� is
complicated and presented in the Appendix. Figure 3�c� plots
the susceptibility for �=0, 0.2, and 0.5. In accordance with
the above analytical consideration, we actually observe that
the susceptibility vanishes in the regions ���+ and ��−�+
and that the susceptibility step at �=�+ changes from dia-
magnetic to paramagnetic with increasing �. We also see that
the susceptibility for ��0 diverges in the paramagnetic di-
rection at �= ��0.

IV. THREE-DIMENSIONAL DIRAC SYSTEM

The results in monolayer graphene in Sec. II can be di-
rectly extended to three-dimensional Dirac Hamiltonian,
which is also known to describe the approximate electronic
structure of bismuth with strong spin-orbit interaction.4–6,50

In bismuth, electronic states near the Fermi level is approxi-
mately described by a �4,4� matrix Hamiltonian, given by

H =�
� 0 v�z v�−

0 � v�+ − v�z

v�z v�− − � 0

v�+ − v�z 0 − �
� , �56�

where four components consist of two orbital and two spin
degrees of freedom, and the anisotropy of the velocity is
ignored for simplicity. The orbital susceptibility was previ-
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ously calculated for realistic Hamiltonian retaining the aniso-
tropy and other factors,6 while here we work on the simplest
Hamiltonian, Eq. �56�, to focus on the parallel argument to
its two-dimensional counterpart.

The density of states at zero magnetic field is

D��� =
gvgs

�2�3v3 �����2 − �2
��2 − �2� , �57�

where gv is the valley degeneracy allowing the presence of
different k points described by the above Hamiltonian in the
first Brillouin zone. The Landau levels in a uniform magnetic
field in z direction are given by

�s,n,� = s���B�2�n +
1

2
+

�

2
� + v2pz

2 + �2 �n = 0,1,2, . . .� ,

�58�

with �B=�2�v / lB, s= �1, and �= �1. This is equivalent
to the two-dimensional Dirac system, Eq. �28�, when the
term �2 is replaced with �2+v2pz

2. The susceptibility ���� is
calculated by integrating Eq. �19� in pz as

���� = −
gvgse

2v2

6�c2 � dpz

2��


��2 + v2pz
2 − �2�

2��2 + v2pz
2

= −
gvgse

2v
12�2�c2�ln

2�c

���
���� � ����

ln
2�c

��� + ��2 − �2
���� � ���� ,�

�59�

where �c is a cutoff energy. In the limit of �→0, the sus-
ceptibility at zero energy logarithmically diverges.

At an energy � just above the band bottom ���, we obtain
the paramagnetic contribution

���� − ��0� �
2

3
� m

m��2

D����B
2 , �60�

where D���= �gsgv /4�2��2m� /�2�3/2�� with m�=� /v2. This
is nothing but the magnetic susceptibility, dominated by the
Pauli paramagnetism, of a three-dimensional metal with
mass m� and a g factor g�=2m /m�. Figure 5 shows the sus-
ceptibility and the density of states in the present system.
The singular decrease in the susceptibility at the band edges
is fully understood in terms of the appearance of the domi-
nant spin paramagnetism inside the band.

We note that in bismuth the index � in Eq. �58� represents
real spin, while it was valley pseudospin in Eq. �28� for
graphene. The Pauli component included in Eq. �60� thus
describes the real spin paramagnetism enhanced by the
strong spin-orbit coupling, apart from the bare electron para-
magnetism. As another remark, the chemical potential in in-
trinsic bismuth lies in the conduction band near the band
bottom, while it can be controlled by changing the external
pressure or the alloy concentration.50

V. CONCLUSION

We have calculated the orbital magnetism of narrow gap
electronic systems described by the Dirac Hamiltonian, and
found that singular behavior of the susceptibility near the
band gap can be understood in terms of pseudospin Pauli
paramagnetism induced by extra orbital degree of freedom.
This has been demonstrated by explicit calculations of or-
bital susceptibility in monolayer and bilayer graphenes in the
presence of band gap, as well as three-dimensional Dirac
systems such as bismuth. In an analogous way to conven-
tional metal, the susceptibility near the band edge can be
expressed by the Landau diamagnetism and the Pauli para-
magnetism associated with pseudospin. The diverging mag-
netism in intrinsic zero-gap graphene, which is previously
known, can be intuitively interpreted as a result of vanishing
the effective mass.

The susceptibility in the vicinity of the energy gap is typi-
cally on the order of �m /m��2�B

2D��� and overwhelms the
real-spin Pauli paramagnetism of bare electrons, owing to
small effective mass m�. Particularly, we expect that the sin-
gular susceptibility in graphenes is observed by employing
the experimental techniques used for two-dimensional elec-
tron systems on semiconductor.62,63
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APPENDIX: SUSCEPTIBILITY OF BILAYER GRAPHENE

Using Eqs. �48� and �49�, the susceptibility of ���� of
bilayer graphene with energy gap is calculated as
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FIG. 5. Orbital susceptibility and density of states of three-
dimensional Dirac electron.
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���� = gvgs
e2v2

�c2�1
�̃��� , �A1�

with

�̃��� =�
�̃0 + �̃− + �̃+ ���� � �0�

2F��� + �̃− + �̃+ ��0 � ��� � �−�

F��� + �̃+ ��− � ��� � �+�
0 ��+ � ���� ,

� �A2�

where

F��� =
�1�2���

��1
2 + 4�2���1

2��2 − �2� + 4�2�2

+
�1

3

4��1
2 + 4�2�3/2 ln�2�����1

2 + 4�2�

+ 2��1
2 + 4�2��1

2��2 − �2� + 4�2�2� , �A3�

�̃0 =
�1

3 ln�4�1
2�2��1

2 + 4�2��
4��1

2 + 4�2�3/2 , �A4�

�̃− = − F��−� +
���
3�1

, �A5�

�̃+ = − F��+� −
�2��2 + �1

2

�1�2�2 + �1
2�

+
2�2 + �1

2

12�1
��2 + �1

2
. �A6�

In the symmetric bilayer with vanishing gap, �=0, in par-
ticular, we simply get

���� = gvgs
e2v2

�c2�1

��1 − �����1

4
ln

���
�1

+
1

12
� , �A7�

which agrees with the previous results.38,39

1 J. W. McClure, Phys. Rev. 104, 666 �1956�.
2 J. W. McClure, Phys. Rev. 119, 606 �1960�.
3 M. P. Sharma, L. G. Johnson, and J. W. McClure, Phys. Rev. B

9, 2467 �1974�.
4 P. A. Wolff, J. Phys. Chem. Solids 25, 1057 �1964�.
5 H. Fukuyama and R. Kubo, J. Phys. Soc. Jpn. 27, 604 �1969�.
6 H. Fukuyama and R. Kubo, J. Phys. Soc. Jpn. 28, 570 �1970�.
7 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y.

Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Sci-
ence 306, 666 �2004�.

8 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I.
Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov,
Nature �London� 438, 197 �2005�.

9 Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature �Lon-
don� 438, 201 �2005�.

10 J. C. Slonczewski and P. R. Weiss, Phys. Rev. 109, 272 �1958�.
11 D. P. DiVincenzo and E. J. Mele, Phys. Rev. B 29, 1685 �1984�.
12 G. W. Semenoff, Phys. Rev. Lett. 53, 2449 �1984�.
13 N. H. Shon and T. Ando, J. Phys. Soc. Jpn. 67, 2421 �1998�.
14 Y. Zheng and T. Ando, Phys. Rev. B 65, 245420 �2002�.
15 T. Ando, J. Phys. Soc. Jpn. 74, 777 �2005�.
16 V. P. Gusynin and S. G. Sharapov, Phys. Rev. Lett. 95, 146801

�2005�.
17 N. M. R. Peres, F. Guinea, and A. H. Castro Neto, Phys. Rev. B

73, 125411 �2006�.
18 S. G. Sharapov, V. P. Gusynin, and H. Beck, Phys. Rev. B 69,

075104 �2004�.
19 H. Fukuyama, J. Phys. Soc. Jpn. 76, 043711 �2007�.
20 M. Nakamura, Phys. Rev. B 76, 113301 �2007�.
21 M. Koshino and T. Ando, Phys. Rev. B 75, 235333 �2007�.
22 A. Ghosal, P. Goswami, and S. Chakravarty, Phys. Rev. B 75,

115123 �2007�.
23 T. Ando, Physica E 40, 213 �2007�.
24 M. Koshino, Y. Arimura, and T. Ando, Phys. Rev. Lett. 102,

177203 �2009�.
25 K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Falko, M. I.

Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim,
Nat. Phys. 2, 177 �2006�.

26 T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg,
Science 313, 951 �2006�.

27 E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J.
M. B. Lopes dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and
A. H. Castro Neto, Phys. Rev. Lett. 99, 216802 �2007�.

28 J. B. Oostinga, H. B. Heersche, X.-L. Liu, A. F. Morpurgo, and
L. M. K. Vandersypen, Nat. Mater. 7, 151 �2008�.

29 E. McCann and V. I. Falko, Phys. Rev. Lett. 96, 086805 �2006�.
30 F. Guinea, A. H. Castro Neto, and N. M. R. Peres, Phys. Rev. B

73, 245426 �2006�.
31 C. L. Lu, C. P. Chang, Y. C. Huang, J. M. Lu, C. C. Hwang, and

M. F. Lin, J. Phys.: Condens. Matter 18, 5849 �2006�.
32 C. L. Lu, C. P. Chang, Y. C. Huang, R. B. Chen, and M. L. Lin,

Phys. Rev. B 73, 144427 �2006�.
33 E. McCann, Phys. Rev. B 74, 161403�R� �2006�.
34 M. Koshino and T. Ando, Phys. Rev. B 73, 245403 �2006�.
35 J. Nilsson, A. H. Castro Neto, N. M. R. Peres, and F. Guinea,

Phys. Rev. B 73, 214418 �2006�.
36 B. Partoens and F. M. Peeters, Phys. Rev. B 74, 075404 �2006�.
37 B. Partoens and F. M. Peeters, Phys. Rev. B 75, 193402 �2007�.
38 S. A. Safran, Phys. Rev. B 30, 421 �1984�.
39 M. Koshino and T. Ando, Phys. Rev. B 76, 085425 �2007�.
40 S. A. Safran and F. J. DiSalvo, Phys. Rev. B 20, 4889 �1979�.
41 J. Blinowski and C. Rigaux, J. Phys. �Paris� 45, 545 �1984�.
42 R. Saito and H. Kamimura, Phys. Rev. B 33, 7218 �1986�.
43 H. Ajiki and T. Ando, J. Phys. Soc. Jpn. 62, 1255 �1993�.
44 H. Ajiki and T. Ando, J. Phys. Soc. Jpn. 62, 2470 �1993�; 63,

4267 �1994� �Erratum�.
45 H. Ajiki and T. Ando, J. Phys. Soc. Jpn. 64, 4382 �1995�.
46 M. Yamamoto, M. Koshino, and T. Ando, J. Phys. Soc. Jpn. 77,

084705 �2008�.
47 M. Nakamura and L. Hirasawa, Phys. Rev. B 77, 045429 �2008�.
48 A. H. Castro Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and

A. K. Geim, Rev. Mod. Phys. 81, 109 �2009�.

MIKITO KOSHINO AND TSUNEYA ANDO PHYSICAL REVIEW B 81, 195431 �2010�

195431-8

http://dx.doi.org/10.1103/PhysRev.104.666
http://dx.doi.org/10.1103/PhysRev.119.606
http://dx.doi.org/10.1103/PhysRevB.9.2467
http://dx.doi.org/10.1103/PhysRevB.9.2467
http://dx.doi.org/10.1016/0022-3697(64)90128-3
http://dx.doi.org/10.1143/JPSJ.27.604
http://dx.doi.org/10.1143/JPSJ.28.570
http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1038/nature04233
http://dx.doi.org/10.1038/nature04235
http://dx.doi.org/10.1038/nature04235
http://dx.doi.org/10.1103/PhysRev.109.272
http://dx.doi.org/10.1103/PhysRevB.29.1685
http://dx.doi.org/10.1103/PhysRevLett.53.2449
http://dx.doi.org/10.1143/JPSJ.67.2421
http://dx.doi.org/10.1103/PhysRevB.65.245420
http://dx.doi.org/10.1143/JPSJ.74.777
http://dx.doi.org/10.1103/PhysRevLett.95.146801
http://dx.doi.org/10.1103/PhysRevLett.95.146801
http://dx.doi.org/10.1103/PhysRevB.73.125411
http://dx.doi.org/10.1103/PhysRevB.73.125411
http://dx.doi.org/10.1103/PhysRevB.69.075104
http://dx.doi.org/10.1103/PhysRevB.69.075104
http://dx.doi.org/10.1143/JPSJ.76.043711
http://dx.doi.org/10.1103/PhysRevB.76.113301
http://dx.doi.org/10.1103/PhysRevB.75.235333
http://dx.doi.org/10.1103/PhysRevB.75.115123
http://dx.doi.org/10.1103/PhysRevB.75.115123
http://dx.doi.org/10.1016/j.physe.2007.06.003
http://dx.doi.org/10.1103/PhysRevLett.102.177203
http://dx.doi.org/10.1103/PhysRevLett.102.177203
http://dx.doi.org/10.1038/nphys245
http://dx.doi.org/10.1126/science.1130681
http://dx.doi.org/10.1103/PhysRevLett.99.216802
http://dx.doi.org/10.1038/nmat2082
http://dx.doi.org/10.1103/PhysRevLett.96.086805
http://dx.doi.org/10.1103/PhysRevB.73.245426
http://dx.doi.org/10.1103/PhysRevB.73.245426
http://dx.doi.org/10.1088/0953-8984/18/26/005
http://dx.doi.org/10.1103/PhysRevB.73.144427
http://dx.doi.org/10.1103/PhysRevB.74.161403
http://dx.doi.org/10.1103/PhysRevB.73.245403
http://dx.doi.org/10.1103/PhysRevB.73.214418
http://dx.doi.org/10.1103/PhysRevB.74.075404
http://dx.doi.org/10.1103/PhysRevB.75.193402
http://dx.doi.org/10.1103/PhysRevB.30.421
http://dx.doi.org/10.1103/PhysRevB.76.085425
http://dx.doi.org/10.1103/PhysRevB.20.4889
http://dx.doi.org/10.1051/jphys:01984004503054500
http://dx.doi.org/10.1103/PhysRevB.33.7218
http://dx.doi.org/10.1143/JPSJ.62.1255
http://dx.doi.org/10.1143/JPSJ.62.2470
http://dx.doi.org/10.1143/JPSJ.64.4382
http://dx.doi.org/10.1143/JPSJ.77.084705
http://dx.doi.org/10.1143/JPSJ.77.084705
http://dx.doi.org/10.1103/PhysRevB.77.045429
http://dx.doi.org/10.1103/RevModPhys.81.109


49 A. Kobayashi, Y. Suzumura, and H. Fukuyama, J. Phys. Soc.
Jpn. 77, 064718 �2008�.

50 Y. Fuseya, M. Ogata, and H. Fukuyama, Phys. Rev. Lett. 102,
066601 �2009�.

51 A. W. W. Ludwig, M. P. A. Fisher, R. Shankar, and G. Grinstein,
Phys. Rev. B 50, 7526 �1994�.

52 S. Y. Zhou, G.-H. Gweon, A. V. Fedorov, P. N. First, W. A. de
Heer, D.-H. Lee, F. Guinea, A. H. Castro Neto, and A. Lanzara,
Nat. Mater. 6, 770 �2007�.

53 S. Y. Zhou, D. A. Siegel, A. V. Fedorov, F. El Gabaly, A. K.
Schmid, A. H. Castro Neto, D.-H. Lee, and A. Lanzara, Nat.
Mater. 7, 259 �2008�.

54 M.-C. Chang and Q. Niu, Phys. Rev. B 53, 7010 �1996�.
55 D. Xiao, W. Yao, and Q. Niu, Phys. Rev. Lett. 99, 236809

�2007�.

56 A. Misu, E. Mendez, and M. S. Dresselhaus, J. Phys. Soc. Jpn.
47, 199 �1979�.

57 T. Ando and M. Koshino, J. Phys. Soc. Jpn. 78, 034709 �2009�.
58 T. Ando and M. Koshino, J. Phys. Soc. Jpn. 78, 104716 �2009�.
59 Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M.

F. Crommie, Y. R. Shen, and F. Wang, Nature �London� 459,
820 �2009�.

60 K. F. Mak, C. H. Lui, J. Shan, and T. F. Heinz, Phys. Rev. Lett.
102, 256405 �2009�.

61 M. Koshino and E. McCann, Phys. Rev. B 81, 115315 �2010�.
62 H. L. Stormer, T. Haavasoja, V. Narayanamurti, A. C. Gossard,

and W. Wiegmann, J. Vac. Sci. Technol. B 1, 423 �1983�.
63 J. P. Eisenstein, H. L. Stormer, V. Narayanamurti, A. Y. Cho, A.

C. Gossard, and C. W. Tu, Phys. Rev. Lett. 55, 875 �1985�.

ANOMALOUS ORBITAL MAGNETISM IN DIRAC-ELECTRON… PHYSICAL REVIEW B 81, 195431 �2010�

195431-9

http://dx.doi.org/10.1143/JPSJ.77.064718
http://dx.doi.org/10.1143/JPSJ.77.064718
http://dx.doi.org/10.1103/PhysRevLett.102.066601
http://dx.doi.org/10.1103/PhysRevLett.102.066601
http://dx.doi.org/10.1103/PhysRevB.50.7526
http://dx.doi.org/10.1038/nmat2003
http://dx.doi.org/10.1038/nmat2154b
http://dx.doi.org/10.1038/nmat2154b
http://dx.doi.org/10.1103/PhysRevB.53.7010
http://dx.doi.org/10.1103/PhysRevLett.99.236809
http://dx.doi.org/10.1103/PhysRevLett.99.236809
http://dx.doi.org/10.1143/JPSJ.47.199
http://dx.doi.org/10.1143/JPSJ.47.199
http://dx.doi.org/10.1143/JPSJ.78.034709
http://dx.doi.org/10.1143/JPSJ.78.104716
http://dx.doi.org/10.1038/nature08105
http://dx.doi.org/10.1038/nature08105
http://dx.doi.org/10.1103/PhysRevLett.102.256405
http://dx.doi.org/10.1103/PhysRevLett.102.256405
http://dx.doi.org/10.1103/PhysRevB.81.115315
http://dx.doi.org/10.1116/1.582618
http://dx.doi.org/10.1103/PhysRevLett.55.875

