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Graphene Dirac fermions in one-dimensional inhomogeneous field profiles:
Transforming magnetic to electric field
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We show that the low-energy electronic structure of graphene under a one-dimensional inhomogeneous
magnetic field can be mapped into that of graphene under an electric field or vice versa. As a direct application
of this transformation, we find that the carrier velocity in graphene is isotropically reduced under magnetic
fields periodic along one direction with zero average flux. This counterintuitive renormalization has its origin
in the pseudospin nature of graphene electronic states and is robust against disorder. In magnetic graphene
superlattices with a finite average flux, the Landau level bandwidth at high fields exhibits an unconventional
behavior of decreasing with increasing strength of the average magnetic field due to the linear energy disper-
sion of graphene. As another application of our transformation relation, we show that the transmission prob-
abilities of an electron through a magnetic barrier in graphene can directly be obtained from those through an

electrostatic barrier or vice versa.
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I. INTRODUCTION

The low-energy electronic excitations of graphene are
massless Dirac fermions,! with an effective “light speed” of
vo=~1X10° m/s. Unusual phenomena associated with the
Dirac Hamiltonian such as Klein tunneling? and the uncon-
ventional integer quantum Hall effect® can now be studied in
bench-top graphene experiments.*~°

A recent fruitful avenue of investigation that has brought
interesting theoretical results is that of external electric’'!
and magnetic'?>~? profiles in graphene. Such systems are also
of practical interest for graphene electronics because of ef-
fects such as electron-beam supercollimation® in electrostatic
special graphene superlattices (SGSs) and magnetic confine-
ment of electrons in graphene.'> Experimentally, electrostatic
patterns have been fabricated on graphene with a periodicity
down to 5 nm;?' although magnetic graphene superlattices
(MGSs) have not been made, techniques used in creating
magnetic superlattices in two-dimensional electron-gas
(2DEG) systems?? may be relevant for this purpose. The
band structure and transmission characteristics of electro-
static graphene superlattices (EGSs) on single and bilayer
graphenes have been studied in Refs. 7-11 while transmis-
sion through various magnetic structures in single and bi-
layer graphenes were explored in Refs. 12 and 13.

We demonstrate here that systems of one-dimensional
(ID) electric and magnetic profiles in graphene are closely
related via a transformation of the Dirac equation. This trans-
formation has the potential to simplify the analysis of and
bring new physical insights into the electronic behavior of
field-induced nanoscopic and mesoscopic structures in
graphene. We have made use of this transformation, together
with known results for the 1D EGS, to solve for the elec-
tronic structure of a 1D MGS in the case when the average
magnetic flux vanishes, (B)=0. In this case, the group veloc-
ity of the charge carriers is isotropically reduced as the
strength of the magnetic field is increased (Fig. 1), a surpris-
ing result given that the external periodic magnetic field is
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anisotropic. The band structure for the case where (B) # 0 is
calculated using both exact numerical and perturbative meth-
ods. It is found that, in the limit of large (B), the bandwidth
of the Landau bands decreases as 1/4B, unlike the analogous
system of a 2DEG in a periodic magnetic field where the
bandwidth approaches a constant as (B) is increased.”? We
have also shown through our transformation the relationship
between the transmission probability through electrostatic
and magnetic barriers in graphene.

The paper is organized as follows. In Sec. II, we develop
a transformation relating graphene under unidimensional
modulated magnetic fields to the analogous system of
graphene under unidimensional modulated electric fields. In

FIG. 1. (Color online) (a) Structure of pristine graphene. (b)
Band dispersion of pristine graphene near the K point. (c) Structure
of a 1D MGS, with the darker regions denoting a magnetic field
pointing along the —z direction and lighter regions denoting a mag-
netic field pointing along the +z direction. This structure repeats
itself in both the x and y directions. (d) Isotropically renormalized
band structure of a 1D MGS of the kind shown in (c).
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Sec. III, this transformation is applied to the magnetic
graphene superlattice with (B)=0. We then examine the case
where (B) #0. An application of the transformation to sys-
tems with finite number of magnetic barriers is presented in
Sec. IV. In Sec. V, we discuss the effects of disorder on our
results. We conclude in Sec. VI.

II. TRANSFORMATION
A. Dirac Hamiltonian

We shall consider external fields with nanoscale variations
much larger than the carbon-carbon distance in graphene so
that intervalley scattering between the Dirac points at K and
K’ can be neglected.”> We focus on low-energy excitations
near the K point and neglect Zeeman interactions and intrin-
sic spin-orbit couplings, which have respective energy scales
of upgB=5x10"* eV (at B=5 T) and 1.7X 107 eV, ac-
cording to Ref. 1. In contrast, the energy scale of an MGS is
fivg/\hc/(eB), which is at least 2 orders of magnitude larger
than either of these two energy scales when 0.005 T=B
=10 T. For simplicity, we focus on systems without large
Rashba spin-orbit coupling.?®-° Examples of such systems
include graphene on Co surfaces.’-¥

We first treat the general case of electric and magnetic
modulations where the field strengths vary in the x direction
and are constant in the y direction. The electronic states of
the system can be described by the Dirac equation

lhd_lﬁz {UQ& |:—lﬁv+ EA)(x)i| + V(x)}l/l’ (1)
dt ¢

where the wave function  is a two-component spinor func-
tion, vy is the Fermi velocity of pristine graphene, and A(x)
and V(x) are vector and scalar potentials, respectively, which
do not necessarily have to be periodic. We shall use the Lan-
dau gauge and the magnetic field is taken to be perpendicular
to the graphene layer. Writing the wave function as
Px,y;1)=e*Ve B p(x), the Dirac equation becomes

Ep(x) = {— ihvyo,d, + voqv[ﬁky + EA(x)} + V(x)}(p(x).
(2)

B. Complex Lorentz boost

Relating the electric and magnetic graphene systems is a
two-step process: in this section, we show that a complex
Lorentz boost changes the Dirac equation with real magnetic
(electric) fields into a Dirac equation with imaginary electric
(magnetic) fields. In the next section, we perform an analytic
continuation to relate the Dirac equation with imaginary
electric (magnetic) fields to a Dirac equation with real elec-
tric (magnetic fields).

Starting from Eq. (2), we multiply throughout by o, and
make the unitary transformation ¢'(x)=Ug(x), with

U 1(1 1) )
T2\ -1 )

Also, we transform Eq. (2) to new energy and momentum
variables
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E=—ihvyk., (4)
iE'

= 5

"= g (5)

The result of these operations is to transform the original
Dirac equation [Eq. (2)] into

E'¢'(x)= {— ihvyo,d, + O'y[ﬁvok;, —iV(x)]

+ ”TOeiA<x>}<p'(x). (6)

This transformation interchanges the role of the
x-dependent electric and magnetic fields. The transformation
is actually a complex Lorentz boost with an imaginary rapid-
ity: if a general Lorentz boost that mixes a spatial coordinate
with time is represented by

(t’) <cosh6 —sinhG)(t) ™
y') \—sinh & cosh 6 /\y)’

then Egs. (4) and (5) correspond to a Lorentz boost with
rapidity 0:%7, followed by a mirror refection y'=-—y. It
should be noted that other choices for the rapidity are pos-

sible. These will result in the mixing of the electric and mag-
netic profiles.®

C. Analytic continuation

An analytic continuation may be used to relate the solu-
tions of the Dirac equation with imaginary fields [Eq. (6)] to
a Dirac equation with real fields. Suppose that a Dirac equa-
tion with real electric potentials (for simplicity, let us assume
no magnetic fields, although this can be easily added in) has
been solved and the eigenenergies are known to be given by
an equation g(E,k,,V)=0, where E, k,, and V are all real. We
argue that the Dirac equation with an imaginary electric po-
tential of the same shape [i.e., writing V=Vyw(x) with V,
now an imaginary number] has imaginary eigenenergies
given by the same equation, but now with E, k,, and V all
imaginary.

The above argument is true since the eigenfunctions
#(x,y:ky,V) of the original Dirac equation with real electric
potential can be analytically continued to imaginary values
of k, and V,. This is because the Dirac operator in Eq. (1)
consists of differentiation and matrix operations, which act
on the eigenfunction in the same way regardless of where k,
and V lie in the complex plane. Therefore, the analytic con-
tinuation of the eigenfunctions to imaginary k, and V,, values
are eigenfunctions of the Dirac equation with k, and V|
imaginary. This implies that the imaginary eigenenergies are
given by the same equation g(E,k,,V)=0, with E, k,, and
V(x) imaginary.

The system with imaginary electric fields is solved if the
system with real electric fields is solved. And, by the results
of Sec. II B, the system with real magnetic fields is solved if
the system with imaginary electric fields is solved. We can
thus relate the solutions of graphene under electric field pro-
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TABLE I. Various stages of the transformation taking a magnetic structure to an electrostatic structure on
graphene. The form of the wave functions and the corresponding Dirac equation are shown for each stage.

Type of system

Dirac equation and wave function

Real magnetic (RM): E, ky, A real

Imaginary electric (IE): E, k,, V imaginary

Real electric (RE): E, k,, V real

Relation between wave functions

EgfM(x) = {— ihvyo, 0, + vo(rv[hkV + EA()c)] }QDRM(X)
1T ¢

PRV (x, 3 1) = GRM(x) eikyy il

E@®(x)={-ihvyo,d,+ Vo0, fik,+ V. oB(x)

l,[JIE()C,y : t) — gDIE(x)eikyye—iEt/ﬁ= goIE(x)e"ye”/ﬁ, where
ky=—iK, E=ie, with k, € real

E@RE(x) ={~ihv 03+ 0o, fiky + V., oRE(x)
YRE(x, y ;1) = oRE(x) etk e~ iENN

To obtain ¢'F from @RF, perform an analytic
continuation in E, ky, V.

To obtain "M from ¢'F, replace the imaginary V
with real A and make a unitary transformation, as
described in the Egs. (3)—(5).

files to those of graphene under magnetic field profiles. The
two steps of this transformation are summarized in Table I.
This procedure is quite general—it is applicable to inhomo-
geneous fields of 1D profiles of both finite and infinite ex-
tents, as well as to states with finite lifetimes (imaginary
eigenenergies).

An important consideration in applying this method in
practice is the fixing of boundary conditions. It is possible
that after the analytic continuation, a wave function displays
unphysical behavior at the boundaries. Such solutions must
be excluded and domain of validity of the energy dispersion
relations restricted accordingly. These considerations how-
ever do not appear in the examples considered in the next
section. It should be noted that the imaginary values of en-
ergy and momentum in the intermediate stages of the trans-
formation bear no physical significance—they are purely
mathematical crutches and should not be interpreted as indi-
cators of finite lifetimes or confined states.

III. MAGNETIC GRAPHENE SUPERLATTICES
A. Case with (B)=0

We now apply this method to the system of a 1D (B)=0
MGS, where V(x)=0 and A,=A(x) in the Landau gauge is
periodic and assumed to average to zero in one unit cell of
the superlattice. Both k, and k, are good quantum numbers.
The transformed system is that of a 1D EGS [i.e., A'(x)=0
and V’(x) is periodic and imaginary], with (E"Y=0. We are
interested in the imaginary (E',k;) solutions of the latter
system, which we find by making use of the real (E,k,)
solutions of the 1D EGS with V(x) real. The 1D EGS with a
real potential has been solved and the energies to lowest
order in k are given in Ref. 7 as

E(E):ﬁvoyki+ |f|2k2, (8)

where f= [ cellexp[ZiI{)V(x,)dx’/(hvo)]dx-

Using the imaginary energy eigenvalues of the 1D EGS
with k, and V|, imaginary via Eqs. (4) and (5), the energy
bands in the MGS are found, to lowest order in k, and ky, to
be

ﬁUo\k)ZC + k%

" . 9
f exp{— 2[ eA(x')dx'/(ﬁc)de
unit cell 0

Remarkably, the dispersion relation near the K point is
isotropic and there is no energy gap between the valence and
conduction bands, regardless of the magnetic field strength.
Furthermore, the group velocity near the K point is always
renormalized to be less than v, and it decreases monotoni-
cally as the strength of the magnetic field is increased. The
group velocity is monotonically reduced because the deriva-
tive of the denominator of Eq. (9) with respect to A, [writing
A(x)=Ayh(x)] is nonnegative due to the fact that a(x)
=2[3V(x")dx'/(fivy) averaged to zero over one unit cell as
shown in Ref. 7.

These results are also applicable to states around a single
valley in k space in an effective gauge-field treatment of
corrugated graphene,>* where a gauge field is introduced
with opposite signs at each valley in order to simulate the
effects of ripples in graphene. For example, applying Eq. (9)
to the effective magnetic field generated by the corrugation
in Fig. 2 of Ref. 26 gives a velocity renormalization that is in
good agreement with the results in that figure. It should be
noted that the regime considered in corrugated graphene is
different from that considered here: ripples of reasonable size

E(k)= =
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FIG. 2. (Color online) Ratio of the Fermi velocity v, in the
presence of a periodic magnetic field to the Fermi velocity v, of
pristine graphene near the K point is plotted as a function of the
vector potential magnitude A, for both a S-function magnetic field
and a piecewise constant magnetic field Kronig-Penney superlat-
tices. The analytical (lines) and numerical (symbols) results are in
agreement. [ is the superlattice period and B;=#c/ (elé) is the char-
acteristic magnetic field strength associated with /. The group ve-
locity is identical in all directions. For /,=100 mm and a magnetic
field of 1.8 T, v is renormalized by a factor of 1/2.

tend to reduce the velocity to almost zero, whereas MGSs do
not.

Interestingly, carbon nanotubes under a constant, trans-
verse magnetic field*>3 can be considered approximately to
be a special case of Eq. (9) here, for the specific values of
k,=0 and k,= *27/(3L), corresponding to metallic and
semiconducting carbon nanotubes with circumference L, re-
spectively. In addition to corroborating the predictions of ve-
locity reduction in metallic carbon nanotubes and gap reduc-
tion in semiconducting nanotubes in Refs. 35 and 36, Eq. (9)
provides a description of velocities in arbitrary directions as
well.

For concreteness, let us focus on the specific cases of two
magnetic ~ Kronig-Penney  superlattices: (i)  A(x)
=A, sgn[sin(2mx/1,)], which corresponds to a periodic 1D
S-function magnetic field of alternating signs, and (ii) a pe-
riodic piecewise constant magnetic field of alternating sign:

B(x):%sgn[sin(wa/lo)]. These magnetic superlattices
have period [,. Evaluating Eq. (9) for the S-function mag-
netic field Kronig-Penney superlattice gives

eA()lo/ (4ﬁC)

E(k) = hoglk| ———————.
() =g |sinh[erlo/(4ﬁc)]

(10)

This result, together with a similar formula for the piecewise
constant magnetic field, is shown in Fig. 2 and the results are
identical to those of numerical solutions to the Dirac equa-
tion, also shown in Fig. 2, obtained using a plane-wave basis
(60 plane waves were used in the expansion of the wave
function). In contrast, the analogous system of a 2DEG in a
magnetic superlattice’”-3® has an anisotropic energy spectrum
near the (k,=0,k,=0) point, which is expected considering
the anisotropic nature of the superlattice potential.

One use of the transformation presented above is in iden-
tifying features of the EGS with features of the MGS. A
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simple application of Egs. (4) and (5) shows that the isotro-
pic velocity reduction in an MGS can be predicted from the
constant (superlattice potential independent) group velocity
in the k, direction in an EGS. On an intuitive level, one can
think of isotropic velocity reduction as the magnetic analog
of Klein tunneling, with both features arising from the Dirac
nature (pseudospin physics) of the quasiparticles.

B. Case with (B)#0

For the case of an 1D MGS where (B) # 0, we may write
the vector potential in the Landau gauge as A,(x)=A,(x)
+Byx, where A,(x) gives the periodic magnetic modulation
and B, is the uniform background magnetic field. In this
system, k, is no longer a good quantum number; we are
interested in the E vs. k, dispersion relation. Let us first
consider the low B, semiclassical limit. We start with the
energy spectrum of the 1D (B)=0 MGS found above and
treat the background magnetic field as a perturbation. In this
limit, the quasiparticles circulate along constant energy con-
tours in momentum space. The quantization of these orbits
leads to the formation of Landau levels. The Landau levels
for pristine graphene in a uniform perpendicular magnetic
field B is E,=sgn(n)\2ehvjn|B, where n=0,*1,+2,...°
Since the introduction of a periodic modulating magnetic
field leaves the conic energy spectrum intact and only renor-
malizes the group velocity, the Landau levels for the 1D
(B)=0 MGS is given by the same formula as the Landau
levels for pristine graphene, except for the renormalization of
vo. This is in agreement with the numerical solution of Eq.
(1) in the low B, regime [see Fig. 3(a)]. Since we have not
assumed any range of values of A, this regime includes (at
least when all the magnetic fields are small) the experimen-
tally convenient situation of constructing the superlattice us-
ing strips of ferromagnetic material arranged in a regular
spacing, which corresponds to By~ B,,, where B, is the peri-
odic magnetic field. A measurement of the Landau level
spacings would be one means to directly verify the isotropic
velocity reduction discussed above.

The higher Landau levels are not flat (as a function of &),
but show broadening in the form of oscillations as a function
of k, [Fig. 3(a)]. This behavior can be understood by consid-
ering k, as the parameter that controls the position of the
wave functions along the x direction under the gauge we
adopted.! Changing k, changes the local environment felt by
the wave function and thus changes its energy. From this
argument, the period of oscillations is lQ/llz;, where [, is the
size of the unit cell and Iz=v#c/(e(B)) is the magnetic
length associated with the average background magnetic
field strength. As can be seen in Fig. 4(a), this period agrees
with the results of numerical calculations (by diagonalizing
the Hamiltonian in a plane-wave basis).

The lower-energy Landau levels are not affected because
these states [Fig. 4(b)] have few nodes and the distance be-
tween nodes is typically much larger than [, (in the limit of
low B), so that those states effectively perform an “averag-
ing” of the local magnetic field and their energies are not
greatly affected by their position. On the other hand, higher-
energy states might have a node-to-node distance compa-
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FIG. 3. (Color online) (a) Energy bands for a piecewise constant
magnetic field pattern with magnetic field strength B,/ B;=1.4, im-
mersed in a uniform background field of By/B;=0.6, where B,
=ﬁc/(el(2)) is the characteristic magnetic field strength associated
with the superlattice periodicity. The first 10 bands are plotted. (b)
Bandwidths AE of the first three bands, as a function of B, of a
piecewise constant magnetic field with magnetic field strength
B,/B;=2, immersed in a uniform background field of strength B,

rable to /. It would then be possible to position such a state
so that the peaks coincide with regions of high (or low) mag-
netic field and thus affect the magnetic field strength “felt”
by those states and hence their energies. This criterion for the
onset of energy bands has been verified for the states in Fig.
3(a).

As the strength of the background magnetic field is in-
creased from zero, the bandwidth of the Landau level energy
bands first increases monotonically from zero [not shown for
the range of magnetic fields plotted in Fig. 3(b)] and then
fluctuates, similar to the analogous system of a 2DEG in a
1D periodic magnetic modulation.?* However, in the limit of
large B/B,, with B, defined as #ic/(el,)? [i.e., in the limit, the
magnetic length Iz;=+%c/(eB) becomes significantly smaller
than the period [, of the superlattice], a qualitative difference
between the two systems arises, in that the bandwidth ap-
proaches a constant in the case of the 2DEG, while it van-
ishes in the limit of large magnetic fields in the case of
graphene. To obtain a physical understanding of this limit,
we take the unperturbed system to be graphene in a uniform
background magnetic field, while the perturbation AH
=(evy/c)A,(x)o, is the periodic modulating magnetic field.
Using the zeroth-order wave functions
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FIG. 4. (Color online) (a) Comparison of the period of oscilla-
tion of the Landau bands in k, as obtained from the numerical
calculations with the analytic prediction that this period is equal to
lo/lé, where [, is the size of the unit cell and [p=\Ac/(e(B)) is the
magnetic length associated with the average background magnetic
field strength. (b) Three representative wave functions for the sys-
tem with B#0. The same parameters are used as in Fig. 3(a): a
piecewise constant magnetic field pattern with magnetic field
strength B,,/B;=1.4, immersed in a uniform background field of
By/B;=0. 6 where B;= hc/(elo) is the characteristic magnetic field
strength associated with the superlattice periodicity. The index n in
this figure refers to the nth Landau level as defined in Fig. 3(a).

n—1)
@ux) = , (11)
[n)
the first-order correction to the energy is found to be
AE = E @A e—le},lf;(n _ 1|eiGZB(a+a+)/\5|n>
G

-3 “LAge Gy \/g (12)

in the limit /z/ly<<1. Here, n is the Landau level index, |n)
the quantum harmonic-oscillator eigenstates, a and a* the
creation and annihilation operators, and Ag are the Fourier
components of the perlodlc vector potential A,(x). The band-
width falls off as 1/\B as B—>00 and the bandw1dths of
successive bands increases as \n. The numerical results of
our calculations shown in Fig. 3 are in good agreement with
these asymptotic results.

This peculiarity can be understood as a consequence of
the linear dispersion relation of graphene and the fact that the
energy levels of graphene in a uniform magnetic field grow
as VB rather than linearly in B as in the case for a 2DEG. In
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the limit of large B, the wave functions are well localized
and one can consider the difference in energies between two
states of the same Landau band localized at different posi-
tions in a saw-tooth type of MGS vector potential. Each of
these two states is in a local environment of an (approxi-
mately) uniform magnetic field with strengths B+B, and B
+B, (B;,B,<B) and so the difference in their energies is
approximately \2n(B+B;)—2n(B+B,)= (B,—B,)\n/(2B),
which is in agreement with the result from perturbation
theory.

IV. FINITE MAGNETIC BARRIERS

In this section, we relate the transmission probability
through single magnetic barriers in graphene to the transmis-
sion probability though electrostatic barriers in graphene.
This is done using the complex Lorentz transformation de-
veloped in previous sections. For simplicity, we consider
here square electrostatic or vector potential barriers, as
shown in Fig. 5.

The transmission coefficient for a vector potential barrier
such as in Fig. 5(a) is given by Eq. 6 of Ref. 14. This equa-
tion gives the transmission coefficient 7 in terms of the angles
of propagation inside (6) and outside (¢) the vector potential
barrier. The variables # and ¢ are easily expressed as func-
tions of ky, E, and A (the transverse momentum, the energy
of the propagating wave, and the vector potential height,
respectively.) Once this is done, the transmission coefficient

t(k,,E,Ap) will be a function of the vector potential ampli-
tude, the transverse momentum, and the energy. To relate this
to the electrostatic barrier, Egs. (4) and (5) as well as V'
=i(vpe/c)A, are used. The last equation V'=i(vge/c)A,
comes from a comparison of Egs. (2) and (6).

If these substitutions are made in #(k,,E,A,), an expres-
sion t'(k|,E', V') is obtained, which is the transmission co-
efficient through an electrostatic barrier in graphene. It can
be checked with Ref. 2 that this is indeed the correct expres-
sion for the transmission coefficient. Figures 5(c) and 5(d)
show representative transmission probabilities (as a function
of the incident angle ¢) for both types of barriers.

V. DISORDER

An experimental realization of a magnetic (or electro-
static) superlattice will not be perfectly periodic due to varia-
tions in both the period of the superlattice and the strength of
the local magnetic fields. We have simulated such random-
ness using a supercell approach, where we have solved for
the band structure of a simulation cell consisting of 30
smaller unit cells. Each unit cell has a period which follows
a normal distribution with a randomness parameter r=o/ u,
where o and w are the standard deviation and mean of the
normal distribution, respectively. Similarly, the strength of
the magnetic field in each unit cell is also normally distrib-
uted. We have performed calculations using values of » up to
0.1. An ensemble average of 20 independent random mag-
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FIG. 6. (Color online) Ensemble-averaged density of states of a
random magnetic superlattice, with randomness parameters r
=0.05 and r=0.1 (see text), compared to a perfectly periodic super-
lattice (r=0). The density of states of pristine graphene is also
shown (r=0, B field off). The velocity reduction factor that corre-
sponds to this change in density of states is v/v(=0.58. The energy
range in this plot is 1/2 the bandwidth of an empty-lattice graphene
superlattice.

netic configurations was taken in the calculations. A broad-
ening of 0.2, in the energy units of Fig. 6, was used in the
density of states calculation.

The density of states (after ensemble averaging) is shown
in Fig. 6. In pristine graphene, the density of states is linear
in the energy from the Dirac point energy. In the presence of
a perfect magnetic superlattice, the density of states is still
linear, but increased from the pristine graphene case, due to
the velocity reduction effect described above. Figure 6 shows
that this observation remains true even if the magnetic super-
lattice is disordered. The density of states for the disordered
magnetic superlattice is approximately linear, with nearly the
same slope as that of the perfect magnetic superlattice. This
provides evidence that the presence of low level disorder
should not change significantly the magnitude of the velocity
reduction effect described above.

At low energies (E<0.2 in Fig. 6), which correspond to
approximately 1/10th of the bandwidth of a perfect superlat-
tice in the limit of no magnetic field, the density of states of
the disordered magnetic superlattice is not linear, but instead
approaches a finite value as the energy decreases to zero. For
a superlattice of period L=100 nm, this energy range is E
<2 meV.
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VI. CONCLUSIONS

We have discovered a transformation relating electronic
properties of 1D electrostatic and magnetic structures on
graphene. This transformation can be used to obtain the en-
ergy dispersion relation of one system if the energy disper-
sion relation of the other is known. The method is applicable
to a wide range of potential profiles. The transformation re-
lations provide a useful platform upon which other graphene
nano- or mesoscopic structures may be analyzed and under-
stood. As examples of its applicability, we have analyzed
both magnetic superlattices in graphene, as well as finite
magnetic barriers in graphene.

We found that graphene massless Dirac fermions under
magnetic profiles exhibit behaviors qualitatively different
from those of the conventional 2DEG. In the magnetic
graphene superlattice with no net magnetic flux, the Dirac
cone displays isotropic velocity reduction, despite the aniso-
tropic magnetic field configuration. The magnetic graphene
superlattice with net magnetic flux has Landau level band-
widths that decrease with increasing average magnetic field
due to the linear energy dispersion of graphene. We have also
shown that a small amount of disorder in the superlattice
does not have a significant effect on these results.

Note added. Recently, we became aware of the preprint of
Ref. 18 which also remarked the isotropic velocity renormal-
ization in magnetic graphene superlattices. Both the focus of
and the theoretical concepts developed in our paper, how-
ever, are very different from those in Ref. 18.
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