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Topological defects in graphene, dislocations and grain boundaries, are still not well understood despite the
considerable number of experimental observations. We introduce a general approach for constructing disloca-
tions in graphene characterized by arbitrary Burgers vectors as well as grain boundaries, covering the whole
range of possible misorientation angles. By using ab initio calculations we investigate thermodynamic and
electronic properties of these topological defects, finding energetically favorable symmetric large-angle grain
boundaries, strong tendency toward out-of-plane deformation in the small-angle regimes, and pronounced
effects on the electronic structure. The present results show that dislocations and grain boundaries are impor-
tant intrinsic defects in graphene which may be used for engineering graphene-based nanomaterials and

functional devices.
DOI: 10.1103/PhysRevB.81.195420

I. INTRODUCTION

The isolation of graphene, a two-dimensional (2D) mate-
rial with extraordinary physical properties, has opened hori-
zons for physics exploration and future technology.!? In 2D,
properties of materials can be heavily affected by structural
irregularities. Graphene edges and point defects such as va-
cancies have been extensively investigated over the past few
years.’> However, these types of disorder have to be distin-
guished from dislocations and grain boundaries, structural
defects characterized by the finite values of their respective
topological invariants, Burgers vectors, and misorientation
angles, respectively.* Such topological defects introduce
nonlocal disorder into the crystalline lattice. Surprisingly,
dislocations and grain boundaries in graphene are still not
well understood despite the growing number of experimental
observations.

The first experimental results date back to the scanning
tunneling microscopy (STM) studies of tilt grain boundaries
on graphite surfaces,’ fueled by their confusion with biologi-
cal macromolecules.®” More recently it has been shown that
grain-boundary defects have a dramatic influence on the lo-
cal electronic properties of graphite.? An individual dislo-
cation in free-standing graphene layers has been imaged us-
ing transmission electron microscopy (TEM).! Topological
defects resulting from either kinetic factors or substrate im-
perfections have also been reported for epitaxial graphene
grown on SiC," TIr(111),'>!3 and polycrystalline Ni
surfaces.'*

Here, we describe a systematic approach for constructing
arbitrary dislocations and grain boundaries in graphene start-
ing from disclinations as the elementary topological defects.
Then, by using ab initio calculations we explore energetic
and electronic properties of the proposed structures finding a
number of intriguing features such as two energetically fa-
vorable symmetric large-angle grain boundaries, strong ten-
dency toward out-of-plane deformation in the small-angle
regimes, and pronounced effects on the electronic structure.
Our results highlight the possible important role of disloca-
tions and grain boundaries in practical graphene samples.

The present paper is organized in the following manner.
In Sec. II we describe our first-principles computational
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methodology. Section III A presents a systematic approach
for constructing atomic structures of dislocations and grain
boundaries in graphene. Sections III B and III C are devoted
to the discussion of energetics and electronic structure of the
constructed topological defects, respectively. Section IV con-
cludes our work.

II. COMPUTATIONAL METHODS

First-principles calculations have been performed using
the spin-polarized density-functional theory (DFT) scheme
implemented in the SIESTA code.!®> The generalized gradient
approximation ~ (GGA)  exchange-correlation  density
functional'® was employed together with a double- plus po-
larization basis set, norm-conserving pseudopotentials,!” and
a mesh cutoff of 200 Ry. The computational model involved
two parallel equally spaced grain boundaries in a rectangular
simulation supercell in order to satisfy periodic boundary
conditions (see Fig. 1). The distance between the neighbor-
ing dislocations along the boundary line, and thus the mis-
orientation angle 6, are changed by varying the d, supercell
dimension. The d, supercell dimension was ~4 nm in all
studied models. The chosen supercell construction allows
one to reduce the error due to elastic interactions between the
neighboring grain boundaries.'® We verified that a larger in-
terboundary separation (d,=8 nm) produces only a negli-
gible change in the calculated grain-boundary energy in both
small-angle and large-angle regimes. Both atomic coordi-
nates and supercell dimensions were optimized using the
conjugate-gradient algorithm and a 0.04 eV/A maximum
force convergence criterion. The Brillouin zone was sampled
using 2 k-points along the x axis and a consistent number of
approximately 8/d, k-points along the y axis (d, in nm). The
STM images were simulated using a previously developed
method!®?® employing the calculated local density of states
in the energy window of *£0.6 eV around the charge neu-
trality point.

III. DISCUSSION OF RESULTS

A. Atomic structure of topological defects: A systematic
approach

In truly 2D materials only edge dislocations are possible
since the Burgers vector b, a topological invariant which
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FIG. 1. (a) Schematic illustration of the d,Xd, rectangular
simulation supercell with two dislocations (filled symbols) sepa-
rated by d,/2. The periodic images of the dislocations are shown as
empty symbols. The dashed lines depict the grain-boundary lines.
(b) One of grain-boundary models (6=9.4°) used in the present
study. The simulation supercell is indicated.

reflects the magnitude and direction of the crystalline lattice
distortion produced by a dislocation, is constrained to lie in
the material’s plane. One can imagine such dislocation as a
result of embedding a semi-infinite strip of width |l;| into an
otherwise perfect 2D crystalline lattice. As a guiding rule for
constructing atomic structures of dislocations in graphene,
we assume that the dislocation core is free from undercoor-
dinated or overcoordinated carbon atoms; that is, we aim at
minimizing the energy of the dislocation core and, thus, the
total formation energy of the dislocation.?! To develop such
construction we adopt a membrane theory approach which
views a dislocation as a pair of positive and negative discli-
nations, i.e., topological defects obtained by removing and
adding a semi-infinite wedge of material to an otherwise per-
fect crystalline lattice, respectively.”? As shown in Fig. 2(a),
§=60°(s=-60°) disclination in graphene contains a five
(seven) membered ring in its core while the original three-
fold coordination of all carbon atoms is preserved. Figure
2(b) schematically shows the equivalence of a pair of
complementary disclinations to a dislocation. Moreover, we
find that on graphene lattice the distance between two discli-
nations, |d|, is related to the resulting Burgers vector b by a
simple relation, |@|=|b| (for proof see Appendix A).

Since any Burgers vector bis a proper translational
vector of graphene lattice, i.e., 5:nd’1+md’2 [,
=(3d../2, =\3d,./2); d..=1.42 A, the nearest-neighbor in-
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FIG. 2. (a) Positive (s=60°) and negative (s=—60°) disclina-
tions in graphene are produced by either removing or adding a 60°
wedge (shaded area) of material without changing the coordination
of carbon atoms. (b) A pair of complementary disclinations is
equivalent to a dislocation: a negative disclination inserts a 60°
wedge while a positive disclination removes such a wedge within
one of the seven equivalent sectors. The introduced amount of ma-
terial (shaded area) can also be viewed as a semi-infinite strip of
width |5).

ideal graphene
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teratomic distance in graphene], we will use the pair of inte-
gers (n,m) as a descriptor of dislocations in graphene. This
notation is analogous to the chirality indices used to describe
the structure of carbon nanotubes. The core of the shortest
Burgers vector dislocation (1,0) (|l;(]y0)|=\f'§dcc=2.46 A)
contains an edge-sharing heptagon-pentagon pair as shown
in Fig. 3(a). The (1,0) dislocation inserts a semi-infinite strip
of atoms along the armchair high-symmetry direction in
graphene while its Burgers vector is oriented along the zig-
zag direction. This simplest dislocation structure has been
extensively studied in the context of plastic deformation of
carbon nanotubes,”® nanotubes junctions,”* as well as
graphene itself.>>?® The second member of the family, the
(1,1) dislocation, has a larger Burgers vector (|b|=3d,,
=423 A) and inserts a semi-infinite strip along the zigzag
direction of graphene [see Fig. 3(b)]. Alternatively, the core
of the dislocation with the same Burgers vector can be con-
structed from two |5(1’0)|=2.46 A dislocations, (1,0) and
(0,1), e.g., as shown in Fig. 3(c). The simple method outlined
above can be used to build dislocation with even longer Bur-
gers vectors, inevitably leading to larger elastic energies.
Grain boundaries, the interfaces between the domains of
material with different crystallographic orientations, are
commonly viewed as periodic arrays of dislocations.?’ Par-
ticularly, in 2D materials such as graphene, one-dimensional
(1D) chains of edge dislocations constitute tilt grain bound-
aries. Mutual orientation of the two crystalline domains is
described by the misorientation angle 6=6,+6, [0
€ (0°,60°) in graphene], a topological invariant defined as
shown in Fig. 3(d). Another parameter ¢=|60,—6,| € (0°, 6)
describes the inclination of the boundary line with respect to
the symmetric configuration (=0°). We limit our consider-
ation to only symmetric ones since asymmetric configura-
tions tend to result in diverging elastic energies.?® Impor-
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FIG. 3. [(a)-(c)] Atomic structures of (1,0) and (1,1) dislocations, and a (1,0)+(0,1) dislocation pair, respectively. The dashed lines
delimit the introduced semi-infinite strips of graphene originating at the dislocation core. Non-six-membered rings are shaded. [(d) and (e)]
Atomic structures of the §=21.8° (LAGB I) and the #=32.2° (LAGB II) symmetric large-angle grain boundaries, respectively. The dashed
lines show the boundary lines and the solid lines definite angles 6; and 6,. (f) Buckling of the graphene layer due the presence of a (1,0)

dislocation.

tantly, due to the presence of two high-symmetry directions
in graphene, armchair and zigzag, both misorientation angles
close to 0° and 60° can be considered as small-angle grain
boundaries along these two directions, respectively. Aligning
(1,0) dislocations along the grain-boundary line results in a
discrete set of misorientation angles 6 in accordance with
Frank’s equation?!

b
9=2arcsir1| (1'0)|, (1)

(1,0)

where d(; ) is one of the possible values for the distance
between the neighboring dislocations. Large values of d(;
correspond to small-angle grain boundaries along the arm-
chair direction. The closest possible packing of (1,0) dislo-
cations results in the large-angle grain-boundary (LAGB)
structure shown in Fig. 3(d). This configuration characterized
by 6=21.8° (LAGB I) has already been suggested in the
literature.”? In order to cover the range of # between 21.8°
and 60°, it is necessary to introduce another type of disloca-
tions, e.g., (1,1) dislocations:

b
0=60°-2 arcsin| (1’1)|. (2)

2d(; )

The smallest value of d, ;) gives rise to the LAGB I struc-
ture rotated by 180°. Large separations d(; ;) correspond to
small-angle grain boundaries along the zigzag direction. Al-
ternatively, small-angle grain boundaries along this direction
can be constructed using the (1,0)+(0,1) pairs with the
densest possible packing of dislocations leading to the struc-

ture LAGB 1I with #=32.2° [Fig. 3(e)]. Hence, it is possible
to construct symmetric grain boundaries covering the whole
range of # from 0° to 60° by using (1,0) dislocations and
either (1,1) dislocations or (1,0)+(0, 1) dislocation pairs. We
stress that the present construction is equally applicable to
tilt grain boundaries in both graphene and graphite.

B. Energetics of topological defects

In order to determine the energetically preferred structures
and to understand the basic thermodynamic properties of
grain boundaries in graphene, we perform first-principles cal-
culations on models containing a pair of complementary dis-
locations in periodic 2D supercell as described in Sec. II. The
results are presented as a diagram of grain-boundary energies
per unit length 7y as a function of 6 (Fig. 4). We first discuss
the case of perfectly flat grain boundaries (filled symbols)
which corresponds to the limit of strong binding to a flat
substrate and analogous to the case of grain boundaries in
bulk materials. The diagram clearly reveals both armchair
and zigzag small-angle regimes with grain-boundary forma-
tion energies converging to zero for §—0° and §—60°. A
detailed study of the armchair small-angle region (6<<10°)
shows that the grain-boundary energies are well described by
the Read-Shockley equation®’

/| ( 4] )
)=——60\1+In—-In 6|, 3
nY) 4m(1-v) n277r0 n (3)

where u is the shear modulus and v is the Poisson’s ratio.
The core radius ry encompasses the energy of the dislocation
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FIG. 4. (Color online) Grain-boundary energy per unit length y
as a function of misorientation angle 6 for various flat (filled sym-
bols) and buckled (open symbols) grain-boundary structures. The
two energetically favorable large-angle grain boundaries, LAGB I
and LAGB II, are labeled. Solid curve shows the Read-Shockley
equation fit (ro=1.2 A) for the flat small-angle armchair grain
boundaries. Dashed curve shows the asymptotic linear dependence
of y for the buckled small-angle armchair grain boundaries (E,
=7.5 eV).

core. In Eq. (3), ' =6 or #' =60°—0 for armchair and zigzag
small-angle grain boundaries, respectively. Using the values
of elastic constants which correspond to our first-principles
model of graphene (see Appendix B) a least-squares fit to the
Read-Shockley equation (solid red curve in Fig. 4) yields
ro=1.2 A. This value is in good agreement with the recently
reported r,=0.96 A fitted to local-density approximation
calculations.’® As we outlined above, there are several grain-
boundary structures possible for §>21.8°. In order to deter-
mine the lowest-energy structure, we compare the energies of
grain boundaries constructed from (1,1) dislocations and
(1,0)+(0,1) dislocation pairs. In addition, for 6>42.1° the
grain boundary can be constructed either from equally
spaced (1,0) and (0,1) dislocations (disperse case) or from
closely bound pairs (paired case). Figure 4 shows that the
disperse (1,0)+(0,1) grain boundaries in flat graphene are
the lowest-energy structures for 6>42.1°. More generally,
this also implies that only the shortest Burgers vector (1,0)
dislocation 1is sufficient for constructing the most stable
grain-boundary structures at any given 6. Remarkably, the
two large-angle structures discussed above, LAGB I and
LAGB II, have particularly low formation energies of 0.338
and 0.284 eV/A, respectively. Favorable energetics suggests
possible abundance of these two structural motifs. Moreover,
for all possible values of 6 the grain-boundary energies are
well below the energies of ~1 eV/A predicted for graphene
edges.’!

The case of free-standing 2D materials is notably different
since buckling in the third dimension allows an exchange of
in-plane elastic energy for bending energy. This leads to ef-
ficient screening of the in-plane strain field resulting in the
finite formation energies of dislocations.?> While we find that
the large-angle grain boundaries in graphene are flat, for
<21.8° and #>38.2° buckling effectively reduces the grain-
boundary energies (Fig. 4, empty symbols). In the small-
angle regimes, grain-boundary energy is expected to scale
linearly with 6':
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where E; is the formation energy of the dislocation. By ex-
trapolating the grain-boundary energies to #=0°, we obtain a
formation energy of 7.5 eV for the (1,0) dislocation (see
Appendix C). This value is comparable to the formation en-
ergies of typical point defects in graphene, e.g., vacancies
(7.6 eV) and Stone-Wales defects (4.8 eV).3? Out-of-plane
buckling results in a prolate hillock appearance of disloca-
tions on the flat graphene surface [Fig. 3(f)] in agreement
with the experimental observations of Coraux et al.'> The
height of the protrusion around the (1,0) dislocation is
~3 A, and its top is shifted with respect to the dislocation
core. Interestingly, out-of-plane distortion makes the paired
case (1,0)+(0,1) grain boundaries more stable, thus invert-
ing the sign of effective interaction between the dislocation
dipoles. The situations in which graphene is bound to sub-
strate can be viewed as intermediate between the flat and
buckled regimes.

C. Electronic structure of topological defects

Finally, we address the electronic structure of topological
defects in graphene. Figures 5(a) and 5(b) show the calcu-
lated density-of-states plots for small-angle and stable large-
angle grain boundaries in graphene. All studied defect con-
figurations introduce van Hove singularities within 0.5 eV
below and above the Dirac point (Ez=0 eV), in accordance
with the scanning tunneling spectroscopy (STS) observations
for the majority of grain boundaries in graphite reported in
Refs. 8 and 9. The van Hove singularities are the signatures
of one-dimensional states localized at the interface as shown
by simulated STM images [Fig. 5(c)]. This relation is further
corroborated by considering the electronic band structures of
large-angle grain-boundary models shown in Fig. 6. How-
ever, we do not observe any zero-energy states or defect-
induced magnetic moments typical of zigzag edges’*** and
single-atom defects’>~37 in graphene. Pronounced changes in
the low-energy part of electron spectrum make it possible to
identify the discussed extended defects using STM. In order
to facilitate the attribution of experimental observations to
the proposed structures we provide their simulated atomic-
scale STM fingerprints [Fig. 5(c)]. The common feature of
all images is the crescent- or ring-shaped appearance of five-
membered rings. The STM images of grain boundaries
formed by (1,0)+(0, 1) dislocations show the lack of mirror
symmetry compared to the (1,0) or (1,1) derived structures,
as follows from the atomic structures of these grain bound-
aries.

IV. CONCLUSIONS

We have developed a systematic approach for construct-
ing atomic structures of topological defects in graphene. Our
first-principles calculations revealed a number of intriguing
features in the energetics of grain boundaries. In particular,
we have found two large-angle grain-boundary structures
with particularly low formation energies as well as two dis-
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FIG. 5. (Color online) (a) Calculated density-of-states plots for
the small-angle armchair (#=7.3°) and the possible configurations
of small-angle zigzag (#=49.5°) grain boundaries. The plots corre-
spond to the values averaged over 2-nm-wide interface regions. The
dotted line shows the density-of-states of the ideal graphene. (b)
Calculated density-of-states plots for the large-angle grain-
boundary structures LAGB I and LAGB 1II. (¢) Simulated STM
images of the individual dislocations in small-angle grain bound-
aries and large-angle structures. The images cover 2 nm X2 nm
areas.

tinct small-angle regimes which correspond to the grain
boundaries oriented close to the armchair and zigzag direc-
tions, respectively. In free-standing graphene the small-angle
grain boundaries show pronounced tendency to an out-of-
plane buckling which further reduces their formation ener-
gies. We have also found that all the studied topological de-
fects have strong effects on the electronic structure and can

a1 b 1
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0.5 0.5
—_ -
3 3
uf 0 w
L L
-05 -~-0.p
) - ) =
r K, X r K, X

FIG. 6. The calculated band structures for the models of (a)
LAGB I and (b) LAGB 1I large-angle grain boundaries along k; at
k | =0. Correspondence between the van Hove singularities in Fig.
5(b) and the band extrema in the band-structure plots is highlighted
with arrows.
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H

FIG. 7. Sketch of the geometric construction of a dislocation in
a continuous sheet. Negative and positive /3 disclinations are
placed at points H and P, respectively.

be identified using STM. These results show that dislocations
and grain boundaries are important intrinsic defects in
graphene which may be used for engineering graphene-based
nanomaterials and functional devices.
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APPENDIX A: RELATION BETWEEN THE DISLOCATION
DIPOLE @ AND THE BURGERS VECTOR b

Theorem. If a dislocation is constructed from a pair of s
= * 7r/3 disclinations, then its Burgers vector b and vector @
connecting the disclinations are related as

jal =18]. (A1)
Proof. We consider the following construction in which a
negative s=—m/3 disclination inserts sector AHB at point H
and a complementary positive s=7/3 disclination removes
sector A”PB” at point P in a continuous two-dimensional
sheet (Fig. 7). -
__The condition of continuity requires AH=BH (=AB),
A'H=B'H, as well as A”H=B"H. In addition, we require
that, after the described procedure, pairs of segments A'A”
and B’B" as well as AP and BP form straight lines. That is,

A'A" +B'B = AP +BP=|b|. (A2)

Hence,
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FIG. 8. Grain-boundary energies per dislocation yD as a func-
tion of inverse distance D between the neighboring dislocations.
Dashed line shows the least-squares fit.

APA" + BPB' = . (A3)

By construction AHB=A"PB"=1/3, thus APB=2/3 and
APB+AHB=HAP+HBP=m. Due to the latter property,
quadrilateral AHBP can be inscribed in a circle, and thus,
from Ptolemy’s theorem it follows that

AB-HP=BH-AP +AH - BP. (A4)

Finally,

ld|=HP=AP+BP=|b|. (A5)

APPENDIX B: STRUCTURAL AND ELASTIC CONSTANTS
OF GRAPHENE FROM FIRST PRINCIPLES

In order to fit the results of our calculations of small-angle
grain boundaries to the continuum-model Read-Shockley
equation, we use elastic constants and the interatomic dis-
tance of graphene which correspond to the present first-
principles model of graphene. Elastic constants are obtained
from the constrained variable cell calculations in which one
of the rectangular supercell dimensions was fixed while the
other one varies in order to minimize the total energy. This
allowed us to determine Young’s modulus E and Poisson’s
ratio v while the shear modulus p was calculated using the
following relation:®
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TABLE 1. The values of interatomic distance d.., Young’s
modulus E, Poisson’s ratio v, and the shear modulus w of graphene
obtained from the present first-principles calculations. The results
are compared to values reported in literature.

dec E M
(A) (TPa) v (GPa)
This work 1.433 1.052 0.206 436
Expt. (graphite)? 1.02+0.03 0.16%=0.03
Expt. (graphene)® 1.0+0.1
Theory® 1.050 0.186
Theory! 1.01+0.03 0.21*0.01
4Reference 39.
PReference 40.
‘Reference 41.
dReference 42.
E
= B1
B0 +v) B1)

The calculated moduli correspond to 3.35 A thickness of the
graphene layer. Our values are in good agreement with other
values reported in literature (see Table I).

APPENDIX C: FORMATION ENERGY OF THE BUCKLED
(1,0) DISLOCATION IN GRAPHENE

Figure 4 shows that the energies of the buckled small-
angle armchair grain boundaries do not achieve the expected
linear dependence [Eq. (4)] in the range of studied misorien-
tation angles 6. The maximum separation D between the
neighboring (1,0) dislocations along the boundary line we
could afford in our demanding first-principles calculations is
~4 nm (corresponds to 6=3.5°). At this D, the screening of
the in-plane elastic field is still insufficient to decouple the
neighboring dislocations along the grain-boundary direction.
However, we observe that the energy per dislocation yD
shows a clear linear dependence with 1/D (Fig. 8). By ex-
trapolating the values of grain-boundary energies for 6
<10° to the limit of 1/D=0 (that is, 6=0°), we obtain an
estimate of the formation energy of an isolated buckled (1,0)
dislocation E;=7.5 eV.
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