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The Chern-Simons approach has been widely used to explain fractional quantum Hall states in the frame-
work of trial wave functions. In the present paper, we generalize the concept of Chern-Simons transformations
to systems with any number of components �spin or pseudospin degrees of freedom�, extending earlier results
for systems with one or two components. We treat the density fluctuations by adding auxiliary gauge fields and
appropriate constraints. The Hamiltonian is quadratic in these fields and hence can be treated as a harmonic
oscillator Hamiltonian with a ground state that is connected to the Halperin wave functions through the plasma
analogy. We investigate conditions on the coefficients of the Chern-Simons transformation and on the filling
factors under which our model is valid. Furthermore, we discuss several singular cases, associated with states
with ferromagnetic properties.
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I. INTRODUCTION

In understanding the fractional quantum Hall effect
�FQHE�, the now famous trial wave function proposed by
Laughlin1 proved to be a successful approach to describe the
physics of incompressible quantum liquids at certain frac-
tional filling factors. Laughlin’s wave function is furthermore
the inevitable starting point for several generalizations, such
as Jain’s composite-fermion proposal,2,3 Halperin’s two-
component wave function,4 or more complicated wave func-
tions describing states possessing quasiparticle excitations
with non-Abelian statistics.5

A field-theoretical approach, complementary to the above-
mentioned one, consists of so-called Chern-Simons theories,
which formalize the idea of flux attachment that is also im-
plicit in the trial wave functions. Chern-Simons theories have
been successfully elaborated to study incompressible6 and
compressible7 quantum liquids in one-component systems as
well as two-component systems,8–12 which comprise, e.g.,
bilayer quantum Hall systems or single-layer systems in situ-
ations where the spins are not completely polarized. Multi-
component Chern-Simons approaches have also been pro-
posed in the study of edge excitations of the incompressible
quantum Hall liquids.13 An undeniable advantage of these
Chern-Simons theories consists of their transparent insight
into the exotic properties of these quantum liquids, such as
their topological degeneracy, the fractional charges of their
quasiparticle excitations or the statistical properties of the
latter.8,9 However, the Chern-Simons theories are usually less
adapted when it comes to calculating quantities involving
energy scales. Indeed, Chern-Simons transformations act on
the kinetic part of the electronic Hamiltonian, whereas they
leave the interaction part invariant. The kinetic part gets,
therefore, renormalized but continues to determine the over-
all energy scale whereas the physical energy scale in the
FQHE must be set by the electron-electron interactions.

A successful generalization of Chern-Simons theories,
that does not suffer from the problem of the correct energy
scale, is the Hamiltonian theory proposed by Shankar and
Murthy.14–18 This theory is a very powerful tool for the com-

putation of physical quantities,17,18 and even for the descrip-
tion of higher-generation composite fermion states.19 How-
ever, it is limited by the fact that it does not incorporate
internal degrees of freedom. The success of the single-
component Hamiltonian theory justifies a generalization that
can be applied to describe systems for which internal degrees
of freedom �spin and/or pseudospin� are relevant. The main
interest in such a generalization stems from realistic systems
with more than two internal degrees of freedom, such as
graphene with its fourfold spin-valley degeneracy20 or bi-
layer quantum Hall systems with nonpolarized electron
spins.

In this paper, we analyze a multicomponent Chern-
Simons theory within the framework of the microscopic
theory by Shankar and Murthy.14–18 This approach has two
main advantages over the previously proposed ones. First, it
allows one to distinguish between physically relevant Chern-
Simons theories from those which are ill defined. The basic
ingredient for this distinction is the ��� charge matrix K,
which was first introduced by Wen and Zee.8,9 We find that
matrices with negative eigenvalues need to be discarded in
the study of physically relevant Chern-Simons theories be-
cause they would lead to ground-state wave functions that
cannot be normalized. This structural feature of Chern-
Simons theories finds its physical interpretation within
Laughlin’s plasma analogy1 that indicates a tendency of the
different components to undergo a phase separation and thus
to form spatially inhomogeneous states. We show that zero
eigenvalues of the charge matrix K, in contrast to the un-
physical negative eigenvalues, find a compelling interpreta-
tion in terms of ferromagnetic quantum Hall states. Our re-
sults thus generalize previous work on two-component
systems by Lopez and Fradkin10 to an arbitrary number of
components �.

A second advantage of the present approach consists of a
transparent connection between multicomponent Chern-
Simons theories with trial wave functions. It has been shown,
in the simpler one-component case, that treating the fluctua-
tions of the Chern-Simons vector potential within the har-
monic approximation �Gaussian model� yields Laughlin’s
and Jain’s �unprojected� composite-fermion wave
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functions.18,21 Similarly, we obtain here, within the Gaussian
model of �-component fluctuating Chern-Simons vector po-
tentials, multicomponent trial wave functions22 that are gen-
eralizations of Halperin’s two-component wave functions.4,10

Furthermore, we obtain in the same manner composite-
fermion-type wave functions that may be viewed as particu-
lar multicomponent generalizations of Jain’s original
proposal.2,3

The paper is organized as follows. In Sec. II, we define
the Chern-Simons transformations for systems with � com-
ponents and introduce, in Sec. III, extra degrees of freedom,
in the form of the auxiliary gauge fields, as described by
Shankar and Murthy. We subsequently diagonalize the har-
monic oscillator Hamiltonian and investigate the connection
of the resulting wave function with trial wave functions
through the plasma analogy. In Sec. IV, we extend our results
to the situation of singular K matrices and discuss the rela-
tion between residual symmetries and underlying ferromag-
netic properties of the quantum Hall states. Our conclusions
are presented in Sec. V.

II. CHERN-SIMONS TRANSFORMATIONS

We consider a quantum Hall system with � internal states,
hereafter referred to as “components.” In the simplest case of
a two-dimensional electron gas at a GaAs/AlGaAs interface,
one has �=2 for the two possible orientations of the electron
spin. The case �=4 is relevant for bilayer quantum Hall sys-
tems, where a second pseudospin mimics the layer index, or
in graphene due to its twofold valley degeneracy, in addition
to the physical spin of the electrons. Higher values of � are
rarely discussed in the literature, but may play a role in the
context of multilayer systems or of bilayer graphene, where
the zero-energy level consists of the n=0 and 1 Landau
levels.20 The Chern-Simons transformation2,23 is defined by
the relation between the � original electronic fields ���r� and
the � transformed fields ��

CS�r� as

���r� = exp�− i� d2r���r − r���
�=1

�

K�����r�����
CS�r� ,

�2.1�

where ��r�=arg�x+ iy� indicates the angle between the vec-
tor r= �x ,y� and the ex direction and ���r�=��

†�r����r�
=��

CS†�r���
CS�r� is the density operator of the particles of

component �. The ��� matrix K�� encodes the topological
properties of the underlying quantum liquids, such as its de-
generacy, the charges of its quasiparticle excitations and the
statistics of the latter.8,9 Physically, it indicates the number of
flux quanta attached to particles of component � due to the
density of particles of component �. This transformation is a
singular transformation for the reason that ��r−r�� has a
singularity at r�=r.

The gauge transformation is defined such that it generates
the gauge potentials24

A�
CS�r� = −

	

e
�r� d2r���r − r���

�

K�����r�� , �2.2�

and such that the one-particle Hamiltonian �−i	�
+eA�r��2 /2m for the component � is transformed to

H� =
1

2m
�− i	 � + eA�r� + eA�

CS�r��2.

Here, m is the mass of the particles and e is the electron
charge. By using �����r�=2
��r�, we derive the corre-
sponding magnetic fields,

B�
CS�r� = −

h

e
�
�

K�����r�ez.

Since A�
CS is a gauge field, its Fourier transform A�

CS�q� may
be fixed to a convenient gauge. We choose it to be transverse,
iq ·A�

CS�q�=0, so that it fixes the direction of A�
CS�q� to be

ez�q / 	q	, up to a sign. For the magnitude, we use that under
a Fourier transform B�r�=��A�r� transforms to B�q�= iq
�A�q�, such that we obtain

A�
CS�q� = A�

CS�q�eq
� = −

h

e	q	��

K�����q�eq
�, �2.3�

where we define the transverse unit vector as eq
�= iez

�q / 	q	.
The effective magnetic field seen by the composite par-

ticles of type � is

B�
� = B + 
B�

CS� = B�1 − �
�

K����
ez, �2.4�

where �� are the component filling factors, given by ��

= �h /eB�n�=2
lB
2n� in terms of the electronic densities n�

and of the magnetic length lB=�	 /eB. This result is an ex-
tension of the two-component case presented in Refs. 11 and
12. Notice that each particle type has its own effective mag-
netic field, and hence also its own magnetic length lB

�
�

=�	 /eB�
� . The composite particle filling factors ��

� are ex-
pressed in terms of the electronic filling factors �� as11

��
�

��

=
lB

�
�

2

lB
2 =

B

B�
� =

1

1 − �
�

K����

. �2.5�

This result generalizes the one-component relation

�� =
�

1 − 2s�
↔ � =

��

2s�� + 1
, �2.6�

in terms of the Chern-Simons charge K=2s.
The statistical angle associated with the exchange of the

transformed fields ��
CS and ��

CS† can be derived by using
their definition, Eq. �2.1�, and the fact that the original fields
are fermionic. Under the condition that the charge matrix
K�� is symmetric, which is a generalization of the condition
discussed in the two-component case,11 we obtain

��
CS�r1���

CS�r2� + ei
K����
CS�r2���

CS�r1� = 0

and
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��
CS�r1���

CS†�r2� + ei
K����
CS†�r2���

CS�r1� = �����r1 − r2� .

Thus, we have found that the statistical angles of the ex-
change are 
K��, i.e., proportional to the entries of the
charge matrix. The parity of the diagonal elements K�� of the
charge matrix K determines the statistical properties of the
Chern-Simons fields ��

CS. If they are even integers, the origi-
nally fermionic electron fields �� are transformed into fermi-
onic Chern-Simons fields. However, one may also change
the statistical properties of the fields from fermions to bosons
by using odd integers for the diagonal components K��. In
the following sections, we mainly discuss fermionic Chern-
Simons fields, in order to make a connection with the
composite-fermion theory, although the main conclusions of
the paper also apply to bosonic fields.

III. GAUSSIAN THEORY

A. Auxiliary gauge fields

The formalism proposed by Shankar and Murthy15,18 al-
lows us to treat the fluctuations of the Chern-Simons vector
potential via the introduction of � real-valued transverse
gauge fields a�

� �r j�
�.25 The extended Chern-Simons Hamil-

tonian in first quantization, with N� particles of each type �,
reads

HCS =
1

2m
�
�

�
j�=1

N�

�p j�
+ eA�

��r j�
� + e�A�

CS�r j�
� + ea�

� �r j�
��2,

�3.1�

where we absorb the average value of the Chern-Simons po-
tential Eq. �2.2� into an effective vector potential A�

��r�
=A�r�+ 
A�

CS�. This definition yields the effective magnetic
field ��A�

��r j�
�=B�

��r j�
� given in Eq. �2.4�. In Fourier

space, the fluctuations �A�
CS�q� are transverse, similar to the

gauge field itself, as given by Eq. �2.3�. Here, we have

�A�
CS�q� = �A�

CS�q�eq
� =

h

e	q	��

K������q�eq
�.

Since we have artificially added the auxiliary gauge field
a�

� �r�, we have enlarged the Hilbert space, where the physi-
cal states form only a subspace �	
phys�� characterized by

a�
� �q�	
phys� = 0, �3.2�

for all components �. In other words, the gauge field opera-
tor acting on any physical state vanishes.

Additionally, we introduce a longitudinal field P��q�
= iP��q�eq

� �with eq
� �q / 	q	�, conjugate and perpendicular to

the newly introduced gauge field a��q�=a��q�eq
�, according

to the commutation relation in Fourier space

�a�
� �q�,P�

� �− q��� = i	����q,q�.

Since the operator P�
� is conjugate to a�

� , it generates trans-
lations in a�

� , as may be seen from the definition

U = exp� i

	
�
�

�
q�

P�
� �− q���A�

CS�q��� ,

which translates a�
� by the vector −�A�

CS�q� as U�
†a�

� �q�U
=a�

� �q�−�A�
CS�q�. By using this shifting property of U,

which is also valid in r space, and with �p j�
,U�

= �h /eL2���K��P�
� �r j�

�, we may eliminate �A�
CS�q� from

Hamiltonian �3.1�, which then transforms into

HCP = U†HCSU =
1

2m
�
�

�
j�=1

N� �p j�
+ eA�

��r j�
�

+ ea�
� �r j�

� +
h

eL2�
�

K��P�
� �r j�

��2

,

while transforming the states to �CP=U−1�CS. In these equa-
tions, L2 is the area of the system. By transforming the states,
we also transform the constraint Eq. �3.2� to

�a�
� �q� − �A�

CS�q��	
phys�

= �a�
� �q� −

2
	

e	q	 ��

K������q��	
phys� = 0. �3.3�

The Hamiltonian may be decomposed into three terms, HCP
=H�+Hcoupl+Haux, given by

H� =
1

2m
�
�

�
j�=1

N�

� j�
2 , �3.4�

Hcoupl =
1

m
�
�

�
j�=1

N�

� j�
· �ea�

� �r j�
� + b�

�

K��P�
� �r j�

�� ,

�3.5�

Haux =
1

2m
�
�

�
j�=1

N� �e2a�
�2�r j�

�

+ b2�
�

�
�

P�
� �r j�

�K��K��P�
� �r j�

�� , �3.6�

where � j�
�p j�

+eA�
��r j�

� and b=h /eL2, which has the di-
mensions of a magnetic field. Notice that for Haux we have
used that a�

� �q� and P�
� �q� are perpendicular.

In the remainder of this paper, we discuss only the term
Haux that involves the auxiliary gauge fields. The full theory,
including the other terms of the Hamiltonian shall be dis-
cussed in a future publication.26

B. Gaussian model of the auxiliary gauge fields

We shall now analyze Haux in detail. By observing that
� j�

��r−r j�
�=���r�=n�+����r�, we can rewrite Eq. �3.6� as

Haux =
1

2m
�
�
� d2r���r��e2a�

�2�r�

+ b2�
�

�
�

P�
� �r�K��K��P�

� �r�� .

Up to this point, all equations are exact. Now, we approxi-
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mate Haux by assuming that the density fluctuations ��� are
small with respect to the average densities n�. Since the re-
sulting Hamiltonian becomes quadratic, this approximation
is called the harmonic approximation. We should keep in
mind that this approximation breaks down if the fluctuations
are not small with respect to the average densities. In par-
ticular, the approximation is certainly invalid if one of the
average densities is zero. We therefore assume that none of
the average densities n� vanishes. However, in the case of a
singular charge matrix K, a redefinition of the filling factors
might lift this problem, as will be discussed in more detail in
Sec. IV. The Hamiltonian Haux in Fourier space is approxi-
mated by

Hosc = �
q

�
�

n�L2

2m

��e2a�
� �− q�a�

� �q� + b2�
�

�
�

P�
� �− q�K��K��P�

� �q�� ,

�3.7�

where we note that a��−q�= �a��q��† and P��−q�= �P��q��†.
Because Hamiltonian �3.7� is quadratic in the gauge fields a�

�

and its conjugate fields P�
� , it is possible to write it in terms

of ladder operators. However, due to the appearance of the
matrices K in the term with P�’s, it is a nontrivial task to
define suitable ladder operators A��q� such that the commu-
tators between them are of the form �A��q� ,A�

†�q���
=����q,q�.

In order to diagonalize the Hamiltonian, we define N
=diag������ as the dimensionless diagonal matrix of filling
factors, N��=�����, and also write the fields and their con-
jugates as vectors in the component space, a�= �a1

� , . . . ,a�
� �

and P�= �P1
� , . . . , P�

� �. We omit the q dependence for a while.
In this concise notation, the oscillator Hamiltonian can be
written as

Hosc =
L2

2m

eB

h
�e2a�†Na� + b2P�†K†NKP�� . �3.8�

The prefactor can also be written as L2�c /2h, where �c
=eB /m is the cyclotron frequency. We recall that the matrix
K is real and symmetric, so that K†=K. We perform the
diagonalization in two steps. First, we define a�=�Na� and
P�=�N−1P�, so that the Hamiltonian becomes

Hosc =
L2�c

2h
�e2a�†a� + b2P�†�NKNK�NP�� .

The matrix between the P�’s is the square of the matrix E
��NK�N, which is real and symmetric. Therefore, it can be
diagonalized in terms of a diagonal matrix D and an orthogo-
nal matrix C, such that E=C−1DC. The matrix D has the
eigenvalues �� of E on its diagonal, and CT contains the
corresponding eigenvectors as columns. The ability to
choose C as an orthogonal matrix �i.e., C−1=CT� is provided
by the property that the matrix E is symmetric, so that the
eigenvectors can be chosen such that they form an orthonor-
mal basis. Having found the diagonalization E=CTDC, we
define

ā = Ca� = C�Na�, P̄ = CP� = C�N−1P�, �3.9�

so that the Hamiltonian becomes

Hosc =
L2�c

2h
�e2ā†ā + b2P̄†D2P̄� �3.10a�

=
L2�c

2h
�
�

�e2ā�
† ā� + b2P̄�

†��
2 P̄�� , �3.10b�

written in matrix form and in components, respectively. For
the derivation we have used that ��ā�

† ā�= ā†ā=a�†a� by vir-
tue of the orthogonality of C, ��C��C��=��C��C��

T =���.
For this transformation to be well defined, it is required that
���0 for all components �, which we already assumed in
order for the harmonic approximation to be valid. The defi-

nition is such that the commutator between ā and P̄ is given
by

�ā��q�, P̄��− q��� = i	����q,q�, �3.11�

which holds also by virtue of the orthogonality of C.

By setting P�
� =−i	 �

�a�
� and consequently P̄�=−i	 �

�ā�
, we

can derive that

�osc = exp�−
e

2	b
�
q

�
�

ā��− q���ā��q�� �3.12�

is a ground state of Hamiltonian �3.10� if we set ��= 	��	−1.
Evidently, �� is only well defined if the matrix E is nonsin-
gular, i.e., if none of its eigenvalues is zero. Moreover, the
eigenvalues appearing in the eigenstate are actually not the
eigenvalues of E itself, but the square roots of the eigenval-
ues of E2=�NKNK�N, namely, ���

2 = 	��	. The ground state
Eq. �3.12� can then be written in matrix form as

�osc = exp�−
e

2	b
ā†D−1ā
 = exp�−

e

2	b
a�†K−1a�
 ,

�3.13�

where we used ā†D−1ā=a�†K−1a� in order to write the ground
state in terms of the original auxiliary gauge fields a�. Notice
that, had we chosen the negative square roots −���

2 for the
eigenvalues of E, the ground-state wave function Eq. �3.13�
could not be normalized. Negative eigenvalues are indeed
unphysical because they would lead to an instability of the
electron liquid, the components of which phase separate, as
may be seen within the plasma picture of the FQHE.27 It is
therefore important, for the structure of the Chern-Simons
theory to be well defined, to discard negative eigenvalues ��.
This is, namely, the case for the analysis presented in Sec.
III C, where we assume a positive definite K. The case of
zero eigenvalues is treated separately in Sec. IV.

Acting with Hamiltonian �3.10� on the ground state Eq.
�3.12� gives its energy eigenvalues
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�
�

L2�c

2h
	eb	��	 =

	�c

2 �
�

	��	 =
	

2 �
�

��,

where ��= 	��	�c are the characteristic frequencies, given in
terms of the eigenvalues �� and the cyclotron frequency �c.

At this point, we define the ladder operators as

A��q� =
L

�4
	2��

�eā��q� + ib��P̄��q�� , �3.14a�

A�
†�q� =

L
�4
	2��

�eā��− q� − ib��P̄��− q�� , �3.14b�

still under the assumption that the eigenvalues �� are posi-
tive. The commutator of the rescaled ladder operators be-
comes �A��q� ,A�

†�q���=����q,q�, so that A�
†�q�A��q� is the

number operator for the oscillator states in the component �
of the diagonalized basis. The Hamiltonian can be conve-
niently written in terms of the ladder operators as

Hosc = �
q

�
�

	���A�
†�q�A��q� +

1

2
� . �3.15�

This result also proves that the “ground state” Eq. �3.12� is
indeed the lowest-energy state.

Notice that the energies 	�� play the role of quasiparticle
gaps in the Chern-Simons theory, and the ground state is
well defined for det�K��0.8 Zero-energy gaps are obtained
if one of the eigenvalues ��=0, i.e., when the matrix K is
singular, det�K�=det�E�=0. Contrary to what one may na-
ively expect, this situation is not in contradiction with an
incompressible quantum liquid, where all �collective� charge
modes must be gapped. As we discuss in more detail in Sec.
IV, the zero-gap modes associated with ��=0 reveal ferro-
magnetic properties of the underlying state,22 which in the
presence of interactions evolve into spin-wave modes while
keeping the charge modes gapped.

C. Connection with trial wave functions

In order to obtain the wave functions corresponding to the
ground state Eq. �3.13�, we may rewrite it in terms of the
density fluctuations ����q�, using the constraint Eq. �3.3�.
Once again, it is more convenient to do the computation in
matrix notation. The constraint is then given by a�

= �h /e	q	�K���� for physical states, with ����
= ���1 , . . . ,���� the vector of the density fluctuations. Hence,
we find

�osc = exp�−
1

2
����†2
L2

	q	2
K����� . �3.16�

Notice that, written in terms of density fluctuations, the
ground-state wave function is no longer confronted with the
problem of zero eigenvalues of E �or K� because it is the
matrix K, and not its inverse K−1, which appears here.

As shown in Ref. 21, we may relate the expression �3.16�
to the plasma picture proposed by Laughlin in his original
publication.1 In this picture, we regard 	�osc	2 as the Boltz-
mann weight exp�−�H� of the plasma Hamiltonian H,

where one sets �=2 �Ref. 27�. Then H can be identified as
the Hamiltonian of particles interacting due to the Coulomb
potential in two dimensions, −log	r	, which equals 2
L2 / 	q	2
in momentum space. As discussed in Appendix A, the wave
function that we obtain is

���zj�
�� = �

�
�

j�,k�

j��k�

�zj�
− zk�

�K�� �
�,�

���

�
j�,k�

�zj�
− zk�

�K��

�exp�− �
�,�

��K���
k�

	zk�
	2

4lB
2 

��

�
� ���zj�

�� ,

�3.17�

where we write z=x− iy. This wave function is a product of
the oscillator function and the wave function 
��

�
� ���zj�

��,
which encodes the residual degrees of freedom for particles
in the reduced field B�, i.e., at the effective filling factors ��

�

given by Eq. �2.5�. Quite generally, one may describe the
same system in the framework of different Chern-Simons
theories, according to how much flux is absorbed in the
transformation by the matrix K��. It is often convenient, if
possible, to choose the Chern-Simons transformation such
that the residual wave function is factorizable into single-
component wave functions 
̃�

�
� ,


��
�
� ���zj�

�� = �
�=1

�


̃�
�
���zj�

�� , �3.18�

so that each component may be treated independently after
the transformation. Notice, however, that this aim may be in
conflict with the above-mentioned condition of positive ei-
genvalues of the charge matrix K��, namely, in the context of
symmetric states with ferromagnetic properties that we dis-
cuss in Sec. IV B.

The simplest state of a factorizable residual wave function
according to Eq. �3.18� consists of a product of states at an
effective filling factor ��

� =1 for each component, each of
which involves a Slater determinant, in the form


̃�
�
�=1��zj�

�� = �
j��k�

�zj�
− zk�

� exp�− �
k�

	zk�
	2

4lB
�
�

2 
 .

�3.19�

Such a state would then correspond to a Halperin wave func-
tion that is described by an exponent matrix M��=K��

+���. In order to have a fermionic wave function, the ele-
ments K�� must naturally be even integers, and we thus have
a Chern-Simons theory that transforms fermions into �com-
posite� fermions. Alternatively, one may have chosen the
bosonic version of the Chern-Simons theory, in which case
the diagonal elements of the matrix K��=M�� would be odd.
The same state �Eq. �3.17�� would then be described as a
product of the oscillator wave function �osc, which absorbs
all the flux, and a bosonic wave function for zero net mag-
netic field B�

� =0, for all components, 
�B
�
�=0���zj�

��=1.
Until now, we have discussed states that may be described

in terms of generalized �-component Halperin wave
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functions,22 where the residual wave function 
��
�
� ���zj�

�� is
itself a �typically simpler� Halperin wave function described
by a “residual” exponent matrix M��

� such that M��=K��

+M��
� �see also Appendix A�. Notice, however, that the

Chern-Simons theory discussed above may also provide us
with another class of factorizable trial wave functions if we
replace the Slater determinants Eq. �3.19� for the effective
filling factors ��

� =1 by Slater determinants for p� completely
filled composite-fermion levels 
p�

�����zj�
�� in each compo-

nent. The resulting wave function Eq. �3.17� is related to the
�-component Halperin wave function in the same manner as
Jain’s one-component composite-fermion2,3 to Laughlin’s
wave function.1 Naturally, the proposed Slater determinants
contain nonanalytic components in the polynomial, and, in
the same manner as for Jain’s wave functions, one needs to
project the resulting wave function to the subspace of ana-
lytic functions in order to satisfy the lowest-Landau-level
condition.

Ultimately, the theory may be generalized to the case
where the ��

�’s can take any fractional value, as to allow the
multicomponent generalization of higher-generation FQHE
states. An example of the latter in one component is the �
=4 /11 state, which can be understood as a second-generation
FQHE state.19,28

IV. SINGULAR TRANSFORMATIONS

The analysis in the previous section demonstrates that a
Chern-Simons transformation with a nonsingular charge ma-
trix is already interesting in itself. However, transformations
with singular charge matrices play an important role in the
study of states with �partial� ferromagnetic order, since these
states are described by singular exponent matrices.22 In this
section, we investigate the consequences of the symmetry
properties of the exponent matrices M and M� and the charge
matrix K for the results of the previous section.

A. Conditions on the ranks of the matrices

Without performing the diagonalization of the oscillator
Hamiltonian, it is already possible to give some conditions
on the exponent matrices and the charge matrix. Consider a
state that is described by a singular exponent matrix M. As a
consequence, not all filling factors are defined separately.
Suppose furthermore that the electronic and composite-
fermion filling factors are given by ��M����=1 and
��M��

� ��
� =1, respectively, with M =M�+K. We note that Eq.

�2.5� has to be satisfied simultaneously, which does not nec-
essarily follow from the other conditions.29 From the fact
that M, M�, and K are required to be nonnegative definite, it
follows that also K and M� are singular. More specifically, it
follows that the null spaces of M� and K may be of higher
dimension than that of M. As a consequence, the dimension
of the null space of the exponent matrix is either increased or
kept invariant by the Chern-Simons transformation. In other
words, if before applying the Chern-Simons transformation
the theory involves a certain number of independent combi-
nations of filling factors, then the number of independent
combinations after the transformation is either the same or

lower. In terms of the ranks of the matrices, which is equal to
their size minus the dimension of the null space �i.e.,
dim ker M +rank M =��, we find that the ranks of K and M�

must both be smaller than or equal to the rank of M.
For the case that rank M�� rank M, which is not ruled out

by the above discussion, some problems may arise. In this
case, Eq. �2.5� fixes the filling factors ��

� to be confined to a
subspace of the space of all solutions of ��M��

� ��
� =1. For

example, if M = � 3 1
1 3 � and K= � 2 0

0 2 �, we have M�= � 1 1
1 1 �, so

that, based on the exponent matrices, the electronic and
composite-fermion filling factors are given by ��1 ,�2�
= �1 /4,1 /4� and �1

�+�2
�=1, respectively. However, based on

Eq. �2.5�, the composite-fermion filling factors are fixed at
��1

� ,�2
��= �1 /2,1 /2�. Therefore, the matrix M� does not ap-

propriately describe the possible composite-fermion filling
factors of the system. We would expect that this leads to
problematic results, if we used the Chern-Simons approach
to obtain a separation between high-energy and low-energy
degrees of freedom. For this reason, we will only analyze the
case that M and M� share their ranks. We stress that there is
no problem in using a singular charge matrix K if M and M�

are both nonsingular.

B. Oscillator Hamiltonian

Here, we discuss how the singularity of the matrix K af-
fects the analysis that we used to study the harmonic oscil-
lator. Apart from the zero modes in the harmonic oscillator,
we must also take into account that the number of indepen-
dent constraints �Eq. �3.3�� is reduced, since these also in-
volve the matrix K. Indeed, the number of independent con-
straints is given by the rank r of the matrix K, whereas the
number of zero modes is �−r. Before we derive the fully
general results, we find it instructive to illustrate the proce-
dure first with a simple example.

We consider a two-component system, where we choose
the charge matrix of the Chern-Simons transformation to be
the singular matrix K= � 2 2

2 2 �. The eigenvalues of K are 4 and
0, and the respective eigenvectors are �1,1� /�2 and
�1,−1� /�2. We can write the constraints in components as

0 = �a�
� �q� −

h

e	q	
�2��1�q� + 2��2�q���	
phys� ,

for �=1,2. The two components a1
� and a2

� of the gauge field
satisfy the same constraint, so that they are fixed to the fluc-
tuations of the total density ��1+��2. On the other hand, the
difference of density fluctuations ��1−��2 �associated with
the zero eigenvalue� is absent, implying that one may have
zero-energy fluctuations that lower the particle number in
one component while increasing that in the other component.
Eventually such a reorganization of the particles on the two
components may even completely polarize the system with
�1=� and �2=0. Inversely this means that in the case of a
singular matrix K, we may always choose both filling factors
nonzero or even equal, i.e., N nonsingular, such as to render
the harmonic approximation Eq. �3.7� valid.

We now turn to the harmonic oscillator Hamiltonian. We
write N=diag��1 ,�2�, where �1,2 are the electronic filling
factors. For this example, we compute
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E = �NK�N = 2� �1 ��1�2

��1�2 �2

 .

This matrix is diagonalized as CTDC, where D
=diag��1 ,�2� is the diagonal matrix with the eigenvalues
�1=2��1+�2� and �2=0. The corresponding eigenvectors are
proportional to ���1 ,��2� and �−��2 ,��1�, respectively. The
diagonalized Hamiltonian is given by Eq. �3.10b�, where �
=1,2 and

�ā1

ā2

 =

1

��1 + �2

� �1a1
� + �2a2

�

��1�2�− a1
� + a2

� �

 ,

�P̄1

P̄2


 =
1

��1 + �2�
P1

� + P2
�

−��2

�1
P1

� +��1

�2
P2

� � .

We note that P̄2 is not present in the Hamiltonian since the

term P̄2
†�2

2P̄2 vanishes due to �2=0. The term ā2
†ā2 also van-

ishes, since ā2=0, due to the constraint a1
� =a2

� . In the end, we
obtain a harmonic oscillator Hamiltonian with only one co-

ordinate �ā1� and one momentum �P̄1� component.
The Hamiltonian restricted to this single coordinate has a

ground state �osc,1=exp�−�e /2	b�ā†D̂ā�, where we define

D̂=diag� 1
2 ��1+�2�−1 ,0�. We note that �osc,1 only involves ā1,

but not ā2. Transforming back to the coordinates �a1
� ,a2

� � and
imposing the constraints a1

� =a2
� = �h /e	q	��2��1+2��2�, we

obtain

�osc,1 = exp�−
1

2
���1 + ��2�†2
L2

	q	2
�2����1 + ��2�� ,

where the notation �2� is to point out that it should be inter-
preted as a matrix. At this point, we observe that ���1
+��2�†�2����1+��2� is exactly equal to ���1 ,��2�†K���1
,��2�. This means that in this example Eq. �3.16� is valid
without change, and the other results concerning the Halp-
erin wave functions hold as well, as we have already men-
tioned in the discussion of the general oscillator function Eq.
�3.16�. We remark that the linear combination of filling fac-
tors �1−�2 is not present at all in the diagonalized theory.

Another important point is that we can make the connec-
tion with ferromagnetic Laughlin states in two-component
systems.27 For instance, the exponent matrix M = � 3 3

3 3 � de-
fines a state for which the total filling factor is �1+�2=1 /3,
but the separate filling factors are not defined, since the ex-
ponent matrix is singular.27 Using the Chern-Simons trans-
formation of the example above, we may understand this
state in terms of a composite-fermion theory with exponent
matrix M�= � 1 1

1 1 �. This state has a total composite-fermion
filling factor �1

�+�2
�=1, and again the separate filling factors

are undefined. We remark that although the intermediate
steps in the procedure contain the separate filling factors �1
and �2, the results are completely independent of �1−�2.

In contrast to the ferromagnetic Laughlin state discussed
in the preceding paragraph, we may also discuss the two-
component state at total filling factor �=2 /5, described by

the matrix M = � 3 2
2 3 � and the reduced exponent matrix M�

= � 1 0
0 1 �. Although the Chern-Simons transformation is de-

scribed by a singular charge matrix K and does therefore not
impose a constraint on the relative particle distribution on the
two components, the constraint is imposed by M�, �1

�=�2
�

=1. The state thus described is then a spin-unpolarized state,
as one could have also expected from the original exponent
matrix M.

The reasoning given for the example above can be readily
generalized to any situation in which K is singular. Here, we
assume that the rank r of the matrix K is smaller than the
number of components �. As argued in Appendix B, the
ground state can be decomposed as a product of the usual
ground state Eq. �3.13� restricted to the r independent com-
ponents, �osc,r and the degenerate part �̃ �see Eqs. �B1� and
�B2��. Moreover, Eq. �3.16� remains valid even in the singu-
lar case, despite the fact that the original derivation involves
the inverse of K. Hence, the Halperin connection in Sec.
III C is valid in the singular case without modification.

The equivalence of the decomposition Eq. �B1� for the
�-component oscillator wave function may be interpreted in
a straightforward physical manner. Indeed, the decomposi-
tion indicates that, in the case of a charge matrix K of rank r,
the “reduced” r-component wave function corresponds to an
r-component Halperin wave function with gapped oscillator
frequencies ��. The other factor �̃ in Eq. �B1� corresponds to
the �−r zero eigenvalues of the matrix K with an associated
space spanned by the oscillator components ā� with �=r
+1, . . . ,�. The ground-state manifold comprises therefore
any possible combination of these components ā�, and a par-
ticular choice spontaneously breaks the residual ground-state
symmetry, which may be related to the ferromagnetic prop-
erties of the Halperin state, and �̃ may then be interpreted as
the ferromagnetic part of the wave function.

In order to see this particular point, consider the r con-
straints to fix the filling factors of the first r−1 components.
The last constraint then imposes simply the sum of the fill-
ings of all other components �=r , . . . ,�. This is naturally a
simplified assumption, because the r constraints do not, in
general, fix particular components, but the dependencies may
be more complicated.30 One is then free to distribute the
involved particles over these components in a quantum-
mechanical manner. All different distributions define the
ground-state manifold. Schematically, this may be formal-
ized with the help of a wave function

�̃ = ur	� = r� + ur+1	� = r + 1� + . . . + u�	� = �� ,

where the complex amplitudes u� are subject to a normaliza-
tion condition, which plays the role of the last constraint.
These complex amplitudes may be viewed as the compo-
nents of a CP�−r field.31 The ground-state manifold may then
be described by spatially constant CP�−r fields with a global
SU��−r+1� symmetry, which is precisely the symmetry
group that describes the ferromagnetic properties of the os-
cillator wave function. In summary, this argument shows
that, in the case of a Chern-Simons transformation with a
matrix K of rank r, one may decompose an arbitrary oscilla-
tor wave function into a product of a reduced r-component
Halperin wave function and a SU��−r+1�-symmetric ferro-
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magnetic part. Naturally, this symmetry may be further re-
duced if the components of the Chern-Simons field fix fur-
ther filling factors.

We finally mention that the spontaneous breaking of the
SU��−r+1� symmetry yields Goldstone modes, which are
physical �pseudo�spin waves. On the level of the Gaussian
model, these Goldstone modes are dispersionless and remain
at zero energy. This is no longer the case if one takes into
account interactions between the particles associated with the
different components. One may indeed treat rather easily a
density-density interaction within the present model. This in-
teraction may be translated, via the constraints Eq. �3.3�, into
an interaction between the oscillator fields, which one can
then diagonalize within the Gaussian model. Notice that
these fields are coupled to the �� �see Eq. �3.5��, which
describe the low-energy electronic degrees of freedom. A
discussion of collective Goldstone-type modes is therefore
more involved and requires a decoupling of the oscillator and
the electronic degrees of freedom. However, the Chern-
Simons analysis within the Gaussian model yields valuable
insight into the ferromagnetic properties of the states, which
are governed by symmetry, as well as into the number of
their Goldstone modes.

V. CONCLUSIONS

In conclusion, we have studied a microscopic Chern-
Simons approach to general multicomponent quantum Hall
systems �with � components�. Beyond the mean-field ap-
proximation, which yields a renormalization of the magnetic
field that depends on the average particle densities for each
component, their fluctuations are taken into account within a
Gaussian model of auxiliary gauge fields. These gauge fields,
introduced by Shankar and Murthy in the framework of the
Hamiltonian theory of the FQHE,14–18 are indeed connected
via constraints to the component density fluctuations.

The analysis of the Gaussian model—although it may be
viewed as a first step in the discussion of a more complete
Hamiltonian theory for multicomponent quantum Hall
systems—already yields valuable insight into the structure
and the correctness of the Chern-Simons theory, which is
characterized by a symmetric ��� charge matrix K.9 Most
saliently, one needs to discard charge matrices with negative
eigenvalues because the associated Chern-Simons theories
yield oscillator ground-state wave functions that are not nor-
malized. This is in line with physical insight obtained from a
multicomponent version of Laughlin’s plasma picture1 ac-
cording to which charge matrices with negative eigenvalues
yield inhomogeneous ground states where the components
phase separate.27

Whereas singular charge matrices, with zero eigenvalues,
had originally been discussed by Lopez and Fradkin10 only
for the SU�2�-symmetric case, we have argued here that the
associated Chern-Simons theories reflect underlying ferro-
magnetic states in a more general setting. Indeed, we have
shown that the density fluctuations of the � components are
then determined by only r�� constraints, such that �−r
particular combinations of the component densities may be
chosen freely in the ground-state manifold, which is thus

described by the SU��−r+1� group. This symmetry is spon-
taneously broken by a particular ferromagnetic state, which
can be described by �−r different Goldstone modes that may
be viewed as generalized spin waves. Our results encompass
the particular SU�2� case of two-component Chern-Simons
theories discussed in the literature.8–12

We emphasize moreover that the analysis of the micro-
scopic multicomponent Chern-Simons theory within the
Gaussian approximation heuristically yields trial wave func-
tions for multicomponent quantum Hall systems that may be
further studied numerically. As an example, we have dis-
cussed generalized �-component Halperin wave functions
that play a similarly central role as Laughlin’s wave func-
tions do in one-component quantum Hall systems. Beyond
these generalized Halperin wave functions, we have briefly
discussed a second class of states, where the residual wave
function that is not encoded in the Chern-Simons oscillator
part �osc is a product of Slater determinants of p� completely
filled ��-component� composite-fermion levels. This con-
struction is reminiscent of Jain’s generalization of one-
component Laughlin wave functions to filling factors �
= p / �2sp+1�.2,3,6
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APPENDIX A: MULTICOMPONENT PLASMA ANALOGY

The single-component plasma analogy proposed by
Laughlin1 is readily generalized to the multicomponent case.
Here, we use the ground state

�osc = exp�−
1

2�
q

�
�,�

����− q�
2
L2

	q	2
K������q�� ,

�A1�

which is Eq. �3.16� written out in components. Recalling that
2
L2 / 	q	2 is the Fourier transform of −log	r	, we perform an
inverse Fourier transformation and we substitute the density
fluctuations ����r�=� j�

��r−r j�
�−n�. Then, we can rewrite

�osc as

�osc = exp� 1

2�
�,�

K��� d2rd2r���
j�=1

N�

��r − r j�
� − n��

�log	r − r�	� �
k�=1

N�

��r� − rk�
� − n��� .

By evaluating the integrals, one finds
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�osc = const · �
�,�

�
j�,k�

j��k�

	r j�
− rk�

	K��/2

�exp�−



2 �
�,�

n�K���
k�

	rk�
	2
 .

Using that ��=2
lB
2n�, and changing to complex notation,

with z=x− iy,32 we can explicitly write this expression as

�osc = const · �
�

�
j�,k�

j��k�

	zj�
− zk�

	K�� �
�,�

���

�
j�,k�

	zj�
− zk�

	K��

�exp�− �
�,�

��K���
k�

	zk�
	2

4lB
2 
 .

The Jastrow-type products in this expression only contain
distances between the particles, i.e., only the moduli 	zj�
−zk�

	. Phase factors of the form ��zj�
−zk�

� / 	zj�
−zk�

	�K��

=exp�iK�� arg�zj�
−zk�

��=exp�−iK����r j�
−rk�

�� are ob-
tained from substitution of the full density ���r�=� j�
��r−r j�

� into the Chern-Simons transformation Eq. �2.1�.
Applying this transformation to �osc, we obtain the product
of the latter with the phase factors,

���zj�
�� = �

�
�

j�,k�

j��k�

�zj�
− zk�

�K�� �
�,�

���

�
j�,k�

�zj�
− zk�

�K��

�exp�− �
�,�

��K���
k�

	zk�
	2

4lB
2 

��

�
� ���zj�

�� , �A2�

where 
��
�
� � denotes the composite-particle wave function for

filling factors ��
� , which will be investigated in the following.

The magnetic lengths appearing in 
��
�
� ���zj�

�� are the re-
duced magnetic lengths lB

�
� given by Eq. �2.5�.

As an example, we consider the situation in which ��
� can

be determined by an exponent matrix M�,9,22,27 such that

��

�
� � is the Halperin wave function


��
�
� ���zj�

�� = �
�

�
j�,k�

j��k�

�zj�
− zk�

�M��
� �

�,�

���

�
j�,k�

�zj�
− zk�

�M��
�

�exp�− �
�

�
k�

	zk�
	2

4lB
�
�

2 
 . �A3�

Combining Eqs. �A2� and �A3�, we obtain the full electronic
wave function

���zj�
�� = �

�
�

j�,k�

j��k�

�zj�
− zk�

�K��+M��
�

� �
�,�

���

�
j�,k�

�zj�
− zk�

�K��+M��
�

�exp�− �
�

�
k�

	zk�
	2

4lB
2 
 , �A4�

which is the Halperin wave function for the exponent matrix
M��=M��

� +K��.22 Here, we have expressed the effective
magnetic lengths in the exponential of Eq. �A3� in terms of
the original one, as 1 / lB

�
�

2 = �1−��K����� / lB
2 , by virtue of Eq.

�2.5�.

APPENDIX B: GROUND STATE IN THE SINGULAR CASE

The reasoning given for the two-component example in
Sec. IV B can be extended to any number of components.
Suppose that the charge matrix K �being a ��� symmetric
nonnegative definite matrix� is of rank r, which means that it
has r independent rows or columns. In particular, there are
�−r rows or columns that can be written as a linear combi-
nation of the other r independent rows or columns. This also
means that the dimension of the null space, or equivalently,
the multiplicity of zero eigenvalues is equal to �−r.

Since the constraints �Eq. �3.3�� are expressed as a linear
relation involving the matrix K, there are only r independent
constraints. Hence, the vector a�= �a1

� , . . . ,a�
� � lives only in

an r-dimensional subspace; �−r of its components can be
written as a linear combination of the other r.

Now we analyze Hamiltonian �3.7�. Since we have as-
sumed that the matrix of densities N is nonsingular �i.e., all
filling factors are nonzero, as required for the harmonic ap-
proximation to be valid�, the rank of E=�NK�N is equal to
the rank of K. This means that E has r positive eigenvalues
and �−r zero eigenvalues, just as the matrix K. We diago-
nalize E as usual in terms of a diagonal matrix D and an
orthogonal matrix C such that E=CTDC. Note that the order
of the eigenvalues on the diagonal of D �and simultaneously
the order of the rows of C� may be chosen at will, so that we
may choose for simplicity D=diag��1 , . . . ,�r ,0 , . . . ,0�,
where �1 , . . . ,�r are the positive eigenvalues of E. In the
diagonalized Hamiltonian �3.10�, the components

P̄r+1 , . . . , P̄� are absent since they are multiplied with the
zero eigenvalues of D. We still have � components of ā in
the Hamiltonian, but we should remember that only r of
them are independent.

The diagonalized Hamiltonian contains r nonzero eigen-
values, which depend on the filling factors ��. However,
some variations in the filling factors will leave the eigenval-
ues, and hence the diagonalized Hamiltonian, invariant,
namely, those satisfying the equation

0 = ����� · �� = �
�

���

���

��� for all � .

In other words, the desired variations are the vectors in the
null space of the gradient matrix ���� of the eigenvalues,
which is defined as the matrix of derivatives of �, with re-
spect to �, ������=��� /���. Since �−r of the eigenvalues
�� are zero, the rank of the gradient matrix is at most r, and
this consequently means that we can find at least �−r inde-
pendent variations in the filling factors which leave the ei-
genvalues invariant.

In the example discussed in Sec. IV B, we observed that
�1−�2 does not appear in the diagonalized Hamiltonian. In
order to demonstrate the procedure sketched in the preceding
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paragraph, we compute the gradients of the eigenvalues 0
and 2��1+�2�. Obviously, in this example the gradient matrix
is ����= � 0 0

2 2 � and its null space is spanned by the single
vector �1,−1�. Since this vector is independent of the filling
factors �1 and �2, we can state that all eigenvalues, and hence
the diagonalized Hamiltonian, are invariant under the trans-
formation ��1→�1+�� , �2→�2−���. This means that the
linear combination �1−�2 is completely absent from the
Hamiltonian, as argued earlier. We remark that the variation
that leaves the Hamiltonian invariant need not always be
constant in the filling factors ��. However, for physically
relevant systems, the variations are constant, describing par-
ticle exchange among different components.

We now return to the diagonalized Hamiltonian, and try to
find the lowest-energy states, in the same way as we have
done for the example in Sec. IV B. For the moment, we do
not impose the constraints, thus regarding all components ā�
as independent. Only the first r components ā�̃

��̃=1, . . . ,r� have a corresponding momentum operator P̄�̃

in the Hamiltonian, while the other �−r components do not.
This means that the resulting states are degenerate in the
coordinates ār+1 , . . . , ā�. Thus, we may write the lowest-
energy states as

�osc�ā1, . . . , ā�� = �osc,r�ā1, . . . , ār��̃�ār+1, . . . , ā�� , �B1�

where �̃ is the degenerate part of the wave function �further
discussed in Sec. IV B�, and

�osc,r�ā1, . . . , ār� = exp�−
e

2	b
�
�̃=1

r

ā�̃
†��̃

−1ā�̃
 �B2�

is the nondegenerate part. Notice that the components asso-
ciated with the zero eigenvalues of the matrix E do not con-
tribute. By the observation that the pseudoinverse33 of

D=diag��1 , . . . ,�r ,0 , . . . ,0� is equal to D̂=diag
��1

−1 , . . . ,�r
−1 ,0 , . . . ,0�, we may also rewrite �osc,r as

�osc,r = exp�−
e

2	b
ā†D̂ā
 = exp�−

e

2	b
a�†K̂a�
 ,

where we used that ā†D̂ā=a�†K̂a�. This result is nothing else
than Eq. �3.13� with the inverses of D and K replaced by the
pseudoinverses. Substituting the density fluctuations ��� for
the gauge fields a�

� using the constraint Eq. �3.3� yields ex-

actly Eq. �3.16� by virtue of the property of K̂ that KK̂K
=K. This result is exactly equal to the steps we followed

before, but only with K−1 replaced by K̂. Therefore, the
ground state Eq. �3.16� found for the case of strictly positive
eigenvalues is also valid if there are zero eigenvalues. All
subsequent steps concerning the connection to the trial wave
functions remain valid as well.
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