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Nonlinear drift conduction under a trap-density gradient is mathematically formulated. Semianalytical and
numerical solutions demonstrate bulk-induced unidirectional current flow, i.e., rectification. The present theory
is in excellent agreement with various experimental J-V characteristics �J: current density and V: applied
voltage�. At low V, the J-V characteristics are ohmic and bidirectional. As the injection increases, the J-V
characteristics become nonlinear and exhibit unidirectionality under proper conditions. The major requirements
for a large unidirectionality are the trap-density gradient G�1, an intermediate V, and not too large trap-filling
factor �, which requires the presence of acceptorlike traps. The unidirectional J-V characteristics due to the
difference in trap-filled-to-trap-free-limit voltage VTFL for forward and reverse bias markedly resemble the
standard rectification. In addition, the trap-density gradient yields a positive T dependence of resistance for a
proper set of parameters, evident J�V1.5 characteristics, and a photovoltaic effect. The present results suggest
that bulk conduction under trap-density gradient explains fractions of resistance switching and rectification
phenomena. The semianalytical solutions are verified by numerical solutions and comparison with experi-
ments. In particular, semianalytical solutions for shallow-trap case excellently fit the experimental data by three
parameters in practice: two scaling factors and G.
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I. INTRODUCTION

Current conduction through high-resistive materials has
been revealing new physics.1 For example, the investigations
of resistance switching, which is pursued for the resistance-
random access memory,2–23 have encountered various non-
ideal rectifying current-density-voltage �J-V� characteristics.
Because rectification is attributed to asymmetric interfaces
such as metal-semiconductor contacts, the resistance switch-
ing is attributed to surface.6,7 However, evidence that the
origin is a bulk part is reported.4,7,8,10,18 Solution of this con-
troversy is a starting basis to uncover their mechanisms. Fur-
thermore, a positive temperature coefficient of resistance24

and rectification phenomena exhibiting bulk conduction
properties are observed in compositionally graded ferroelec-
tric films25 and perovskite oxides.15,21 In addition, the origin
of nonlinear nonquadratic J-V characteristics often remains
unidentified. The present paper aims to understand these is-
sues from a unified view and proposes bulk-originated recti-
fication.

Numerous J-V characteristics exhibiting rectification have
been explained well by existing theories such as Schottky
emission.1 Nonideal rectifying J-V characteristics, which are
inessential deviations from the standard theories, have also
been observed:26–28 For example, the J-V characteristics of a
metal-semiconductor contact agree with Schottky emission
theory under reverse bias but exhibit the space-charge-
limited conduction �SCLC� under forward bias. Essential de-
viations are also observed: The J-V characteristics disagree
with surface-limited processes at either bias polarity but
agree with bulk-limited conduction processes at both bias
polarities.4,8 For example, the J-V characteristics agree with
the Mott-Gurney law29–31 under forward bias and Ohm’s law
under reverse bias. These characteristics are inexplicable by
conventional models such as intermediate layers, high-field

effects, double Schottky barriers, bipolar carrier injections,
or degraded surface barriers and have been a long-standing
puzzle.4,7,8,15

A clue can be the fact that when current carries free
electrons/holes �carriers� whose density exceeds far the equi-
librium density, nonequilibrium free carriers are injected into
the material to enable the SCLC.29–31 An intensive carrier
injection can create traps,5,18 and various mechanisms can
yield graded distribution of traps �Fig. 1�, i.e., “trap-density
gradient” �Sec. II�. The present paper shows that nonlinear
bulk conduction under a trap-density gradient exhibit rectifi-
cation and bulk-limited-conduction characteristics as well as
a positive-temperature coefficient of resistance.

To formulate bulk conduction, we regard the SCLC �Refs.
30–44� as a generic macroscopic description of the electric-
field-induced drift with a self-consistent solution of Poisson
equation including the electric field due to the carriers. That
is, provided assumptions �1�–�3� in Sec. III are satisfied, gen-
eralized SCLC is a universal description of macroscopic bulk
conduction as opposed to microscopic descriptions of el-
ementary processes such as Poole-Frenkel and hopping con-
duction.

The SCLC theories proposed so far and the existing bulk
conduction processes yield the J-V characteristics that are
bidirectional or symmetric with respect to the polarity of the
applied voltage �V�. However, SCLC may exhibit unidirec-
tionality owing to nonlinearity, when bulk part possesses
some asymmetries with special properties. Indeed, for a case
obeying the Mott and Gurney law �J�V2�, Sworakowski
showed that the conduction could be asymmetric under spa-
tially asymmetrical trap distributions.41 On the other hand,
most of experimental nonideal rectifications exhibit the J-V
characteristics of J�Vm dependence with m�1.5 or m�2,
which necessitates the present formulation for a general case,
which explains both rectification and various J-V character-
istics.
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In the present paper, we derive a set of differential equa-
tions for nonlinear conduction under a trap-density gradient
considering rigorous carrier statistics. The theory presented
below includes carrier statistics of the initial and injected
state, which was neglected in the previous theory.41 This car-
rier statistics yields a built-in potential, which is not the ma-
jor origin of the unidirectional conduction but explains the
photocurrent at zero-bias voltage. The present formulation
can be regarded as that for diffusion-free drift conduction
under a graded unipolar junction such as nn and pp junction
�isotype homojunction with different doping density1,45�. Ap-
proximate semianalytical and numerical solutions are pre-
sented. The unidirectionality predicted below is so evident
that the resulting J-V characteristics can be mistakenly re-
garded as those of standard diodes.

The present theory excellently explains both J-V charac-
teristics and rectification of various experiments, where the
rectification originates from the bulk. In particular, the recti-
fication in BiFeO3 and SrTiO3:Cr single crystals is attributed
to the bulk.4,8 In the present paper, the J-V characteristics of
SrTiO3:Cr single crystals exhibiting no hysteresis are care-
fully selected, because the comparison with the theory is
only meaningful when the trap distribution is unchanged dur-
ing the measurement. The subsequent part of the paper is
organized as follows: origin of trap-density gradient �Sec. II�,
model and basic equations �Sec. III�, semianalytical solutions
�Sec. IV�, asymptotic analytical solutions �Sec. V�, self-
consistent numerical solutions �Sec. VI�, and comparison
with experiments �Sec. VII�.

II. ORIGIN OF GRADED DISTRIBUTION OF TRAPS

Typical mechanisms for trap-density gradient are carrier
injection, oxygen vacancies, and epitaxial strain. Under high

electric field, nonequilibrium carries are injected from the
electrodes and are observed to create traps or change trap
distribution.5,18,46–50 For example, SrTiO3:Cr single crystals
and thin films8 become conductive by a forming process that
involves a forced soft breakdown by a high electric field. The
trap density increases with the number of these forming
steps18 and a trap-density gradient is directly confirmed.9 In-
deed, the resistance of most insulators degrades by forced
current conduction under a high electric field,47,50 which is
attributed to the creation or migration of defects by impact
ionization.1,46,49,50

The impact ionization is negligible under low electric
field, which allows us the assumption below that the trap
density is unchanged during the measurements. With increas-
ing injection, traps are filled, and the conduction increases
abruptly. Upon further increasing the electric field and injec-
tion, the impact ionization starts and then becomes an
avalanche.1 The injection-induced traps are expected to de-
crease from one surface to the opposite surface because the
injected carrier density or the field decreases from the sur-
face of the injecting electrode to the opposite surface as
shown by Mott-Gurney theory.31 Examples of such electron
carrier distribution �n�x�� are seen in Fig. 2, where n�x� is
mostly due to injected electrons. Similarly, the field-induced
migration of charged defects is expected to occur near the
surface. In typical experiments, the applied voltage V in-
creases from zero to the maximum �V�0� and then returns
to zero, and often in addition, it decreases from zero to the
minimum �V�0� and then returns to zero. This sequence
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FIG. 1. �a� Trap distribution for trap-density gradient and �b� the
corresponding band profile. Band diagrams for the initial state are
shown for the �c� shallow-trap and �d� deep-trap case. The trap
density Nt increases monotonically with x from x=0 to x=L. EC0,
EV0, EF, Et0, and EA0 are the energy level of the conduction bottom
edge and the valence-band top edge, the Fermi level, the energy
level of the donor- and acceptor-type trap in the absence of the
applied field, respectively.
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FIG. 2. �Color online� Theoretical free electron distributions for
equilibrium state �n0� and forward and reverse bias �n� for a given
Nt �dashed-dotted lines�, NA

−�x�=0.01Nt�x�, EC−Et=20 meV, NC0

=1019 cm−3 �300 K� and J=103q2�n0
2�0�L /	. The solid, dashed,

and short dashed lines correspond to n0 ,n for forward and reverse
bias, respectively.
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yields an asymmetrical trap distribution because the effect of
the field is different before and after the sample becomes
conductive.

The other representative mechanisms are chemical: oxy-
gen vacancies and epitaxial strain. Volatile chemical species
such as Pb, PbO, Bi, and BiO evaporate from the surface in
vacuum or at a high temperature, which results in increase in
vacancies towards the surface. The evaporation at the two
surfaces is different owing to the temperature gradient and
the materials in contact with the surfaces. Moreover, in
vacuum-deposited thin films, vacancies are distributed asym-
metrically between the top and bottom surfaces. Further-
more, the number of defects and dislocations changes from
the bottom toward top surfaces, owing to the mechanical
strain from the substrate. For these two mechanisms, the as-
sumption used below that the trap density is unchanged dur-
ing the measurements is satisfied even for a relatively high
electric field. In addition, an intentionally formed trap-
density gradient such as compositionally graded films is
known.25

III. MODEL AND DERIVATION OF BASIC EQUATIONS

Figures 1�a� and 1�b� show the present model: a one-
dimensional steady-state SCLC under a trap-density gradient
of a total length L with coordinate x, where the trap density
Nt�x� increases monotonically with x. We employ assumption
�7� below in addition to assumptions �1�–�6�, which are fre-
quently used in SCLC theories.31 �1� Thermal energy is
much lower than electrostatic energy and the diffusion cur-
rent is neglected: J=qn�E �q: elementary charge, n: free
electron carrier density, ���0�: electron mobility, and E�x�:
applied field �−dV�x� /dx��. �2� E�x� and the injection are not
too high; thus, the initial trap distribution Nt�x� is unchanged
and no breakdown occurs. �3� The current carriers are elec-
trons, which does not restrict the generality for unipolar con-
duction because of the electron-hole symmetry. �4� In-gap
states near both contacts are abundant or the bulk part has a
high resistance so that the effect of the potential barrier can
be neglected and the contacts are regarded as injecting/ohmic
contacts. �5� E�x� is not too high; thus, � is independent of
E�x�. �6� The energy distribution of traps �Fig. 1�b�� is ap-
proximated by two types of traps �Fig. 1�a��: donor-type
traps and acceptors because the energy distribution profiles
affect only the details of the J-V characteristics.30 Here,
donor-type traps are classified into shallow traps �Et0�EF�
�Fig. 1�c�� and deep traps �Et0�EF� �Fig. 1�d��, where Et0,
and EF are the energy level of the donor-type traps in the
absence of an applied field, and the Fermi level, respectively.
In addition, the acceptor-type traps with density NA are as-
sumed to be fully occupied, i.e., NA

− =NA. �7� The material is
assumed to be uniform except for its trap density Nt�x�; the
effective density of states of the conduction band NC, the
band gap Eg, and the value of Et0�x�−EC0�x� are independent
of x, where EC0 and Et0 are the energy level of the
conduction-band edge and trap energy level in the absence of
E�x�, respectively �Figs. 1�c� and 1�d��.

The trap-density gradient creates a built-in potential

bi�x� �Ref. 1� and can be regarded as a series of nn junc-

tions. The carrier distribution under 
bi and V can be de-
duced in the same manner as those in pn junctions �p: hole
carrier�: the standard theories of pn junction semiclassically
treat electron. That is, free electron density is locally defined
and is given by the integration of the occupied density of
state from E=EC0�x� to E=�, where EC0 is the energy of a
conduction-band electron.1 The formula thus obtained is the
same as Eq. �1a�. This formulation is also applicable to the
depletion region of the pn junction and, therefore, to the nn
junction. Consequently, the standard expression for the free
electron density in homogeneous semiconductors1,31 is appli-
cable to the present case. Therefore, in the absence of the
applied field, free electron density �n0�x�� is

n0�x� = NC exp�−
EC0�x� − EF

kBT
� , �1a�

where T and kB are the ambient temperature and the Boltz-
mann constant, respectively. Similarly, the trapped carrier
density in the absence of E�x��nt0�x�� is

nt0�x� = Nt�x�/�1 + g−1 exp�Et0�x� − EF

kBT
�	 , �1b�

where Nt�x� and g are the concentration of shallow traps and
the degeneracy factor, respectively. In the ideal diode equa-
tion by Shockley, the carrier density under the applied field
E�x� is given by a formula similar to Eq. �1a� with the use of
the quasi-Fermi level EFn. This formula is also applicable to
the depletion region. Therefore, the carrier density n�x� and
trapped carrier density during injection nt�x� are

n�x� = NC exp�−
EC�x� − EFn

kBT
� , �1a��

nt�x� = Nt�x�/�1 + g−1 exp�Et�x� − EFn

kBT
�	 , �1b��

where EFn, EC�x�, and Et�x� are the quasi-Fermi level, the
energy levels of the bottom edge of the conduction band and
shallow trap under E�x�, respectively. Equations �1a� and
�1b� are the same as those used for the homogeneous case1,31

except for the x dependence.
EC0�x�, Et0�x�, EC�x�, and Et�x� are related to


bi�x��
bi�0�=0� and the total electrostatic potential VT�x� by
EC0�x�=EC0�x=0�−q
bi�x�, Et0�x�=Et0�x=0�−q
bi�x�,
EC�x�=EC�x=0�+qVT�0�−qVT�x�, and Et�x�=Et�x=0�
+qVT�0�−qVT�x�, and VT�x� is related to V�x� by VT�x�
=V�x�+
bi�x�. Therefore, EC�x�−Et�x�=EC0�x�−Et0�x�
=EC0�0�−Et0�0�. The Poisson equations for 
bi�x� and VT�x�
are

	
d2
bi

dx2 = q�n0�x� + NA
−�x� − Nt0

+ �x�� , �2a�

	
d2VT

dx2 = q�n�x� + NA
−�x� − Nt

+�x�� ,

where 	 is the permittivity, and Nt0
+ �x� and Nt

+�x� are the
ionized trap density in the absence and the presence of the
applied field E�x�, respectively. In the previous study,41 n0,
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nt0, and the built-in potential were neglected. The subtraction
of Eq. �2a� from the second equation �below Eq. �2a�� yields

	
d2V

dx2 = q�n�x� + nt�x� − n0�x� − nt0�x�� , �2b�

where we used the relationships Nt0
+ �x�=Nt�x�−nt0�x� and

Nt
+�x�=Nt�x�−nt�x�.

For a given set of Nt�x�, NA�x�, NC, g, EC0�x=0�−Et0�x
=0�, and T, Eqs. �1a�, �1b�, and �2a� are self-consistently
solved to yield n0�x�, nt0�x�, and EF. For a given J�=qn�E�,
with these values �n0, nt0, and EF� and the boundary condi-
tions �E�L�=0, V�L�=0 or E�0�=0, V�0�=0�, Eq. �2b� with
Eqs. �1a� and �1b� yields n�x�, nt�x�, and V, self-consistently.
The spatial profile of n0�x�, nt0�x�, and n�x� in Fig. 2 are
calculated in this manner. Equation �2b� is the same as Eq.
�4.2� of Ref. 31 derived for the homogeneous case except for
the x dependence of n0 and nt0.

The J-V characteristics shown in Secs. V–VII are for the
trap distribution types shown in Fig. 3�a� with exponential Nt
distribution in which the vertical axis is log Nt. Similar re-
sults are found for another variation: linear Nt distribution.
The J-V characteristics for Figs. 3�b�–3�e� are shown in Ap-
pendix A. The results are sorted by the trap-density gradient
G
Nt�L� /Nt�0� and the trap filling factor ��x�

n0�x� /nt0�x�.30,31 For G=1, the J-V characteristics pre-
sented below exactly agree with the previous studies.31

IV. SEMIANALYTICAL SOLUTIONS

Semianalytical solutions reduce the number of parameters
and are useful for data fitting. Here, the conduction path L
having a trap-density gradient is divided into kmax segments,
and Nt�x� and NA

−�x� are assumed to be constant in the kth
segment �Nt�x�=Nt,k and NA

−�x�=NA,k
− for �k−1�L /kmax�x

�kL /kmax�. We denote the variables in the kth segment by
the subscript k, in particular, Nt�0�
Nt,1 and Nt�L�

Nt,k max and define the exponential Nt distribution by a con-
stant value of Nt,k /Nt,k−1.

We start with shallow traps that are assumed to remain
shallow during injection and postulate Et−EFn�kBT. In this
case, ��x� is constant ��k� in the kth segment, which is
derived similar to Eq. �2.18� of Ref. 31 ��k�N /gNt,k ,N

NC exp�−�EC0�0�−Et0�0�� /kBT��. Equation �2b� is rewrit-
ten as

	
d2V

dx2 = q�n�x� − n0�x���1 + �k
−1� . �3�

We introduce two types of approximation for n0�x�. Be-
cause electrons are distributed in equilibrium as a balance
between the electrostatic force and the thermal diffusion,
n0�x�=n0 �n0 :constant� is effective for �EC−Et� /kBT�1,
which we call a constant-n0 approximation �Appendix B�. In
the higher-order approximation, n0�x� is approximated as
n0�x�=CNt�x� �C: constant� for �EC−Et� /kBT�1, which we
call an n0�Nt approximation. Numerical solutions in Fig. 2,
which yield self-consistent values of EF, confirm the correct-
ness of these approximations. For traps to be shallow, the
condition �k�1 requires gNt�N and a heavy compensation
�NA

− �Nt� �Appendix B�.
Equation �3� is rewritten by the dimensionless quantities

u
n0�0� /n�x�, 
k=Nt,k /Nt,1��1�, w
x /L�, W
L /kmaxL�,
v= 
V
 /Vbi2, L�
L
J
 /Jbi2, and j
J /Jbi2, where Vbi2

qn0�0�L2�1+�1

−1� /	 �twice the nominal built-in potential
of the system�, Jbi2=q�n0�0�Vbi2 /L �nominal ohmic current
induced by Vbi2�, and �1
��0�. By utilizing the solution for
homogeneous cases in Ref. 31 and the continuity of E�x� and
V�x� at xk= �k−1�W, we obtain the solution in the n0�Nt
approximation as the recurrence formulae

vk =
1

rk
�−

uk
2 − uk−1

2

2
k
−

uk − uk−1


k
2 −

ln�
1 − 
kuk
/
1 − 
kuk−1
�

k

3 �
+ vk−1 �4�

−
uk − uk−1


k
−

ln�
1 − 
kuk
/
1 − 
kuk−1
�

k

2 = rkW , �5�

where uk
u�xk� and vk
v�xk�. For �1�1, the solutions are
independent of �1 and only depend on the gradient 
k, be-
cause rk
�1+�k

−1� / �1+�1
−1� can be approximated as 
k. For

a given J, free parameters for the shallow-trap case are G,
��0��=�1�, and the scaling factors Vbi2 and Jbi2. We use
��0� as a representative value of ��x� below because ��x�
���0� for shallow traps owing to �k�N /gNt,k.

For deep traps, Eq. �2b� is rewritten as
	d2V /d2x=q�n�x�−Nt

+�x�−n0�x�+Nt0
+ �x�� because nt0�x�

=Nt�x�−Nt0
+ �x� and nt�x�=Nt�x�−Nt

+�x�. For EF−Et�kBT,
Eqs. �1a� and �1b� yield nt0�x��Nt�x��1−N /gn0�x�� and
nt�x��Nt�x��1−N /gn�x��, and, therefore, Nt0

+ �x�
=Nt�x�N /gn0�x� and Nt

+�x�=Nt�x�N /gn�x�. By assuming the
constancy of quantities in the kth segment, we obtain

	
d2V

dx2 = q�nk + Akn0�k
2 /nk − n0�k − Akn0,k� ,

where Ak
Nt0,k
+ /n0,k. By utilizing the solution for homoge-

neous cases in Ref. 31, we obtain the solution in the n0�Nt
approximation as the recurrence formulae for a given J,

(b) (c)
( )

(b) (c)
(a)(a)

NNtNt
xx xx

( )(d) (e)(d) ( )( )

xx xx xx

FIG. 3. Trap distribution types: �a� simple exponential distribu-
tion �the vertical axis is log scale� used in main results �Figs. 4–11�.
Appendices A and C discuss other variations: �b� exponential dis-
tribution with a low trap-density flat region, �c� exponential distri-
bution with a high trap-density flat region, �d� valley type: combi-
nation of the type �a� and �e� abrupt step type.
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vk =
1

�1 + Ak�
k
3�− �1 + Ak

−1�
k�uk − uk−1� − ln� 
1 − 
kuk


1 − 
kuk−1
�

+
1

Ak
2 ln� 
1 + Ak
kuk



1 + Ak
kuk−1
�� + vk−1 �6�

1

�1 + Ak�
k
2�− ln� 
1 − 
kuk



1 − 
kuk−1
� −
1

Ak
ln� 
1 + Ak
kuk



1 + Ak
kuk−1
��
= W , �7�

where 
k=n0,k /n0,1, uk=n0,k /n�x�, and v= 
V
 /Vbi2. Nt�x� is
specified by Nt�0� and G
Nt�L� /Nt�0� �Table I�. The solu-
tions for shallow- and deep-trap cases in the constant-n0 ap-
proximation are given by Eqs. �4�–�7� by setting 
k=
1.

J-V characteristics under forward and reverse bias are cal-
culated by Eqs. �4�–�7� in the limit kmax=� and are shown in
Figs. 4�a� and 4�b� for the shallow- and deep-trap cases, re-
spectively. The n0�Nt and constant-n0 approximation are
used for the shallow- and deep-trap case, respectively �Table
I�. However, the n0�Nt and constant-n0 approximation yield
essentially the same results in both shallow and deep-trap
case. Therefore, the major characteristics in Fig. 4 are of
exact solutions, which is also confirmed by numerical solu-
tions. The J-V characteristics are ohmic and bidirectional,
i.e., nonrectifying for v�1, i.e., V�Vbi2, of which mecha-
nism is explained by Sec. V.

For shallow-trap cases �Fig. 4�a��, the j�vm dependence
�1�m�2� and unidirectional J-V characteristics start to
emerge at v=1�G. For ��0��1, rectification and J-V
characteristics are found to be insensitive to ��0�. The di-
rection of the electron flow for a forward bias is that of
increasing Nt. The T dependence is represented by ��0�,
which increases with T. Equations �4� and �5� show that for
��0��1 rectification diminishes with increasing ��0�. In
particular, for v=�, rk=1 in Eqs. �4� and �5�, because �k
=� for v=�. In this case, Eqs. �4� and �5� show no rectifi-
cation except for a negligibly small rectification near v�1,

which is consistent with asymptotic analytical results �Sec.
V�.

For deep-traps cases �Fig. 4�b��, the J-V characteristics
consist of the j�v, the j�vm �m�2; trap-filled-to-trap-free-
limit �TFL� transition�, and the j�v2 region, where m in-
creases with A. Rectification appears near the TFL voltage
VTFL= �q /	��0

Ldx�0
xdxNt

+�x��AkVbi�Ak
Nt0,k
+ /n0,k� and in-

creases with G and A, which is due to the difference of VTFL
between the forward and reverse bias. This difference is ex-
plained by VTFL= �q /	��0

Ldx�0
xdxNt

+�x�, which depends on the
polarity of the applied field, because Nt

+�x ,
�x�� depends on
the polarity of the applied field. The comparison of these
results with experimental results requires caution, because a
TFL transition often accompanies an irreversible change of
the trap distribution, which appears as an apparent rectifica-
tion and should be distinguished from the present theory. The
direction of the electron flow for forward bias is that of de-
creasing Nt.

V. ASYMPTOTIC ANALYTICAL SOLUTIONS

This section shows the asymptotic solutions for v→0 and
v→�. For v→0, injection is negligible, which means that

TABLE I. Parameters used in the theories in addition to the
normalization factors Vbi2 and Jbi2. For a given J, V is calculated. C
is a constant. For ��0��1, semianalytical solutions for shallow
traps are independent of ��0� and, therefore, ��0� is bracketed. For
semianalytical solutions, one of three approximations is used: �shal-
low� n0,k+1 /n0,k=Nt,k+1 /Nt,k �constant�, �shallow� n0,k=n0�0�, �deep�
n0,k=n0�0� with Ak+1 /Ak=Nt,k+1 /Nt,k �constant�. In the most cases
of numerical solutions, Nt�0��=1017 cm−3� and NC0�=1019 cm−3�
are used, and always g=1, and two types of relationships of NA

−�x�
and Nt�x� are examined: NA

−�x�=�Nt�x� and NA
−�x�=�Nt�0�.

Semianalytical
�shallow�

Nt�0�, G, C�=n0�x� /Nt�x�� or Nt�0�, G, n0�0�
���0��

�n0,k ,�k+1 /�k , ���0���
Semianalytical
�deep� A1, Ak+1 /Ak, n0�0�
Numerical
�Eq. �2b�� G, EC0−Et0, T, �, Nt�0�, NC0

(a)(a)
2.02.0

m10000 m10000 1

m10000 1.51.5

101.01.0
001 1 100
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0.01 1 100v10 v10

�� = 0 01�� = 0.01
G = 10G = 10
G 100 j l dG =100 j rescaled0 01 G 100 j rescaled

0 01 1 100
0.01
0 01 1 100v0.01 1 100v

(b)(b)( )

4
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0 01 1 100 10000

0 0 v0.01 1 100 10000vv
FIG. 4. �Color online� J-V characteristics of the forward-bias

�thick lines� and reverse-bias �thin lines� branches for �a� shallow-
trap and �b� deep-trap case by semianalytical solution in dimension-
less quantities v= 
V
 /Vbi2 and j

J
 /Jbi2, where Vbi2
qn0�0�L2�1
+�−1�0�� /	 and Jbi2=q�n0�0�Vbi2 /L. Insets show the v dependence
of the exponent m in j�vm. In �a� and �b� j for G=100 is rescaled
so that the ohmic part for G=100 is aligned to that of G=10, and
the original curve for G=100 is restored by division of 0.551. In
�a�, ��0�=0.01. The J-V characteristics with ��0��0.01 are almost
overlapped with the present curves with the same G of �a� and those
with 0.01���0��1 are similar to the present curves with the same
G of �a�. In all figures below, pairs of thick and thin line correspond
to the forward- and reverse-bias curves.
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n�x��n0�x� and nt�x��nt0�x�. Therefore, assumption �1� in
Sec. III yields J=qn0�x��E, which gives V=−�dxE=R0
J
,
where R0= �q��−1�dxn0

−1�x� is independent of V and J. That
is, the J-V characteristics are ohmic and show no rectifica-
tion for v→0.

For v�1, carriers are dominated by injected carriers
�n�x��n0�x� and nt�x��nt0�x��, and Eq. �2b� reduces to
	d2V /dx2=qn�x� �1+��

−1�, where ���x�
n�x� /nt�x�. There-
fore, Eq. �2b� is rewritten as −	d2V /dx2 �dV /dx�= �J /���1
+��

−1�, which yields V= �2
J
 /	��1/2�0
Ldx��0

xdx1+��
−1�1/2.

Therefore, we obtain


J
 = 	�
V2

2�3 , �8�

where �
��0
Ldx��0

xdx1+��
−1�1/2�2/3 and for the opposite po-

larity, the integrations are performed from L to x and L to 0.
Because � depends on the direction of the integration, the
J-V characteristics depend on the polarity and show rectifi-
cation in quadratic region, which is the Sworakowski’s
results.41

Equation �8� shows that the J-V characteristics at v�1
are dominated by injection and insensitive to the details of
���x� and Nt distribution such as linear or exponential. For
v→�, we expect n�x��nt�x�, n0�x�, nt0�x� and, therefore,
���1, for which Eq. �8� yields J=9	
�
V2 /8L3. This con-
dition of n /nt�=����1 is realized for NC�maximum Nt,
which seems satisfied in most cases. This disappearance of
the rectification at v→� is confirmed by Fig. 5�a� and the
semianalytical solutions for ��1.

The semianalytical and numerical results in Figs. 4–7 and
Eqs. �4�–�7� agree with these asymptotic analytical results.
Based on Eqs. �4� and �5�, we examine the behavior of the
shallow-trap case at v→�, for which we have u�
n0 /n�
→0. In the lowest order of u, Eqs. �4� and �5� reduce to w
= �uk+1

2 −u0
2� /2 and vk+1−vk= �uk+1

3 −uk
3� /3, and we have

L /L�=kmaxw= �uk max
2 −u0

2� /2 and vk max−v0= �uk max
3 −u0

3� /3.
Because u0 and v0 are the ratio n0 /n and the normalized
voltage at the injecting electrode, respectively, u0=0 and v0
=0. Consequently, we have

vk max =
�2L/L��3/2

3
,

which is rewritten as J=9	�V2 /8L3 and shows no rectifica-
tion. When �� is constant �no trap-density gradient�, Eq. �8�
gives no rectification and the standard result J
=9	
�
V2 /8L3�1+��

−1�, which is also derived from Eqs. �4�
and �5�.

VI. NUMERICAL SOLUTIONS

In realistic systems under a trap-density gradient, some
traps may be shallow traps and others may be deep traps.
These situations require study based on self-consistent solu-
tions of Eq. �2a� with Eqs. �1a� and �1b� that yield n0�x� and
Nt0

+ �x� �Fig. 2�. The numerical results in Figs. 5–8 confirm
the validity of the semianalytical solutions, especially for
shallow-trap cases. NA

− is introduced to represent the energy
dispersion of traps, and two representative dispersions are

considered: �i� the energy dispersion is independent of x and
�ii� the density of acceptorlike trap �NA

−� is independent of the
density of donorlike trap �Nt�. In this two-level model, the
dispersion type �i� and �ii� are represented by NA

−�x�
=�Nt�x� and NA

−�x�=�Nt�0�, respectively, where � is a con-
stant. Throughout this section, g=1, Nt�0�=1017 cm−3, NC
=NC0�T /300 K�3/2, and NC0=1019 cm−3 �NC0: effective den-
sity of states at 300 K�.

A. J-V characteristics

In Fig. 5 �T=300 K� and Fig. 6 �T=20 K�, the param-
eters of the initial state are G=100, EC0−Et0�=EC−Et�, T,
and NA

−�x� �Table I�. The normalization factors Vbi2 and Jbi2
are qNt�0�L2 /	 and q�Nt�0�Vbi2 /L, respectively, to show ex-
plicitly the dependence of the J-V characteristics on T and
EC0−Et0. The values of �EC0�0�−EF� /kBT, ��0� and so forth
in captions are estimated from the self-consistently calcu-
lated n0�0� and nt0�0�.

In Figs. 5 and 6, the J-V characteristics critically depend
on �EC0−Et0� /kBT but are relatively insensitive to � and the
dispersion types. Here, �EC0−Et0� /kBT is the primary deter-
minant of � and � decreases as �EC0−Et0� /kBT increases.

300 K G = 100(a) 300 K G = 100(a)

1010 N -(x) = 0 01N (x)10 NA (x) = 0.01N t(x)A t
20 meV20 meV

6 100 meV
106

100 meV
10

10210210jj

210-2 210 mm

1
6

1
10-610

0-3 0 3 60
l3 0 3 6vlogg

0 1 10 1000 1000000.1 10 1000 100000vv
(b) 300 K G = 100 500 meV(b) 300 K G = 100 500 meV( )

1010 N -(x )10 N A (x )
0 01N (x )0.01N t(x )

6 0.9N (x )
106

0.9N t(x )10

10210210jj

44
10 -2 m10 m

2

m

2
610 -610 0-3 0 3 60

l3 0 3 6vlogg

0 1 10 1000 100000v0.1 10 1000 100000vv
FIG. 5. �Color online� J-V characteristics of the forward- and

reverse-bias branches by numerical solution. Insets show the v de-
pendence of m in j�vm. EC−Et is 20 meV for the solid lines in �a�,
100 meV for the dashed lines in �a�, and 500 meV in �b�. NA

−�x� is
0.01Nt�x� in �a�, and 0.01Nt�x� �solid lines� and 0.9Nt�x� �dashed
lines� in �b�. 
J
 and 
V
 are normalized by Vbi2=qNt�0�L2 /	 and
Jbi2=q�Nt�0�Vbi2 /L, respectively. �EC�0�−EF� /kBT, ��0�, ��L�,
A�0�, and A�L� of the solid and dashed lines are 3.9, 46, 0.94, 1.0,
1.0, and 1.1, 2.1, 0.15, 1.0, 1.1 in �a�, and −4.6, 4.4�10−5, 4.4
�10−7, 230, 2.3�104, and 2.2, 4.5�10−7, 4.9�10−10, 1.8�109,
1.8�109 in �b�, respectively.
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An appreciable rectification exists for ��1, especially for
the dispersion type �i�, and increases with G and �−1, which
is consistent with the semianalytical results. For ��1, rec-
tification at v�1 is almost independent of � and EC0−Et0
owing to the insensitivity to �, as discussed in Sec. IV.

Shallow traps in the initial state are favored by a small
EC0−Et0 and a large compensation, where the compensation
is enhanced by a large � and the dispersion type �i�. The
traps at x=0 are shallow for all the lines in Fig. 5�a�, the
dashed lines in Fig. 5�b�, the dashed and dotted lines in Fig.
6�a�, and the dashed lines in Fig. 6�b�. In particular, the J-V
characteristics in Fig. 5�a� closely resemble the semianalyti-
cal solutions in Fig. 4�a�.

The curves for deep traps in Figs. 5�b�, 6�a�, and 6�b�,
which are for �EC0−Et0� /kBT�1 with ��1, are consistent
with semianalytical results in Fig. 4�b�. The increase in cur-
rent at the TFL transition is sharper than that in Fig. 4�b�,
which is due to the extremely large A in Figs. 5�b� and 6�a�.
The trap-density gradient makes the threshold voltage of the
TFL transition for forward bias different from that for re-
verse bias, which results in extremely large rectification. This
rectification increases with G, �EC0−Et0� /kBT, and compen-

sation ���. The transition region exhibits j�vm with m�2,
which yields a marked resemblance to the conventional
surface-limited rectification.

The j�v1.5 regions are evident, especially for a large � or
a large G, examples of which are in Figs. 8�b� and 8�e�. All
the curves in Fig. 5�a� and the solid lines in Fig. 6�b� corre-
spond to shallow-trap cases �Fig. 4�a�� and exhibit the tran-
sition from an ohmic to j�v1.5 with rectification, and then to
j�v2 with rectification. The J-V characteristics in the j�v2

region are almost independent of EC−Et and T because of
the dominance of injected electrons, whereas j in the j�vm

�m�2� region critically depends on EC−Et and T. As shown
in Sec. V, the J-V characteristics at v→� are bidirectional
for NC�maximum Nt, example of which is the curves for
EC−Et=20 meV of Fig. 5�a�.

B. Temperature dependence

Because � at low T is limited by the electrostatic scatter-
ing, � is usually T independent at low T. Under this condi-
tion, standard SCLC with injecting ohmic contacts and G
=1 is T independent for v�1, because n in J=qn�E is domi-
nated by the injection, i.e., n�n0, and is T independent. On
the other hand, Figs. 7 and 8 show that the trap-density gra-
dient induces an unconventional T dependence in proper
ranges of v. The parameters in Figs. 7 and 8 are the same as
those in Sec. VI A except for EC−Et=20 meV and those
given below.
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FIG. 6. �Color online� Same plots as Fig. 5 for 20 K. NA
−�x�

=�Nt�x� in �a� and NA
−�x�=�Nt�0� �b� with �=0.01 or 0.9. EC−Et

=20 meV for the solid and dashed-dotted lines. EC−Et=50 meV
for the dashed and dotted lines. In �a�, �EC�0�−EF� /kBT, ��0�,
��L�, A�0�, and A�L� of the solid, dashed, dash-dot, and dotted lines
are −4.5, 1.4�10−3, 2.1�10−8, 8.0, 4.8�105, and 2.2, 1.6�10−5,
1.8�10−6, 5.0�105, 5.0�107, and −4.6, 4.8�10−11, 4.8�10−13,
2.1�108, 2.1�1010, and 2.2, 4.8�10−13, 5.3�10−15, 1.7�1013,
1.8�1015, respectively. In �b�, those of the solid, dashed and dash-
dot lines are −4.5, 1.4�10−3, 3.6�10−4, 7.9, 1.3, and 2.2, 1.5
�10−4, 2.0�10−6, 5.0�104, 4.4�103, and −4.6, 4.8�10−11, 4.8
�10−11, 2.1�108, 2.1�106, respectively.
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FIG. 7. �Color online� �a� Temperature dependence of J-V char-
acteristics of the forward- and reverse-bias branches by numerical
solutions with EC−Et=20 meV, NA

−�x�=0.01Nt�x� and G=100 with
the normalization same as Fig. 5. �b� T dependence of J-V charac-
teristics with �G=100� and without trap-density gradient �G=1�:
replot of J-V characteristics � in �a�. The curves with G=1 for T
=300 and 20 K are completely overlapped.
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At v�1 in Fig. 7�a�, the conductance increases evidently
with T, owing to the thermal activation of equilibrium free
electrons �n0�. At v�1 for G=1, the conductance is indepen-
dent of T, �, and the trap distribution types �inset of Fig.
7�a��. At v�1 for G�1, the conductance depends weakly on
T, �, and the trap distribution types. The trap-density gradi-
ent steepens the TFL transition for forward bias and slows it
down for reverse bias. This steepening and slowing decrease
with increasing T, which induces the decrease in forward
bias current with T. Consequently, a positive-T coefficient of
resistance �PTCR� emerges for forward bias �Fig. 7�a��,
which is evident in linear-scale replots �Fig. 7�b��. In addi-
tion, a v range exhibiting a PTCR exists also for a fixed
NA

−�x�, which however is less evident than for NA
−�x��Nt�x�

�Fig. 8�.
The PTCR for NA

−�x��Nt�x� appears in the j�v2 region
�Fig. 8�a�� and the j�v1.5 region �Fig. 8�b��. Similar results
are found for a fixed NA

−�x� case �Figs. 8�d� and 8�e��. The T
dependence for the NA

−�x��Nt�x� and fixed NA
−�x� cases is

summarized in Figs. 8�c� and 8�f�, respectively. In both fig-
ures, a PTCR appears for v�1 under forward bias. A few
differences exist between the NA

−�x��Nt�x� and fixed NA
−�x�

cases: For NA
−�x��Nt�x�, a PTCR appears for all v values

�Fig. 8�c��. For fixed NA
−�x� case, a PTCR appears at high T

under forward bias above v�10 and at low T under reverse
bias �Fig. 8�f��. These results show j�v2 or j�v1.5 with rec-
tification and a PTCR under trap-density gradient, when NA
distribution, v and �EC0−Et0� /kBT are proper and � is T
independent.

VII. COMPARISON WITH EXPERIMENTS

Experimental J-V characteristics of single crystals are
compared with the present theory for shallow-trap �Fig. 9�
and deep-trap cases �Fig. 10�. The sample for Fig. 9 is a
10-�m-thick �001�-oriented SrTiO3 single crystal with 0.2%
Cr grown by the floating-zone melting and has a capacitor
structure with Au electrodes on both surfaces. Details of the
sample are described in Ref. 8. This crystal was initially
highly insulating and became conductive upon repeated cur-
rent injections by an electric field �0.1 MV /cm. The ex-
periments on SrTiO3:Cr single crystals5,11,18 show that traps
or defects created by the injection thinned the Schottky bar-
riers enough to be regarded as ohmic contacts.1,30 In particu-
lar, the trap-density gradient is experimentally confirmed.9

One of the J-V characteristics in high-resistance states after
these treatments is shown in Fig. 9�a�, and those in Fig. 9�d�
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(a) (d)NA (x) 0.01Nt(x) NA (x) = 0.01Nt(0)

1000010000 1000010000

jj jj

300K 300 K
0 300K 0 300 K
0 50K 0 50 K50K 50 K

20K 20 K
3000 0 30002

20K
5000 0 5000

20
-3000 0 30002 2 -5000 0 50002 23000 0 3000-v v2 5000 0 5000-v v2v v v v

(b) ( )
300 N -(x) = 0 01N(x) N -( ) 0 01N(0)
(b) (e)
300 NA(x) = 0.01Nt(x) 200

NA
-(x) = 0.01Nt(0)

( ) ( )
300 A t 200 A ( ) t( )200

j j

0

j

0

j

0 0
300K

0
300K300K 300K

50K 50K50K 50K
20K 20K-300
20K -200 20K

30 0 30
-300

1 5 1 5 30 0 30
200

1 5 1-30 0 30v1.5 v1.5 -30 0 30v1.5 1.5-v v -v vv v v v
(c) (f)( ) ( )

100100
100100

j j

N -( ) 001N( )

j

N -(x) =001N(0)

j

NA
-(x)=0.01Nt(x)

NA(x) =0.01Nt(0)A( ) t( )
v=10 1 v=10

1 v=10 1 v 10
31 v=3 v=3v 3

003 v=003v=0.03 v=0.03

10 100 10 100T(K)10 100T(K) 10 100T(K)T(K) ( )

FIG. 8. �Color online� T dependence of J-V characteristics in
j-v2 ��a� and �d�� and j-v1.5 plot ��b� and �e�� and T dependence of
j at different v. NA

−�x�=0.01 Nt�x� and NA
−�x�=0.01 Nt�0� in �a�–�c�

and �d�–�f�, respectively. In �c� and �f�, the thick and thin lines
correspond to the forward and reverse characteristics, respectively,
and the reverse characteristics for v=0.03 are out of scale and are
not shown.

FIG. 9. �Color online� Theoretical �solid lines� and experimental
�open circle� J-V characteristics of Au /SrTiO3:Cr single crystal/
Au. �b� and �c� are replots of �a�, and �e� and �f� are replots of �d�.
Two experimental data point at each V, which are overlapped, are
those during increasing and decreasing V. The fitting parameters are
Vbi2=1.2 mV, Jbi2=0.82 �A mm−2, and G=100 for �a�–�c� and
Vbi2=110 mV, Jbi2=0.23 �A mm−2, and G=1000 for �d�–�f�.
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are measured before Fig. 9�a� and exposed to the injection
less than the state of Fig. 9�a�.

In Fig. 9, the trap distribution is expected to remain un-
changed during the measurement of J-V characteristics be-
cause the maximum applied voltage and maximum current
density are less than one tenth of those used to change the
resistance. In Fig. 9, the J-V curves of the increasing and
decreasing V overlap, and the J-V curves remain the same
during repeated measurements. This proves that the trap dis-
tribution remained unchanged. In addition, the low tempera-
ture enables an acute detection of surface-limited conduction
processes, if they exist. When rectification is due to the sur-
face, linearity should be observed in the log J−V�

�� : constant� plot, at least under one bias polarity for V
�kBT /q, which is 0.4 mV at 4.5 K. In Figs. 9�b�, 9�c�, 9�e�,
and 9�f�, the distinct nonlinearity in the Schottky and
log J-V� plots ��=1 /4−1� contrasts with the excellent lin-
earity of the J-V1.5 plot and the J-V2−J-V plot of both the
forward- and reverse-bias characteristics. Therefore, the J-V
characteristics in Fig. 9 are incompatible with surface-
limited processes. It should be noted that the conventional
explanation of J-V1.5 such as the ballistic transport �Child-
Langmuir law� or spherical geometry30 is inapplicable to the
present experiments.

The shape of the experimental J-V characteristics indi-
cates that the J-V characteristics are consistent with the
shallow-trap case of the semianalytical solution with the n0
�Nt �Fig. 9�a�� and constant-n0 �Fig. 9�d�� approximations.
The observation that the sample had metallic T dependence
at low T after an extremely intensive injection also suggests

that these traps are shallow. The theoretical J-V characteris-
tics are in excellent agreement with experimental curves over
two or three orders of magnitude of the current density. The
free parameters for the fittings are two scaling factors
�Jbi2 ,Vbi2� and the trap-density gradient G because �i� the
results are independent of ��0� for ��0��1, �ii� 
k and rk in
Eqs. �4� and �5� are calculated from G, and �iii� Nt�0� ap-
pears only in Jbi2 and Vbi2 �Appendix C�. The expressions for
Jbi2 and Vbi2 show that an alternative set of parameters can be
n0�0��−1�0�L2 /	, ���0� /L3, and n0�L�, where trap free � is
regarded as a material constant.

We examine the numerical consistency of the fitting pa-
rameters and compare with the experimental trap-density
gradient, which are obtained from another SrTiO3:Cr single
crystal exhibiting a small rectification.9 Assuming 	=104	0
�	0: vacuum permittivity� with trap-free mobility �
=104 cm2 V−1 s−1 for SrTiO3 at 4.5K,51,52 ��0�=10−9 and
n0 /Nt=10−9, we obtain Nt�0�=1.8�1017 cm−3, Nt�L�=1.8
�1019 cm−3, and L=0.065 �m for Fig. 9�a� and Nt�0�
=1.6�1016 cm−3, Nt�L�=1.6�1019 cm−3, and L=1.9 �m
for Fig. 9�d�. These parameter sets are nonunique: for ex-
ample, n0 /Nt=10−8, ��0�=10−6, and L=0.65 �m can be an-
other set for Fig. 9�a�. These numbers appears in acceptable
ranges. In particular, L is regarded as the length of the region
having a finite trap-density gradient; the J-V characteristics
for trap distributions with and without a constant high-trap-
density region or with a valley �Figs. 3�a�–3�d�� are almost
the same �Appendix A�. Furthermore, the estimated Nt val-
ues are favorably compared with the injection-induced in-
gap density of state of �2–8��1017 /cm3 eV at EF.18 X-ray
absorption spectroscopy has confirmed the trap-density gra-
dient in a SrTiO3:Cr single crystal showing a small rectifi-
cation and found that the average G is approximately 3.9 This
number is consistent with the average G of 1.3–3.7, which is
the value averaged over the spot size �5�5 �m2� with use
of the above fitting parameters for Fig. 9�a�.

The sample of Fig. 10 is a 70-�m-thick BiFeO3 single
crystal with 2�2 mm2 in-plane dimensions with its normal
in the direction of one of principal axes of the pseudocubic
cell. It has a capacitor structure with �0.6-mm-diameter
thick circular Au electrodes on both surfaces. The details of
the sample and measurements are described in Ref. 4. Owing
to weak BiO chemical bonding, Bi-based ferroelectric oxides
contain many traps,53 especially at the surface, which would
yield ohmic contacts. The maximum field of 1 kV/cm used in
Fig. 10 may not be sufficiently low to retain the original trap
distribution, because the Bi-O bonding is weak and, indeed,
the voltages �10 kV /cm are found to markedly change the
J-V characteristics. This would explain why the theoretical
fitting to one polarity branch is excellent but the fitting to
both polarity branches with one fixed set of fitting param-
eters is less good.

The experimental J-V characteristics in Fig. 10 �open
circles� show evident rectification, which resemble that of
typical diodes. Choi et al.4 concluded that the observed uni-
directionality originated from the bulk part. The theoretical
calculation same as those in Sec. VI agree well with the
experimental data under both forward and reverse bias. The
parameters of the calculation are G=75 and EC−Et
=450 meV �solid lines� or G=100 and EC−Et=410 meV

FIG. 10. �Color online� Comparison of the theoretical �solid
lines� and experimental �open circles� J-V characteristics of Au
electrode/BiFeO3 single crystal/Au electrode at 300 K. The experi-
mental are from supporting material of Ref. 4.
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�dashed lines� with Nt�0�=1017 cm−3, NA
−�x�=0.01Nt�x�, NC

=1019 cm−3, T=300 K and two scaling factors.
An additional example is the J-V characteristics of a

BaTiO3 / �La,Sr�2CuO4 film on SrTiO3 single crystal, which
has an indium electrode of 0.3 mm2 area �Fig. 11�.54 The
transmission electron microscopy observations showed de-
fects and dislocations asymmetrically distributed along the
thickness. The indium/BaTiO3 contact is expected to be
nearly ohmic at high T because indium has a low work func-
tion and BaTiO3 film is n type. Consequently, the J-V char-
acteristics above 400 K markedly deviate from the surface-
limited conduction �Fig. 11�c��. These observations and the
linearity in the j�v2 plot �Fig. 11�b�� indicate that the J-V

characteristics are dominated by the bulk-limited conduction.
The semianalytical solution for shallow traps provides an
excellent fitting with the parameters of Vbi2=0.016 mV,
Jbi2=1.3�10−5 �A mm−2, and G=240.

Another example is the rectifying J-V characteristics of
compositionally graded ferroelectric films, which should
have a trap-density gradient owing to the structure.25 By re-
plotting the original data, we find a j�v1.6 relationship for
the forward bias at low voltage and for the reverse bias.
These behaviors are inconsistent with the surface-limited
conduction but consistent with the present theory. The other
example is the J-V characteristics that showed a very small
rectification and were originally assigned to a resonant
tunneling.55 By replotting the original data, we find excellent
j�v1.5 relationship below VTFL at all T, which the present
theory explains well. Here, J-V characteristics of both tun-
neling and SCLC �v�1� are T independent or only weakly
dependent on T �Fig. 7�. Furthermore, by replotting the origi-
nal data showing the rectifying J-V characteristics of tobacco
mosaic virus,56 we find the j�vm relationship �m=1.7–2�,
which indicates that the present theory can explain the recti-
fication and the PTCR in this system.

The purpose of the study of the SrTiO3 single crystals in
Fig. 9 was to clarify whether reversible switching can occur
without ferroelectricity or defects because all the previous
studies were for thin films of ferroelectrics and
paraelectrics1,5,7,13,14,19 and defects and dislocations are in-
evitable in thin films. Here, the observation of the polariza-
tion �PS� switching7 is insufficient to prove that the PS
switching causes the resistance switching because we find
that the current injection in the ferroelectrics often accompa-
nies PS switching. Because the SrTiO3 crystal are paraelec-
tric above 50 K and exhibit excellent reversible resistance
switching with a long retention and a high reproducibility at
300 K,8 the resistance switching is explicable without PS.

VIII. CONCLUSION

By regarding the bases of SCLC as generic macroscopic
descriptions of bulk drift conduction providing the electro-
static consistency, we formulated the conduction under a
trap-density gradient. Both semianalytical and numerical re-
sults show bulk-originated unidirectional current flow, i.e.,
rectification under a trap-density gradient and are in excel-
lent agreement with the experimental J-V characteristics
�Figs. 9–11�.

The J-V characteristics are ohmic and bidirectional at
low-level injection, i.e., at V�Vbi2, but exhibit unidirection-
ality above V�Vbi2 �Figs. 5–8�. The major requirements for
clear unidirectionality are a large trap-density gradient �G
�1�, a small n0 /nt0, i.e., a small �, and a not too large
applied voltage of V�Vbi2. In addition, NA

−�x��Nt�x� type
NA

− distributions enhance the unidirectionality. The condition
for a small � is the substantial presence of unionized traps,
and for ��1, the rectification ratio is independent of �. The
unidirectional J-V characteristics originating from the differ-
ence in VTFL for forward and reverse bias closely resemble
those of the standard diodes and are difficult to distinguish
from them.

FIG. 11. �Color online� Theoretical �solid lines� and
experimental �open circles� J-V characteristics of
In /BaTiO3 / �La,Sr�2CuO4 /SrTiO3 at 420 K in �a� linear, �b� J-V2,
and �c� Schottky plot. This theoretical plot is tentative because the
consideration of the effect of the surface may be needed. Two ex-
perimental data point at each V, which are overlapped, are those
during increasing and decreasing V. The theoretical curves are for
��0�=0.01 in the n0�Nt approximation.
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In addition, the trap-density gradient induces a positive-T
coefficient of resistance �Figs. 7 and 8� and evident J�V1.5

characteristics �Figs. 5–8�. The J�V1.5 characteristics appear
near V�Vbi2 and are augmented by a heavy compensation,
i.e., a large NA

− /Nt ratio. Therefore, new mechanisms differ-
ent from original proposals can be possible25,55,56 �Sec. VII�.

The essential difference between the present unidirection-
ality and the conventional rectification exists in the J-V char-
acteristics at a large V, in particular, V�VTFL:J�V2 and J
�exp�−aV� /kBT� �a ,� : constant�, respectively. However, the
rigorous proof of this experimental property is usually com-
plicated, because assumption �2� in Sec. III is only satisfied
for a small V and a low injection. Indeed, in our experiments,
the hysteresis-free J-V characteristics exhibiting rectification
show mostly the relationship J�Vm �1�m�2, typically m
�1.5�. Here, the absence of J-V hysteresis is the criterion for
satisfying assumption �2� and eliminating dielectric relax-
ation in the J-V characteristics. Nonetheless, the use of a
high V can provide nonrigorous verification. Numerous J-V
characteristics resembling Fig. 8 may have remained unre-
ported because the TFL transition is similar to the breakdown
and is often irreproducible.

Electrical detection of the trap-density gradient is possible
because of the built-in potential 
bi. Equation �1a� is rewrit-
ten as q
bi=EC0�x�−EC0�0�=kBT ln�n0�x� /n0�0��. Therefore,
Fig. 1�c� indicates the existence of a small 
bi �kBT
�7kBT�, which should yield a photovoltaic effect under il-
lumination. Indeed, Choi et al.4 reported a photovoltaic ef-
fect in the samples used for Fig. 10.

The semianalytical solutions �Eqs. �4�–�7��, which are
verified by the numerical solutions, are useful for practical
fitting and excellently fit the experimental data. For shallow-
trap case, three parameters are required in practice: the scal-
ing factors �Vbi2 ,Jbi2� and G. Here, T dependence can be
included in the scaling factors. Moreover, semianalytical so-
lution yields a reasonable fitting even for kmax=2 �Appendix
A�, which substantially facilitates the use of Eqs. �4� and �5�.

Because SCLC is a generic macroscopic description of
conduction, it is compatible with elementary processes. Un-
der assumption �2� in Sec III, the high-field characteristics
would be outlined by the competition between the TFL tran-
sitions and the field dependence of �. The inclusion of the
field dependence of � into SCLC is studied by Grekov and
Sukhorukov for a Pool-Frenkel case57 and is discussed in
Appendix D for a variable range hopping case.

Because an intensive injection changes trap distribution,
electric stimulus-induced change in both conduction and rec-
tification is also expected to exist universally. This universal-
ity is consistent with the universal existence of the resistance
switching in various materials such as metal oxides, nonox-
ide semiconductors, polymers, and virus �references in Refs.
7 and 8�
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APPENDIX A: J-V CHARACTERISTICS FOR OTHER
TRAP DISTRIBUTIONS

The realistic trap distributions are one of Fig. 3�b�–3�d�
but yield essentially the same results as Fig. 3�a�. Figure
12�a� is for the valley-type trap distribution, which consists
of two exponential distributions, and is calculated numeri-
cally similar to Sec. VI. The minimum of Nt is at x=L /2, and
Nt�0�, Nt�L /2�, and Nt�L� are 1017 cm−3, 1015 cm−3, and
1019 cm−3, respectively, which gives Nt�L� /Nt�0�=G=100.
The parameters except for those in caption are the same as
those for Fig. 5. The three J-V characteristics of the valley-
type trap distribution in Fig. 12�a� should be compared with
those of exponential distributions in Fig. 5 �dashed lines in
Fig. 5�a� and solid and dashed lines in Fig. 5�b��. For the
same G, Figs 3�a� and 3�d� yield essentially the same J-V
characteristics.

In addition, Figs. 12�b�, 12�c�, 13�a�, and 13�b� are calcu-
lated by semianalytical solutions, Eqs. �4� and �5�, for

FIG. 12. �Color online� J-V characteristics for variations in Nt

distributions, Figs. 3�b�–3�d�. �a� Same plots as Fig. 5 for valley-
type trap distributions �Fig. 3�d�� with the same parameters
��Nt�L� /Nt�0��=100� and the same normalization except for EC

−Et=100 or 500 meV and �=0.01 or 0.9 in NA
−�x�=�Nt�x�. ��b� and

�c��: J-V characteristics by semianalytical solution, Eqs. �4� and �5�.
�b� Solid lines for Fig. 3�a� vs other lines for Fig. 3�b�. �c�: solid
lines for Fig. 3�a� vs other lines for Fig. 3�c�. The dashed and dotted
lines correspond to the length of the flat region being 10% and
100% of that of the gradient part in Fig. 3�b� or 3�c�, respectively.
The solid and dashed lines are almost overlapped. The length L
used for the normalization of J and V is that of the gradient part. j
of the dashed and dotted lines is rescaled by 1.26 and 5.55, respec-
tively, so that the ohmic part is aligned to that for the solid lines.
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shallow-trap case with �0=0.01. The J-V characteristics in
Figs. 12�b� and 12�c� are for exponential trap distributions
with and without a low- and high-Nt flat region �Figs.
3�a�–3�c�� with G=100, respectively, and are almost the
same. The J-V characteristics in Fig. 13 are for linear trap
distributions, which are defined by a constant Nt,k−Nt,k−1 in
Fig. 3�a�, and for an abrupt-step trap distribution �Fig. 3�e�,
kmax=2�. These J-V characteristics are almost the same as
those with the same parameters for exponential trap distribu-
tions �Fig. 3�a��.

APPENDIX B: CONSTANT-n0 AND n0ÊNt

APPROXIMATION

In the two-level model represented by NA and Nt, we de-
rive the relationship between n0 and Nt for graded distribu-
tion of shallow traps with �k�1. We first assume that the
energy levels of traps are independent of x, which means
NA,k

− �Nt,k. To start with, we consider a virtual state where
each segment is separated by an infinite distance, and denote
the free and trapped carrier density in this state as n>0,k and
n> t0,k, respectively. In this state, the charge neutrality Nt0,k

+

−NA,k
− −n>0,k=Nt,k−NA,k

− −n>0,k�1+�k
−1�=0 exists in each seg-

ment because n>0,k /n> t0,k=n0�x� /nt0�x�
�k. This charge neu-
trality gives n>0,k=g−1N�1−NA,k

− /Nt,k� / �1+�k�. Therefore, n>0,k
is constant �n>0� in the lowest approximation for �k�1 be-
cause NA,k

− /Nt,k is independent of k. In a higher order of
�k , n>0,k increases with Nt,k because n>0,k=Nt,kg

−1N�1
−NA,k

− /Nt,k� / �g−1N+Nt,k� by �k�N /gNt,k.

When all the segments are joined and diffusion starts, the
carrier density in the segment with a high Nt,k decreases and
that in the segment with a low Nt,k increases, until 
bi is
formed. 
bi is high at high Nt,k’s �Fig. 1�c�� because the
charge density is positive at high Nt,k and negative at low
Nt,k. Consequently, Eq. �1a� shows that n0�x� in the segment
with a high Nt,k is higher than that with a low Nt,k. For n>0,k
=n>0 , n0�x�=n>0 also after the diffusion, which is the
constant-n0 approximation and the lowest approximation for
�k�1. The next-to-lowest order approximation of n0�x� is
n0,k=�Nt,k, where � is a constant �the n0�Nt approximation�.
This approximation is sufficient for the present purpose be-
cause our main results do not depend on the details of the
n0�x� profile. These results are favorably compared with nu-
merical results in Fig. 2. In addition, positive n0−Nt correla-
tions occur by constant NA,k

− and negative NA,k
− −Nt,k correla-

tions. Therefore, the situations for the n0�Nt approximation
would widely exist.

The above charge neutrality before diffusion NA,k
− =Nt,k̇

−n> t0,k �1+�k� yields NA,k
− �Nt,k for shallow traps with �k

�1 because n> t0,k�Nt,k by Eq. �1b� with Et0−EF�kBT
+ln g. After the segments are joined and diffusion starts, this
quasiequality holds approximately, because Nt,k and NA,k

− are
unchanged, and nt0,k, which changes by diffusion, is a frac-
tion of Nt,k. For deep traps, the same arguments based on
infinitely separated segments show that Ak�Nt,k is an accept-
able approximation: the lowest approximation is n0,k=n>0 and
Ak
Nt,k

+ /n0,k shows Ak�Nt,k.

APPENDIX C: HOW TO FIT DATA AND FACILITATION
OF FITTING

The assumption of the injecting ohmic electrodes is only
approximately correct. In the two-terminal measurements,
the J-V characteristics are given by V / �RC1�V�+RB�V�
+RC2�V��, where RC1 and RC2 are contact resistances and RB
is the resistance of the bulk part. RB, RC1, and RC2 depend on
V. This formula shows that the J-V characteristics are regu-
lated by the dominantly resistive part at given a V range.
Because RC1 and RC2 depend exponentially on V, the regu-
lating part changes critically with V, and the assignment of
the regulating part is meaningful only for a given V range.

The fitting procedures are as follows: �1� estimate the ex-
ponents �m� under forward and reverse bias of experimental
J-V curves and determine the v range. �2� Estimate Jf /Jr at
the same 
V
 of forward and reverse bias. �3� Find an appro-
priate Nt,k max /Nt,1 value by combining this Jf /Jr and the
exponents—for a given Nt,k max /Nt,1. �4� Finally, scale the
theoretical J-V curve so that one point of one of the bias
polarities agrees with the experimental J-V curve. Here,
abrupt two-step kmax=2 distributions �Fig. 3�e�� substantially
simplify the calculation and yield J-V curves �Fig. 13�b��
comparable with those with kmax=� �Fig. 4�a��. Typical val-
ues of the normalizations Vbi2 and Jbi2 are

Vbi2 = 18�n0�0�/1011 cm−3��L/10−5 cm�2�10−5/��0��/

�	/�100 � 8.9 � 10−14 F cm−1�� �mV� ,

and

FIG. 13. �Color online� Theoretical J-V characteristics of the
forward- and reverse-bias branches for the shallow-trap case calcu-
lated by semianalytical solution, Eqs. �4� and �5�, for linear and step
Nt distribution �Figs. 3�a� and 3�e��. All the conditions and param-
eters are the same as those in Fig. 4�a� except for �a� linear Nt

distributions and �b� a two-step Nt distribution and constant-n0 ap-
proximation. Insets show the v dependence of m in j�vm.
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Jbi2 = 46�n0�0�/1011 cm−3���/100 cm2 V−1 s−1�

��Vbi2/18 mV�/�L/10−5 cm� ��A mm−2� .

The T dependence of J-V characteristics for shallow-trap
case of semianalytical solution is obtained by considering the
T dependence of n0�0� and � in Vbi2 and Jbi2. Suppose that
n0�0� at T=T0 is obtained from the fitting, then n0��0� at T
=T� is given by n0��0�=n0�0�exp�−�E�T�� /T�+�E�T0� /T0�
owing to Eq. �1a�, where �E�T�= �EC0�0�−EF�T�� /kB. Be-
cause Vbi2�n0�0� and Jbi2�n0

2�0�, V�exp�−�E�T�� /T�� and
J�exp�−2�E�T�� /T��. In the lowest approximation, �E�T�
is constant.

APPENDIX D: COMPATIBILITY WITH VARIABLE
RANGE HOPPING

SCLC and variable range hopping processes can be com-
patible. Under low electric fields for homogeneous electron
distributions, variable range hopping is described by

J = 2q2R2�phN�EF�exp�− 2�R − W/kBT�E�x� , �D1�

where R, �ph, N�EF�, �, and W are hopping distance, hopping
frequency related to the phonon spectrum, electron density of
states at EF, decay factor, and energy difference between two
states for hopping, respectively.58

When the electron distribution n�x� is inhomogeneous, we
assume that the electron density near Fermi level N�EF�kBT
is proportional to n�x�, so that J is proportional to n�x�. The
comparison of Eq. �D1� with J=qn�x��E�x� indicates that
Eq. �D1� is a special case of J=qn�x��E�x� with � indepen-
dent of E�x�. Therefore, the SCLC J-V characteristics are
expected. Because Eq. �D1� yields the T dependence exp�
−X /T1/4� �X is a constant�, this T dependence can coexist
with these J-V characteristics of SCLC. At high fields, Eq.
�8� changes to J=� exp�−� /E1/4�x��E�x� �� ,� : constant�.58

Because this V dependence is far sharper than V2 depen-
dence, we expect that the J-V characteristics follow
exp�−� /E1/4�x��, which explains the results by Karg et al.18
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