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Owing to the large sizes involved, most calculations of the electronic properties of graphene and its frag-
ments involve empirical tight-binding models restricted to nearest-neighbor interactions only. Such approaches
fail to predict key electronic and magnetic properties, however, and rely on assumed geometries. While
alternative approaches based on density-functional theory are much more successful in predicting properties,
they are often computationally prohibitive to apply. We introduce a simple third-nearest-neighbor �-only
tight-binding approach that maintains the computational efficiency of the empirical method while achieving the
accuracy of the density-functional methods to which it is parametrized. It yields both nuclear geometries and
electronic structures of graphene fragments, providing an efficient and accurate replacement for traditional
tight-binding models of graphene.
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I. INTRODUCTION

Until its fabrication a few years ago,1 graphene was con-
sidered a starting point for theoretical investigations of
graphite, fullerenes, and carbon nanotubes. Since, graphene
has become a promising research topic in its own right.2,3

Apart from graphene’s potential for technological
applications,2,4,5 a most intriguing aspect is that its electronic
structure around the Fermi energy can be approximated by
the Dirac equation for massless particles.6,7 Thus effects
known from quantum electrodynamics have counterparts in
graphene.5 The most common way to derive the approxi-
mated Dirac equation is to start from a first-nearest-neighbor
tight-binding �TB� �Hückel� model.3 The nearest-neighbor-
only model gives a linear dispersion relation at the Fermi
energy3,8

E�q��� � � vF�q� � , �1�

where the momentum q� is measured with respect to the cor-
ners of the Brillouin zone and the Fermi velocity is vF
=3d /2t1, with t1 the nearest-neighbor coupling and d the
nearest-neighbor distance. If interactions up to third-nearest
neighbors are included, the dispersion relation is still linear
around the Fermi energy but the Fermi velocity is vF
=3d /2�t1−2t3�, where t3 is the third-nearest-neighbor �3nn�
coupling.9 However, away from the Fermi energy the agree-
ment between the nearest-neighbor-only tight-binding and
density-functional theory �DFT� � bandstructures is rather
poor. Interactions up to third-nearest neighbors are necessary
to reproduce the DFT calculations accurately over the entire
Brillouin zone.10

While for infinitely extended graphene the first-nearest-
neighbor model gives in principle the same result as the
third-nearest-neighbor model in the vicinity of the Fermi en-
ergy, this is not the case if the sheets are truncated. The
electronic structure around the Fermi energy depends mark-
edly on the boundaries associated with the edges of these
graphene fragments or ribbons and changes significantly
with the specific tight-binding model employed. Thus in the

single-parameter nearest-neighbor-only tight-binding model
infinite armchair ribbons of width 3m−1 with m an integer
are metallic.11 The same ribbons, however, have band gaps if
DFT is employed.12 The optimized geometries show a short-
ening of the bond length between hydrogen passivated car-
bon atoms along the armchair edge by roughly 3.5%. Em-
pirically incorporating these changes in bond length by
increasing the corresponding nearest-neighbor coupling by
12% opens a band gap.12 However, it might not be straight-
forward to apply the changes in the coupling to more
complex geometries.

That the distortion is not the only effect influencing the
band gap was shown by White et al.9 Their calculations of
the electronic structure of 3m−1 armchair ribbons with all
distances set to the same length display no metallic character.
They show that formation of an energy gap can be obtained
by inclusion of third-nearest-neighbor interactions in the
model. Nevertheless, the authors state that it makes little
difference whether the interactions are included explicitly or
simply absorbed into an effective nearest-neighbor coupling
in the tight-binding band structure of zigzag-edge ribbons.
On the contrary, examining band structures of non-Peierls’
distorted polyacene �the smallest zigzag ribbon�, there is an
obvious difference between nearest-neighbor-only and long-
range neighbor-interaction models.13,14 In the nearest-
neighbor-only model the asymmetric � band and the sym-
metric �� band become degenerate at the Fermi energy while
in the third-nearest-neighbor model they cross each other.
This crossing has a profound effect on the influence of onsite
defects in polyacene, as we will show in the end of the paper.
Instead of having a vanishing conductance at the Fermi en-
ergy due to the defect,15 the effect is a rather minor change in
the conduction properties.

Although shortcomings of the single-parameter tight-
binding model are well known, they are often applied to
graphene ribbons, ignoring that better tight-binding methods
to calculate the geometry and electronic structure of these
graphene ribbons do exist �Naval Research Laboratory Tight-
Binding �NRL-TB� �Refs. 16 and 17� and density functional
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based tight binding �DFTB� �Ref. 18��. Therefore, the ques-
tion to be answered is, why these methods are not used
widely. One of the reasons might be that the aforementioned
methods use nonorthogonal basis sets to increase the trans-
ferability of the parameters to other systems, making them
harder to interface to analytical approaches. Another might
be the inclusion of unimportant � orbitals, making the meth-
ods more computationally demanding than is essential. Here,
we set out to describe a simple self-consistent orthogonal
tight-binding �Hückel-type� model, similar to models suc-
cessfully applied to conjugated hydrocarbons in the early
stages of quantum chemistry.19

II. EXTRACTING AN EFFECTIVE � SYSTEM
FROM DFT

To develop the method, we start by analyzing DFT calcu-
lations of rectangular hydrogen terminated graphene sheets.
We therefore optimize the geometry and electronic structure
of ferromagnetic �FM� and antiferromagnetic �AFM� 8�17
and 10�19 graphene sheets with four unpaired spins. A
sketch of the sheets is given in Fig. 1. The optimization is
done with TURBOMOLE �Ref. 20� in a split valence plus po-
larization �SVP� basis set.21 The density functional used is
BP86.22,23 We further use the resolution of the identity �RI�
approximation.24,25

The electronic properties of graphene are dominated by
the � system around the Fermi energy. Hence, we extract the
� system from the full Hamiltonian. We Löwdin
orthogonalize26 the corresponding � Hamiltonian and obtain
its eigenvector coefficients c̃ik to construct the full-valence
density matrix for the individual spins �,

p̃ij
� = �

k

valence

c̃ik
� c̃jk

� . �2�

i and j indicate the basis function and k the molecular orbital.
Since we are interested in all states around the Fermi energy,

not just the occupied ones, we sum over all occupied and
virtual valence orbitals and exclude only the Rydberg orbit-
als. We then transform the Hamiltonian into a natural atomic-
orbital basis27 corresponding to the full-valence density ma-
trix. We therefore diagonalize the blocks of the full-valence
density matrix corresponding to individual atoms and use the
same transformation to change the basis of the � Hamil-
tonian. We partition the system into a minimal valence basis
and a Rydberg basis according to the occupation of the natu-
ral orbitals. By using the partitioning technique of Larsson,28

we incorporate the influence of the � Rydberg states on the
minimal � basis and thus produce an effective � Hamil-
tonian in a minimal basis.

III. BOND ORDER TO BOND-LENGTH CORRELATION

From the Hamiltonian matrix in this effective � basis, we
calculate the �actual� density matrix for � and � spins

pij
� = �

k

�k
�cik

�cjk
� , �3�

using the occupancy �k of molecular orbital k. Those ele-
ments that connect two different atoms i and j �the off-
diagonal elements of the density matrix� are the total bond
orders of spin �. The total bond order between two atoms is
the sum of the individual spin components pij = pij

� + pij
�. For

example, the bond order for a nearest-neighbor bond in infi-
nite graphene has previously been calculated to be 0.525.29,30

For conjugated hydrocarbons, the bond lengths Rij are ap-
proximately linearly dependent on the total bond orders Pij
= pij

eq for equilibrium geometries.19,31–33 Thus, we plot the
sum of the moduli of the bond orders of � and � spins
against the interatomic distance for graphene sheets up to
third-nearest neighbors in Fig. 2. Linear regression gives for
first-nearest neighbors

Rij = 1.5729 Å − 0.26538 Å�Pij� , �4�

for second-nearest neighbors

x

y

1 2 3 4 ... nn-1n-2n-3

1

2

3
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FIG. 1. Sketch of the graphene sheets. The sheets are given as
m�n, where m is the number of zigzag rows and n the number of
carbon atoms per zigzag row.
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FIG. 2. �Color online� Bond length Rij vs absolute values of the
bond order Pij between atoms i and j for a 10�19 graphene sheet
and a 8�17 graphene sheet extracted from DFT. The results for the
ferromagnetic 10�19 graphene sheet are indicated by black circles,
the ones for the antiferromagnetic 10�19 sheet are shown as red
crosses. Green squares correspond to the ferromagnetic 8�17 sheet
and blue diamonds to the antiferromagnetic 8�17 sheet. The lines
are linear fits for first-, second-, and third-nearest neighbors. The
red dashed line is the fit to the first-nearest neighbors
�Rij =1.5729 Å−0.26538 Å�Pij��. The blue dotted line is the fit to
the second-nearest neighbors �Rij =2.4828 Å−0.10867 Å�Pij��.
The green solid line is the fit to the third-nearest neighbors
�Rij =2.9511 Å−0.49474 Å�Pij��.
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Rij = 2.4828 Å − 0.10867 Å�Pij� , �5�

and for third-nearest neighbors

Rij = 2.9511 Å − 0.49474 Å�Pij� . �6�

The relations for the individual sheets are listed in the
supplementary information;34 these relationships reflect the
basic topology of conjugated hydrocarbons.

The relation for first-nearest neighbors given by Coulson
and Golibiewski31 in 1961

Rij = 1.517 Å − 0.180 Å�Pij� �7�

was obtained by fitting to experimental measurements of
bond lengths of ethylene, benzene, and graphite and varies
somewhat from the one obtained here from DFT calculations
of graphene sheets. A similar linear relation also in common
use35 is due to Dewar and Gleicher.36 Our relation �Eq. �4��
gives a rather large value of 1.573 Å for the single bond as
compared to these results and, for example, to the observed
C-C distance in ethane, 1.536 Å.37 Applied to benzene,
where the bond order is 2/3 and thus the bond length deter-
mined from Eq. �4� would be 1.396 Å, which is in good
agreement with the experimental value of 1.397 Å.38 The
bond length of infinite graphene is perceived to be 1.434 Å
again close to the experimental nearest-neighbor bond length
of 1.422 Å in graphite.39 Our relationship also underesti-
mates the double bond length in ethylene, 1.308 Å com-
pared to the observed value of 1.339 Å. Hence the method
works very well for intermediate-strength bonds typical of
graphene fragments but slightly overestimates single bond
lengths and slightly underestimates double bond lengths.

IV. COUPLINGS

In Fig. 3, we plot the coupling �also called resonance
integral or hopping� against the interatomic distance. Exam-
ining the results, it is obvious that the absolute values of the
second-nearest-neighbor couplings are smaller than the third-
nearest-neighbor ones. This is an effect of the geometry
manifesting itself through the orthogonalization of the DFT
Hamiltonian.

By fitting the first-nearest-neighbor couplings as exponen-
tially decreasing with distance, we have noticed that the
third-nearest-neighbor couplings correlate well. Thus, we in-
clude the third-nearest-neighbor interactions in the fits shown
in Fig. 3. We further classify the couplings by the number of
nearest neighbors of the atoms connected by the coupling
element. Since carbon atoms in graphene sheets have either
two or three first-nearest-neighbor carbon atoms, we get
three different combinations. Fits to the individual sets are
shown in the figure and their functions are given in the
supplementary information.34 Our main goal, however, is to
keep the parametrization as simple as possible and we, there-
fore, fit all the first- and third-nearest-neighbor couplings to a
single exponential, which is shown as the dashed line in Fig.
3. The function describing the fit to all of the data is

Hij = − 27.973 eV e−1.5463/Å Rij . �8�

This relation is put into its historic context in the Appendix.
The second-nearest-neighbor couplings can be separated

into two different categories. The couplings between atoms
with two nearest neighbors along the zigzag edge are around
+0.08 eV for � spins and around +0.06 eV for � spins in
the ferromagnetic case while all other second-nearest-
neighbor couplings are around +0.2 eV. Notice that these
couplings enter with a positive sign. We plot the second-
nearest-neighbor couplings directly as a function of the bond
order in Fig. 4. The bond order connecting two neighboring
zigzag-edge atoms is for � spins lower than −0.049 and for �
spins larger than 0.051.

V. ONSITE ENERGIES

Starting from the Pople-Nesbet equations40 in an orthogo-
nal atomic �-orbital basis

H�C� = C���, �9�

we can approximate the diagonal Hamiltonian matrix ele-
ments by neglecting all but those orbitals coming from the
same spatial orbital 	. Thus we get

�� = H


� � �0 − ��0.5 − q


��� �10�

with

�0 = H


1 + 0.5� ,
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FIG. 3. �Color online� Couplings Hij vs interatomic distance Rij

of ferromagnetic and antiferromagnetic graphene sheets of size 10
�19 and 8�17 with atoms i and j. Couplings between atoms each
having two nearest neighbors �2-2� are shown in black. Couplings
between one atom with two nearest neighbors and one with three
nearest neighbors �2-3� are colored in red. Couplings between at-
oms each having three nearest neighbors �3-3� are blue. The lines
are exponential fits to the first- and third-nearest-neighbor interac-
tions of the different sets. The symbols indicating the individual sets
are listed in the supplementary data �Ref. 34�. The fit to the com-
bined data is shown as a dotted orange line.
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FIG. 4. �Color online� Second-nearest-neighbor couplings vs the
spin component of the bond order. The individual symbols are given
in the Supplementary Information �Ref. 34�. The vertical dashed
blue lines point up where the steps appear.
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� = �d3r1�d3r2	

� �r�1�	


� �r�2� 1
r12

	
�r�1�	
�r�2� ,

the one-electron integrals H


1 =�d3r1	


� �r�1�H�r�1�	
�r�1�, and
����. The electron densities q


� are the diagonal elements
of the density matrix. If we treat �0 and � as parameters,
then the approximation is similar to the “� approximation”
commonly used in semiempirical electronic-structure
theories.19,41,42 To get the parameters �0 and � from DFT, we
plot the onsite energies of spin � against the local densities
of spin ��, which we extracted from the effective � Hamil-
tonian in Fig. 5. The results for FM and AFM sheets of size
10�19 and 8�17 are displayed in Fig. 5. For the FM
sheets, the fit to the onsite energies of the majority spins �
�blue solid line in Fig. 5� is

H


� = − 3.8140 eV − 3.9642 eV�0.5 − q�� �11�

and to the onsite energies of the minority spins � �blue
dashed line in Fig. 5� is

H


� = − 3.8106 eV − 2.1842 eV�0.5 − q�� . �12�

As can be seen from the bottom panel of Fig. 5, the onsite
energies of the AFM sheets can also be approximated by
those fits. The information about the individual sheets can
again be found in the supplementary information.34

The magnetic moment at the edge atoms can be estimated
from the figures as well. The difference between the electron
density of � and � spins at the zigzag edges is somewhere
between 0.2 and 0.3. The magnetization of the edge atoms is
therefore in between 0.2 and 0.3
B, which is consistent with
four electrons spread over 16 �8�17 sheet� or 18 �10�19
sheet� zigzag-edge atoms.

It can be anticipated from Fig. 5 that the antiferromag-
netic onsite energies �AFM can be approximately obtained
from the ferromagnetic ones �FM. This can be achieved for
rectangular sheets by applying the following transformation:

�AFM
� �y � 0� = �FM

� �y � 0�; �AFM
� �y � 0� = �FM

� �y � 0�
�13�

and

�AFM
� �y 
 0� = �FM

� �y 
 0�; �AFM
� �y 
 0� = �FM

� �y 
 0� ,

�14�

where y is the armchair direction �see Fig. 1� and y=0 is in
the center of the sheet. A more detailed comparison of the
onsite energies of the 10�19 graphene sheet is shown in the
supplementary information.34 The approximation is very
good at the edges. However, the values for the onsite ener-
gies of the ferromagnetic sheet are somewhat closer to the
average value than the ones of the antiferromagnetic sheet in
the vicinity of the center.

VI. GEOMETRY OPTIMIZATION

The calculation starts from an initial coordinate file and
sets up an initial Hamiltonian. The onsite energies are deter-
mined from Eqs. �11� and �12�. The couplings between first-
and third-nearest neighbors are calculated from Eq. �8�. The
couplings between second-nearest neighbors are +0.02 eV
in the initial step.

From this initial Hamiltonian the bond order and electron
density are calculated. By applying the bond-order bond-
length correlations �Eqs. �4�–�6��, the bond orders are turned
into distances. Since we have distances between up to third-
nearest neighbors, the geometry of a graphene sheet is gen-
erally overdetermined. Therefore, we perform a least-squares
fit of the coordinates of the atoms to the distances. We weigh
the first-nearest-neighbor distances a factor of 10 higher than
the second- and third-nearest-neighbor distances. From the
fitted set of coordinates the new Hamiltonian is created.
However, this time the second-nearest-neighbor couplings
are varied if the bond order is lower than −0.049 to
+0.08 eV and if the bond order is greater than 0.051 to
+0.06 eV. This procedure is iterated until no matrix element
of the Hamiltonian changed by more than 10−4 eV. In order
to achieve a faster convergence the bond order is damped.

VII. APPLICATION

To test the third-nearest-neighbor model described above,
we optimize the geometry of a 10�11 graphene sheet with
DFT, DFTB, and with the third-nearest-neighbor model and
compare the respective bond lengths. The results are summa-
rized in Table I. To allow for a fair comparison between the
tight-binding schemes, we calculated the sheet with function-
als and basis sets that enter into the different schemes. Since
we are using DFTB with parameters from the “mio-0-1”
Slater-Koster files, the PBE �Ref. 43� functional enters as the
basis for the parametrization while B3LYP �Refs. 22, 44, and
45� together with the 6-31G� basis set46 enters through the
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FIG. 5. �Color online� Onsite energy � of the � orbital of spin
�=� ,� vs 0.5 minus the spin component of the � electron density
q�� of spin ��=� ,� with ���� for FM and AFM graphene sheets
of size 10�19 and 8�17. The results for the 10�19 sheet are
displayed as black circles except the AFM � spins �black squares�.
The results for the 8�17 sheet are plotted as left pointing triangles
with the exception of the AFM � spins �red right pointing tri-
angles�. The blue solid line is a linear fit to the FM results of � spin
of both sheets. The blue dashed line is this fit to FM � spins. The
FM fits are also shown in the diagram of the AFM onsite energies to
highlight that the AFM onsite energies fall on the same lines.
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parametrization of the repulsive potential. The 3nn method
described in this paper was fitted to BP86/SVP results for
8�17 and 10�19 sheets and we see here that it can suc-
cessfully predict the BP86/SVP results for a 10�11 sheet,
the standard deviation of the nearest-neighbor distances be-
ing just 0.004 Å. Similarly, DFTB/mio-0-1 successfully re-
produces results from the methods used in its parametriza-
tion but interestingly slightly overestimates the bond length
compared with B3LYP/6-31G� while slightly underestimat-
ing those of PBE/SVP �the difference between the general-
ized gradient approximation functionals PBE/SVP and BP86/
SVP is marginal, however�. Most significantly, the standard
deviation between the B3LYP/6-31G� and PBE/SVP results
is 0.007 Å. Thus the uncertainty coming from the DFT func-
tionals is larger than the error of the approximations inherent
in either DFTB or the third-nearest-neighbor method de-
scribed here.

To show that the method gives good agreement not only
for graphene fragments but also for other planar hydrocar-
bons, we compare the bond lengths of some molecules in
Fig. 6. The root-mean-square error of the bond length of the
third-nearest-neighbor model compared to BP86/SVP for
hexabenzocoronene and the molecules shown in Fig. 6 is
0.012 Å. The model gives qualitatively the correct trend of
the bond lengths within each molecule. However, localized
double bonds are up to 0.038 Å �3%� shorter than in DFT
with the butadiene molecules �a, b, and c� being the worst
cases. This discrepancy could possibly be reduced by includ-
ing molecules with localized double bonds in the training set,
which consists here only of the 8�17 and 10�19 graphene
fragments. Nevertheless our intention is to get an optimized
description of graphene fragments, molecules in which
bonds are usually highly delocalized.

Another test is the band gap of armchair ribbons. As men-
tioned in the introduction, single-parameter nearest-neighbor
tight-binding models produce qualitatively different results
for the energy gap of armchair ribbons than DFT. Here, we
will demonstrate that the method described in this work re-
produces the gaps calculated with DFT quite accurately. We
therefore compare our results to the ones obtained by Son et
al.12 in Fig. 7. For comparison, we also include the findings

of Finkenstadt et al.16 with NRL-TB in the figure. Our results
are in very good agreement with the DFT results.

Finally, we investigate polyacene, an example of a zigzag
ribbon, calculating its geometrical and electronic structure
with DFT and with our third-nearest-neighbor model. The
resulting band structures and the associated densities of
states are plotted in Fig. 8, along with the band structure
from the effective � model and the density of states from the

TABLE I. Comparison of the nearest-neighbor bond lengths of a
10�11 graphene sheet calculated with different methods. The larg-
est deviation is found by comparing different DFT calculations
�PBE/SVP and B3LYP/6-31G��. The error coming from the ap-
proximations inherent in the tight-binding schemes is therefore
smaller than the uncertainty stemming from the implementations of
DFT. �bl is the standard deviation of the bond lengths. 3nn is the
third-nearest-neighbor model.

Method 1 Method 2
�bl

�Å�

DFTB/mio-0-1 B3LYP/6-31G� 0.004

DFTB/mio-0-1 PBE/SVP 0.006

3nn BP86/SVP 0.004

B3LYP/6-31G� PBE/SVP 0.007

PBE/SVP BP86/SVP 0.001
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FIG. 6. �Color online� Comparison of bond lengths in Å of
small molecules. The �black� results above the bond are obtained
with the third-nearest-neighbor model, the �red� numbers below the
bonds are calculated with BP86/SVP. The molecules are �a� trans-
1,3-butadiene, �b� cis-1,3-butadiene, �c� cyclobutadiene, �d� ben-
zene, �e� 3,6-bis�methylene�-1,4-cyclohexadiene, �f� styrene, �g�
trans-stilbene, �h� naphthalene, and �i� pyrene.
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FIG. 7. �Color online� Band gaps of armchair ribbons of varying
width calculated with the self-consistent third-nearest-neighbor
model. Circles indicate widths of 3m, squares widths of 3m+1 and
triangles widths of 3m+2, where m is an integer. The crosses indi-
cate the results obtained by Son et al. �Ref. 12� using DFT. The
diamonds are the findings of Finkenstadt et al. �Ref. 16� using
NRL-TB.
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nearest-neighbor-only model. Most significantly, the full
�-DFT, effective �-DFT, and 3nn methods agree well
around the Fermi energy EF, with important properties such
as the value of the density of states, its derivative �the Fermi
velocity�, and the location of the nearest resonances being
well reproduced; the band widths differ by up to 20%, how-
ever, but this inadequacy does not have significant experi-
mental ramifications. At the Fermi energy, the density of
states of the nearest-neighbor-only model is qualitatively
very different, revealing a profound inadequacy of this
overly simplistic approach.

To see the effect of the different methods on the predic-
tion of charge transport properties of polyacene, we apply the
Landauer formula,47 which relates the transmission to the
conductance. Thus we need to calculate the transmission
through polyacene. We do this by using the wave-function
matching method48,49 with speed ups as discussed by Sø-
rensen et al.50 The transmission of polyacene as predicted by
the different methods is displayed in Fig. 9. Since TURBO-

MOLE has currently no build-in periodic boundary conditions,
we extract the necessary information from the central part of
a long polyacene �2�33� molecule. To test our procedure
against results obtained with periodic boundary conditions,
we calculate the transmission of polyacene using SIESTA

�PBE density functional using the double zeta plus polariza-
tion �DZP� basis set� �Ref. 51� together with the wave-
function matching method. We also include results obtained
with a single-parameter nearest-neighbor-only tight-binding
method to show the deviation of the predictions of this
method from all other results. The single-parameter tight-
binding method has previously been used by Peres and
Sols15 to calculate the transmission of polyacene.

We notice that the results obtained with SIESTA and TUR-

BOMOLE are very similar. We can further see the effects dis-
cussed earlier in the paper. First, the transmission calculated
with the third-nearest-neighbor model predicts transmission

through the � system in a wider energy range around the
Fermi energy than DFT. Second, since the bands cross each
other near the Fermi energy in all but the single-parameter
nearest-neighbor tight-binding model there is a pronounced
region with a transmission of two around the Fermi energy in
these models.

We also looked at the influence of a defect in form of a
changed onsite energy of the edge atoms of one of the rings
in polyacene to compare our results to the ones done with the
nearest-neighbor-only tight-binding model in Ref. 15. The
transmission for the defective polyacene is shown in Fig. 10.
It can be seen that the dramatic effect existent in the single-
parameter nearest-neighbor tight-binding model is reduced to
a rather weak change in the more sophisticated model.

VIII. CONCLUSIONS

A simple, economic and accurate method is presented for
the calculation of the geometry and � electronic structure of
H-terminated graphene sheets. It is shown to reproduce the
geometry of samples with errors less than the differences in
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density of states �bottom� of polyacene calculated with different
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the results predicted by commonly used density functionals.
The calculated magnetic and electrical properties of the
graphene fragments are also found to agree well with those
evaluated by density-functional theory, reproducing key
properties such as the density of states at the Fermi energy,
Fermi velocities, energy differences required for conductance
changes, and the probability of electron transmission as a
function of incident energy. In particular, the model predicts
key features of the density-functional calculations, in agree-
ment with experimental observations, that are not reproduced
by simpler nearest-neighbor-only tight-binding approaches in
widespread use.52,53 These results are achieved while main-
taining the form and computational efficiency of traditional
nearest-neighbor-only models. Hence it provides a fast
method for the prediction of useful structural and electronic
properties of graphene fragments.
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APPENDIX: EXPONENTIAL DEPENDENCE OF THE
COUPLINGS ON THE DISTANCE

Historically, the relation between the couplings and the
distance was extracted from the a1g and b2u vibration modes
of benzene and deuterated benzene by Salem and
Longuet-Higgins.19,54 Based on the assumption of a nearest-
neighbor tight-binding model and a nearest-neighbor cou-
pling � exponentially dependent on the distance

� = ��0�e−r/a, �A1�

they have found the following relations connecting � to force
constants of benzene:

ka1g
=

2��req�
a2 �P�a� �A2�

and

kb2u
=

2��req�
a2 �P�a + 1� . �A3�

To compare our fitting procedure to the historic one, we cal-
culate the frequencies of the a1g and b2u vibration modes
with DFT and obtain from them the force constants55,56

needed in the expressions above. For the a1g mode, the com-
puted frequencies of benzene are �1=998.40 cm−1 and �2
=3115.47 cm−1. The frequencies of deuterated �d� benzene
are �1

d=951.40 cm−1 and �2
d=2313.12 cm−1. The resulting

force constants are k1=769.22 N /m, k2=528.85 N /m, and
k12=12.70 N /m. For the b2u modes, we get �14
=1371.79 cm−1, �15=1135.56 cm−1, �14

d =1367.12 cm−1,
and �15

d =806.05 cm−1 for the frequencies. The force con-
stants are k14=452.38 N /m, k15=77.58 N /m, and k1415
=33.16 N /m. The frequencies and force constants for the
a1g and b2u modes are reasonable.57,58

By using the DFT force constants for C6H6 and C6D6 and
the bond order bond-length correlation, we can calculate the
exponential dependence of the nearest-neighbor couplings �
on the bond length

��R� = − 35.8297 eV e−1.5521/Å R. �A4�

The equilibrium bond length of 1.396 Å has been used for
benzene. The coupling for zero bond length is somewhat
larger than the one we obtained from the exponential fit to
the first- and third-nearest-neighbor couplings of 10�19 and
8�17 graphene sheets. Although the exponential decay
agrees quite remarkably, the idea of a connection between
the vibration modes and a self-consistent tight-binding model
cannot be trivially generalized to arbitrary molecules within
a third-nearest-neighbor model.
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