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We study theoretically the simultaneous photoinduced two-particle excitations of strongly correlated systems
on the basis of the Hubbard model. Under certain conditions specified in this work, the corresponding transi-
tion probability is related to the two-particle spectral function which we calculate using three different meth-
ods: the dynamical mean-field theory combined with quantum Monte Carlo technique, the first-order pertur-
bation theory and the ladder approximations. The results are analyzed and compared for systems at the verge
of the metal-insulator transitions. The dependencies on the electronic correlation strength and on doping are
explored. In addition, the account for the orbital degeneracy allows an insight into the influence of interband
correlations on the two-particle excitations. A suitable experimental realization is discussed.

DOI: 10.1103/PhysRevB.81.195108 PACS number�s�: 79.60.�i, 32.80.Rm, 79.20.Kz, 73.20.At

I. INTRODUCTION

Correlation among electrons are at the heart of numerous
phenomena in condensed matter such as the metal to insula-
tor transition, the emergence of magnetic and orbital order-
ing, and high-temperature superconductivity.1–3 Much of to-
day’s understanding of the role of electronic correlation is
based on the analysis of the single-particle quantities, e.g.,
the spectral functions and how these compare with experi-
mental data.4 Among others, a wide spread experimental
technique for this purpose is the angle-resolved �single� pho-
toemission spectroscopy �ARPES�.4 On the other hand, two-
particle quantities are essential for the study of important
phenomena such as the optical conductivity.5 Two-particle
properties may be classified in general into those associated
with the particle-hole, the hole-hole, and the particle-particle
channels; different techniques are appropriate to access each
of these channels. Probably the most studied one of them is
the particle-hole channel6 that governs a number of material
properties such as the dielectric and the optical response.5

The particle-particle and the hole-hole channels have been
much discussed in connection with the Auger electron spec-
troscopy �AES� �Refs. 7–18� and the appearance-potential
spectroscopy �APS�.17,19 Early experimental works were fo-
cused on simple compounds where the two-particle spectra
are well modeled by a convolution the single-particle spec-
tra. For AES or APS from correlated systems several theo-
retical works7–9,16–18,20–22 have been put forward for the
evaluation of the two-particle spectral functions, mostly
based on the Hubbard model.23–25 Cini and Sawatzky7,18 ob-
tained in their pioneering works exact results for a com-
pletely filled band within the single-band Hubbard model. A
number of subsequent studies for arbitrary fillings were con-
ducted, mainly using the equation of motion method and the
ladder approximation �LA�. For example, in the work of Dr-
chal, the equation of motion method was employed to calcu-
late the spectral density of the two-particle valence bands9

based on an approximate single-particle spectral function.
Other works10,17,26 utilized the ladder approximation but dif-
fer in their treatments of the single-particle quantities. In the
work of Treglia et al.,26 the one-particle spectrum is calcu-

lated by evaluating the second-order perturbation with re-
spect to the Coulomb interaction and with an additional local
approximation in order to simplify the calculation. Drchal
and Kudrnovsky10,17 employed the self-consistent T-matrix
approximation which is valid at a low electron occupancy.
Seibold et al.21 proposed an approach based on the time-
dependent Gutzwiller approximation �TDGA� �Ref. 22� to
calculate the electron pairing; they compared also their re-
sults with those of the bare ladder approximation �BLA�.

These works are mostly discussed in connection with AES
and/or APS. Recently, an experimental two-particle tech-
nique has been developed in which two �indistinguishable�
valence-band electrons are emitted and detected with well-
defined momenta k1 and k2 and specified energies �1 and �2
upon the absorption of one single �vacuum ultraviolet �vuv��
photon27–30 �the method is abbreviated by �� ,2e�, i.e., one
vuv photon in, two electrons out�, as schematically shown in
Fig. 1. Excitations by a single electron or positron have also
been realized and a variety of materials ranging from wide
band-gap insulators to metals and ferromagnets29,31 have
been investigated. The �� ,2e� technique is the extension of
ARPES to two particles; from a conceptional point of view
one may then expect to access with �� ,2e� the two-particle
spectral properties of the valence band, as indeed shown be-
low explicitly. A distinctive feature of �� ,2e� is its vital de-
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FIG. 1. �Color online� A schematics of the one-photon two-
electron �� ,2e� experiment. Upon the absorption of a vuv photon
with an energy �� two electrons are excited into the vacuum and
simultaneously detected at the energies �1 ,�2 and the momenta k1

and k2.
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pendence on electronic correlation,32 i.e., the two electrons
cannot be emitted with one single photon in absence of elec-
tronic correlation. The reason for this is the single-particle
nature of the light-matter interaction in the regime where the
experiments are performed. Theoretical studies concentrated
hitherto on weakly correlated systems such as simple
metals.33–37 Consequently the two-particle initial state was
modeled by a convolution of two single-particle states with
the appropriate energies. The latter were obtained from con-
ventional band-structure calculations based on the density-
functional theory within the local-density approximation.
Correlation effects were incorporated in the construction of
the interacting two-particle states of the emitted photoelec-
trons in the presence of the crystal potential. An exception to
this approach is the study of �� ,2e� from conventional su-
perconductor where the BCS theory was employed for the
initial state.38 While the theory reproduced fairly well the
observed experimental trends, the previous theoretical for-
mulation will certainly breaks down when dealing with
strongly correlated materials such transition metal oxides or
rare-earth compounds with partially filled bands. In particu-
lar, features akin to the metal-insulator transitions are not
captured with previous studies. Experiments for such mate-
rials are currently in preparations. Hence, it is timely to in-
spect the potential of �� ,2e� for the study of strongly corre-
lated systems.

In the present work, we will present a general theory for
the two-particle photocurrent and inspect the conditions un-
der which the experiment can access information pertinent to
the particle-particle spectral function in the presence of
strong electron correlations. In particular, we will inspect the
particle-particle excitation in Mott systems at the verge of
the metallic-insulating transition. For the description of the
properties we employ the Hubbard model23–25 and a nonper-
turbative technique, namely, the dynamical mean-field theory
�DMFT� �Refs. 39 and 40� in combination with quantum
Monte Carlo �QMC� technique.41 For the calculations of the
two-particle Green’s function we will adopt three different
ways: the first one is by calculating the single and the two-

particle spectral functions in the loop of DMFT-QMC self-
consistently. This ensures the fulfillment of the sum rules. In
the second and the third approaches we basically follow the
methods mentioned above for the treatment of AES and APS,
i.e., we consider the self-convolution �first-order perturba-
tion� and the LA. We use however the single-particle spectral
function as obtained from DMFT.

The paper is structured as follows: in Sec. II we present a
general expression for the two-particle photocurrent and ex-
pose its relation to the two-particle Green function. In Sec.
III the problem is formulated within the two-band Hubbard
model and a discussion is presented on how to disentangle
matrix elements information from the ground state two-
particle spectral density. In Secs. IV and V we present and
analyze the results for the single and two-band Hubbard
model and compare the results obtained at various levels of
approximations. Section VI concludes this work.

II. CORRELATED TWO-PARTICLE PHOTOEMISSION

The �� ,2e� setup is schematically shown in Fig. 1. These
experiments are conducted in the regime where the radiation
field is well-described classically and the time-dependent
perturbation theory in the light-matter interaction and the
dipole approximations are well justified �low photon density
and low photon frequency �50 eV�. An essential point for
our study is that the operator DN for the photon-charge cou-
pling is a sum of single-particle operators, i.e., DN
��i=1

N A�ri� . p̂i �in first quantization� where A is the vector
potential and p̂i is the momentum operator of particle i. This
implies that DN cannot induce direct many-particle processes
in the absence of interparticle correlations that help share
among the particles the energy transferred by the photon to
one particle which then results in multiparticle excitations. A
mathematical elaboration on this point is given in Ref. 32
and also confirmed below. To switch to second quantization
we write �=�mm��Em��Nv−2��A · �p1̂+p2̂��Em�Nv−2�	P2.
The two-particle photocurrent �J�, summed over the nonre-
solved initial and final states n and m is determined accord-
ing to the formula33,34

J =
�0

Z
�
Nv

�
mn

e−�En�Nv���Em�Nv − 2����En�Nv�	�2	
E − �Em�Nv − 2� − En�Nv���

=
�0

Z
�
Nv

�
mn,m�m�

e−�En�Nv�Mmm�
† Mmm��En�Nv��P2

†�Em��Nv − 2�	�Em��Nv − 2��P2�En�Nv�		
E − �Em�Nv − 2� − En�Nv��� . �1�

Here we introduced the short-hand notation Mkl for the matrix elements. The photon energy is denoted by E=
��, and � is the
inverse temperature. Furthermore, �0=4�2� /��, and � is the fine structure constant. P2=c�c� stands for the �hole-hole�
two-particle operator acting on the state with Nv particles with the energy En�Nv�. Z is the partition function. Under certain
conditions specified below �the sudden approximation and for high photoelectron energies�, the variation in the matrix
elements when we vary �� as to scan the electronic states of the sample is smooth in comparison to the change in the matrix
elements of P2. Furthermore, the diagonal elements of Mkl are dominant �see below for a justification�, i.e., Mkl�M. In this
situation Eq. �1� simplifies to �� is the density operator�

J =
�0

Z
�
Nv

�
mn

e−�En�Nv��Mmm�2�En�Nv��P2
†�Em�Nv − 2�	�Em�Nv − 2��P2�En�Nv�		
E − �Em�Nv − 2� − En�Nv��� ,
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J =
�0M2

2�Z
�
Nvn
� dte−�En�Nv��En�Nv��eiHtP2

†e−iHtP2�t = 0��En�Nv�	eiEt,

J =
�0M2

2�Z
� dt tr��P2

†�t�P2�t = 0��eiEt,

J =
�0M2

2�
� dt 
 P2

†�t�P2�t = 0� � eiEt. �2�

On the other hand, from the spectral decomposition of the
two-particle Green’s function42 one infers for the two-
particle spectral density P��� the relation

P��� =
�0

Z
�
Nv

�
mn

e−�En�Nv���Em�Nv − 2��P2�En�Nv�	�2

��1 − e−���	�� − Em − En� . �3�

Comparing this equation with Eq. �2� we conclude that under
the assumption Mkl�M the photon-frequency dependence of
the two-particle photocurrent is proportional to the two-
particle spectral density, i.e.,

J��� �
e��

e�� − 1
P��� . �4�

We recall that the two-particle spectral function obeys the
sum rule

� P���d� = �n↑n↓	 . �5�

A useful auxiliary quantity is partial double occupancy �up to
a frequency ��

Kp��� = ��

d�P��� . �6�

III. THEORETICAL MODEL

The aim here is to explore the potential of the two-particle
photoemission for the study of the two-particle correlations
in matter. To do so we start from the generic model that
accounts for electronic correlation effects, namely, from the
doubly degenerate Hubbard Hamiltonian. In standard nota-
tion, we write23–25

H = − �
ij��

t�ci��
† cj�� + U �

i�

ni�↑ni�↓ + U� �
i���

ni1�ni2��,

�7�

where t� describes hopping between nearest-neighbor sites
i , j for the orbitals �� �1,2�, U ,U� stand for the intraorbital
and interorbital Coulomb repulsion, respectively. The above
Hamiltonian does not account for the exchange interaction,
pairing, and spin-flip processes. The Hubbard model even for
a single band provides an insight into a number of phenom-
ena driven by electronic correlations such as the metal-

insulator transition which cannot be described usually within
a static mean-field theory or within an effective single-
particle picture such as the Kohn-Sham method within the
density-functional theory. Within the Hubbard model and for
the case of infinite connectivity d→� the self-energy turns
local.39,43 This fact has lead to the development of a powerful
computational scheme for the treatment of electronic corre-
lation, namely, the DMFT. For the practical implementation
of DMFT it is essential to map the many-body problem onto
a single impurity Hamiltonian with an additional self-
consistency relations.44 Some of the possible applications of
DMFT have been discussed in Ref. 40, e.g., the long-
standing problem of the metal-insulator transition in the
paramagnetic phase is described in a unified manner. From a
numerical point of view, solving the impurity Hamiltonian is
a challenging task in the self consistency of DMFT. For this
purpose, QMC methods are shown to be an effective ap-
proach which we will follow in the present work with the
aim to calculate the single and the two-particle Green’s func-
tions. We note here that since QMC provides only the data
for imaginary times or equivalently at certain Matsubara fre-
quencies, we need to perform analytical continuation to ob-
tain the dynamical quantities. This we do by means of the
maximum entropy method that we implemented using the
Bryan method. A detailed discussion on this topic can be
found in Ref. 45.

A. Matrix elements

Now we have to discuss the validity range of the approxi-
mation �Eq. �3�� that enabled us to assume for the matrix
elements Mkl�M. We consider the experiments in the con-
figuration shown in Fig. 1. The photoelectron momenta k1
and k2 are chosen to be large such that the escape time is
shorter than the lifetime of the hole states. For the descrip-
tion of the photoemission dynamics we concentrate therefore
on the degrees of freedom of the photoemitted electrons
�which amounts to the sudden approximation�. The energy
conservation laws then read �cf. Fig. 1�


�� − � = �1 + �2, �8�

where � is the initial �correlated� two-particle energy. The
single-particle energies � j are measured with respect to the
edge of the valence band �or with respect to the Fermi level
� in the metallic case�. The matrix elements, e.g., Mmm�,
reduce in the sudden approximation to two-particle transition
matrix elements Mif. We write the high-energy final state
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�with energies �1 ,�2� as a direct product of two Bloch states
��k� characterized by the wave vectors k1 and k2, i.e.,

�k1,k2
�r1,r2� = �k1

�r1��k2
�r2� . �9�

1. Intersite ground state correlation

Correlation effects enter in the initial two-particle states.
In absence of spin-dependent scattering �as is the case here�
it is advantageous to couple the spins of the two initial states
to singlet �zero total spin� and triplet �total spin one� states.46

In the paramagnetic phase and if the two electrons are not
localized on the same sites �they are mainly around Ri and
R j with i� j� the initial state is a statistical mixture of singlet
and triplet states. The radial part we write then as47

���r1,r2� = ��1�r1 − Ri��2�r2 − R j�

� �1�r2 − Ri��2�r1 − R j�����r2 − r1 + Ri − R j��

= ��
�0����r2 − r1 + Ri − R j�� . �10�

The “plus” �“minus” sign� stands for the singlet �triplet�
channel. We note that since the transition operator D2 is sym-
metric with respect to exchange of particles, there is no need
to antisymmetrize the final state �Eq. �9��. In Eq. �10� the
function �1�r1−Ri� and �1�r2−R j� are single-particle Wan-
nier orbitals localized at the sites Ri and R j, respectively. Ni
is the number of sites and ���r2−r1+Ri−R j�� is a �dynami-
cal� correlation factor which we assumed to be dependent on
the relative distance between the electrons. The part ��

�0�

contains correlation effects due to exchange only. Due to the
localization of the Wannier states around the ionic sites, we
expect ���r2−r1+Ri−R j�� to decay with increasing r1/2 �for
i� j�. Since we are dealing with a lattice periodic problem
we can express the Wannier functions as the Fourier trans-
form of the Bloch states, i.e., ��r−Ri�= 1

Ni
�q

1BZ�q�r�e−iq·Ri

�1BZ stands for the first Brillouin zone�. With this relation
and exploiting the orthogonality of the Bloch states we ob-
tain upon straightforward calculation the following expres-
sion for the matrix element:

Mif = �� f�A · �p̂1 + p̂2���i	

�
1

Ni

�

q1q2

1BZ

exp�− iq1 · Ri − iq2 · Rj�Mq1,k1

�1� 	q2,k2
� 1 ↔ 2����Ri − R j��

+� d3r1d3r2�k1,k2

� �r1,r2���
�0�A · �p̂1 + p̂2����r2 − r1 + Ri − R j�� . �11�

In this equation Mq1,k1

�1� is the matrix element for the conven-
tional single photoemission from the Bloch state �q1

, i.e.,
Mq1,k1

�1� = ��k1
�A · p̂1��q1

	. In deriving the first term of Eq. �11�
we assumed ���r2−r1+Ri−R j�� to vary smoothly with r1/2,
i.e., ���r2−r1+Ri−R j������Ri−R j�� for i� j. For 3D peri-
odic structure the first two terms of Eq. �11� vanish �momen-
tum and energy conservation laws cannot be satisfied simul-
taneously�. Hence, the transition matrix element is
determined by the third term of Eq. �11�, more precisely by
the gradient of the correlation factor �. If this gradient is
smooth on the scale of the variation in �k1,k2

and/or ��
�0�

then the matrix element vanishes all together since �k1,k2
and ��

�0� are orthogonal. Explicitly we find in this case

Mif �
1

Ni
�
q1q2

1BZ


exp�− iq1 · Ri − iq2 · R j�	q2,k2
	q1,k1

� 1 ↔ 2�

A · �p̂1 + p̂2����r2 − r1 + Ri − R j���r2=0=r1
. �12�

From this expression we conclude that the matrix elements
diminish for decreasing correlation �, in fact for i� j this
contribution to the pair emission is expected to be marginal
due to screening.

2. On site ground-state correlation

The major contribution to the matrix elements is expected
to stem from the onsite emission Ri=R j. Only the singlet
state is allowed in the single-band Hubbard model. To obtain
the two-particle wave function we assume in line of the Hub-
bard model that the two electrons scatter via a contact poten-
tial of strength U when they are on the same site. The wave
function then reads as

�̄��r1,r2� = ��1�r1 − Ri��2�r2 − Ri� + �1�r2 − Ri��2�r1 − Ri��

��̄��r2 − r1�� = �̄�
�0��̄��r2 − r1�� . �13�

�̄�
�0� describes the on-site two electron states that include

exchange correlation only. Using only �̄�
�0� yields zero

matrix elements as shown above. To obtain an expression
for the correlation factor �̄��r2−r1�� �that tends to 1 for
U→0� we switch to relative R− and center of mass coordi-
nates R+. We find that �̄��r2−r1�� is determined by the
integral �Lippmann-Schwinger� equation ��0 is
determined by asymptotic conditions� �̄�R−�=�0
+U�d3R−�gr�R− ,R−��	�3��R−���̄�R−��, where gr is the retarded
Green’s function in the relative coordinate. For Eq. �13� we
find then the explicit solution
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�̄��r1,r2� = �̄�
�0��r1,r2��1 + Ūgr�r1 − r2,0�� ,

Ū =
U

1 − Ugr�0,0�
. �14�

The key point inferred from this relation is that the two-

particle transition amplitude increases as U increases ��̄�
�0�

does not contribute to the matrix elements� and it vanishes

for U→0. It should be noted here that in general Ū is a
dynamical quantity, as evident from its definitions.

To summarize this section we can say for fixed momenta
k1 ,k2 of the photoelectrons and for a given U, the frequency
dependence of the two-particle emission, J���, is related to
the frequency dependence of the spectral function P���. For
a given �, the matrix elements vary with U; they contribute

a Ū2 dependence to J���. The additional U dependence of
J��� that stems from the spectral function will be inspected
below.

B. Two-particle Green’s function

For our purpose we utilize the general expression for the
two-particle propagator

�pp
��,��,���,����q,i�m�

=� �T�ck,�������cq−k,�,����cq−p,�,�
† �0�cp,����

† �0�	 ,

�15�

where � is a short-hand notation for −�kp��0
�d�ei�m�, �m

= 2m�
� is the Matsubara frequency, and T� is an ordering op-

erator for �. The local version of the above two-particle
Green’s function or the onsite s-wave electron pair which
will be directly calculated in the self-consistency loop of
DMFT-QMC is

�pp��� = �T��
†�����0�	, where � = c↑c↓. �16�

The evaluation of the two-particle propagator may be per-
formed with the aid of the perturbation expansion using the
standard diagrammatic theory by selecting the diagrams ap-
propriate for the physical problem at hand. For the Hubbard
model with the short-range interaction we utilize the ladder-
type diagrams. For the single-band Hubbard model �an ex-
tension to the multiorbital case is straightforward�, the two-
particle propagator reads as

�pp�q,i�m�

= −
1

�
�
ki�n

G�k,i�n�G�q − k,i�m − i�n���k,q,i�m� .

�17�

We selected the ladder diagrams and summed to all orders.
Since in our model the Coulomb interaction is static and
independent of the wave vector, the vertex function � reads
as

��k,q,i�m�

= 1 −
U

�
�
pi�n�

G�p,i�n��G�q − p,i�m − i�n����p,q,i�n�� ,

�18�

meaning that the right hand side of this relation is indepen-
dent of k.17 Thus we obtain

�pp�q,i�m� =
��q,i�m�

1 − U��q,i�m�
, �19�

where

��q,i�m� = −
1

�
�

p,i�n

G�p,i�n�G�q − p,i�m − i�n� �20�

is the two-particle Green’s function expressed in terms of the
full single-particle Green’s function. Performing standard
analytical continuation and evaluating the imaginary part of
the two-particle Green’s function one arrives at the following
expression for the two-particle spectral function:

P��� = Im��pp�q,� + i	�� . �21�

In order to evaluate the above equation, it is sufficient to
calculate the imaginary part of the two-particle propagator
���� and analytically continues it to real frequencies. This
yields

�i��� = C0�
−�

�

d��
−�

�

d�D���

��A��,��A�− �,� − ���1 − f��� − f�� − ���� ,

�22�

where �i��� stands for the imaginary part of ��i��, f��� is
the Fermi distribution function, and A�� ,��=
− 1

� Im� 1
�−�−���� � is the full interacting single-particle spectral

function. D��� is the free density of states and C0 is a con-
stant. The real part of the two-particle vertex is obtained via
the Kramers-Kronig relation, which follows from the causal-
ity condition. For the case of the degenerate Hubbard model,
it is straightforward to extend the above formulation where
now each Green’s function contains the composite orbital
spin index, �= �� ,��,

�pp
�,���q,i�m� =

��,���q,i�m�

1 − U��,���q,i�m�
. �23�

The two-particle propagator ��,���q , i�m� reads, in this case,
as

��,���q,i�m� = −
1

�
�

p,i�n

G��p,i�n�G���q − p,i�m − i�n� .

�24�

IV. SINGLE-BAND HUBBARD MODEL

An essential ingredient for the calculation of the two-
particle Green’s function �22� is the single-particle spectral
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function. The results of the spectral function obtained from
DMFT-QMC method for the single-band Hubbard model at
half filling and away from filling are presented in Fig. 2. In
the QMC calculation, the Hirsch-Fye41 algorithm is em-
ployed with the following parameters: the energy scale is set
by the bandwidth W=1. For the temperature we choose
T /W=0.05, the increment of time slices is ��� =0.5.
DMFT-QMC calculations are performed for the paramag-
netic phase and using the Bethe lattice for the free-state den-
sity in the self-consistency loop. At half filling �the left panel
of Fig. 2� the quasiparticle peak at the Fermi energy is the
dominant feature in the single-particle spectra in the weak
coupling interaction signifying a metallic behavior; the car-
riers are itinerant and a Fermi-liquid picture is appropriate.
With an increasing strength of electronic correlations, local-
ization sets in accompanied by a gradual disappearance of
the quasiparticle weight and the formation of a pseudogap.
Electron transfer between the two bands may occur, albeit its
probability is smaller than that in the previous case. As the
coupling strength further increases, the gap fully develops
indicating an insulating state.

The role of the double occupancy we inspect by studying
the quantity �n↑n↓	 calculated in the DMFT-QMC loop.
Evolving from the weakly interacting �metallic� case to the
strongly interaction �insulating� phase the double occupancy
is reduced,40 for more energy is required to overcome the
stronger repulsion whenever forming the double occupation.
The influence of dopant concentration on the MIT is demon-
strated by doping the insulating phase as depicted in the right
panel of Fig. 2. Contrasting with the results at half filling
with an interaction strength U /W=3, the spectral function in
this case shows a resonance peak at low energies testifying
that the system attains again a metallic character. This is
because the doping enhances the number of holes which in
turns increases the itineracy such that the electron can hop
from one site to the other.

Having commented on the generic single-particle proper-
ties of the single-band Hubbard model for Mott systems, we
turn now to the discussion of the particle-particle spectral

function. For small U /W one obtains an intense peak that lies
close to � /W=0. The origin of such features can be inferred
from the structure of the single-particle spectral function: P
in this case is well modeled by a convolution of two single-
particle spectral functions. A small increase in U /W leads to
a reduction in the spectral weight which shifts the peak to
higher energies �far from � /W=0�. As the interaction
strength further increases, the spectral weight decreases sig-
nificantly signaling a reduction in double occupation. This
argument is supported by the results of the integrated spectra
depicted in the inset of Fig. 3. In addition to the reduction in
the spectral weight, one also observes the formation of a gap
in the low-energy regime �near to the zero frequency� for
strong interaction. This two-particle gap resembles the one
that appears in the single-particle spectra �cf. Fig. 2� which is
the usual indicator for an insulating state. We argue here that
this is also a signal for the system in the insulating state from
the point of view of particle-particle excitations. As already
pointed out above, the reappearance of the low-energy reso-
nance as a function of the doping is a signal for the metallic
character and the associated behavior of the single-particle
spectral function. The same pattern is also observed in the
two-particle spectral function where the strongest peak oc-
curs in the lowest electron occupancy and decreases as the
Mott insulating phase is approached. Thus the two-particle
spectra also highlight the contribution of holes to the double
occupancy probability, and it is clearly supported by the re-
sults for the integrated spectra �see inset of Fig. 4�.

A. Relation to the (� ,2e) experiments

To connect the results of Fig. 3 to the �� ,2e� signal it is
decisive to recall the statements of Eqs. �8� and �14�: the
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FIG. 2. �Color online� The results of the DMFT-QMC for the
frequency dependence of the single-particle spectral function A���
for the single-band Hubbard model at half filling for various inter-
action strengths U �left panel� and for various electron occupancy at
U /W=3 �right panel�; for all cases we choose W=1. FIG. 3. �Color online� Two-particle spectral function as function

of the correlated two-particle initial energy � for various interaction
strengths. Calculations are performed within the self consistency
scheme of DMFT-QMC method. The large scale figure is shown in
inset �b�. Inset �a� shows the integrated spectra using Eq. �6�. Note
however, that the energy is measured with respect to the uncorre-
lated two-particle Fermi energy 2�.
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correlated two-particle initial energy that appears in Eq. �8�
and which is scanned in Fig. 3 is in the uncorrelated case
merely the sum of two single-particle energies �i��uncor
=�1+�2�, i.e., in the metallic uncorrelated case we expect
some spectral weight around �=0 in Fig. 3. For a finite U,
i.e., for a correlated system one requires more energy to
compensate for the repulsion of the Coulomb interaction.
This is the reason for the shift of the two-particle peak in Fig.
3 with increasing U. The same can be observed in the single-
particle spectral function where the distance between the two
Hubbard bands is approximately on the order of U /W. The
tendency of larger spectral density with decreasing U is not
reflected in the �� ,2e� signal J. In fact, the opposite will
occur. The reason for this is that according to Eqs. �2� and
�14� J is proportional to the product of the matrix elements
and the spectral function. On the other hand the matrix ele-
ments decrease with U �cf. Eqs. �11� and �14�� and in fact
vanishes for U→0 counteracting against the trend with U of
the spectral function P �cf. Fig. 3�. We stress however, that
the results shown in Fig. 3 are still relevant to the �� ,2e�
measurements in that, for a given U, the matrix elements are
hardly dependent on �.

B. Comparison between different approaches to the two-
particle spectral functions

To inspect the role of the ladder diagram summation �i.e.,
Eq. �19� with results in Fig. 5�b��, we compare with the
results �shown in Fig. 5�a�� of the first-order approximation
using Eq. �22� �i.e., with the convolution of the single-
particle spectra�. The results of the first-order approximation
show a smooth broad Gaussian-like feature in the spectra for
all interaction strengths. This is due to the self-convolution
that tends to wash out the character of the original function.
The presence of a gap in the two-particle spectra highlights
the difference between the weak and the strong coupling in-

teractions in agreement with the previous result of DMFT-
QMC and with the same energetic origin as discussed above.
That this correct energetic shift is reproduced by this simple
scheme is the result of using an accurate single-particle spec-
tral function. Another point is the evolution of the two-
particle spectra from the weak through the strong-coupling
limit and the associated behavior of the spectral weight. In
the scheme used in Fig. 5, the weight seems to be compa-
rable for all values of the interaction strengths except for
U /W=2 which originate from the low shoulder in the spectra
of Fig. 2. The reduction in the spectral weight is related to
the probability of the double occupancy. It is then conceiv-
able to infer that this scheme violates the sum rule for the
two-particle spectral function �which is dictated by the
double occupancy, see Eq. �5��. This is endorsed by the re-
sults for the integrated spectra shown in the inset of Fig. 5�a�.
The shift to higher frequencies is due to the presence of the
gap. No clear suppression is observed as in Figs. 3 and 4.

Having obtained the imaginary part of the first-order ap-
proximation we inspect the influence of the ladder diagram
summation on the two-particle spectra. The results are pre-
sented in Fig. 5�b�. In contrast with previous results obtained
in the first-order approximation, the spectra delivered by
DMFT-LA are nonuniform with smooth broad feature and a
satellite peak. For the weak interaction strength, the two-
particle spectra hardly depend on the Coulomb interaction
strength. As before no clear reduction in the spectral weight
is observed. Interesting features in the DMFT-LA scheme
emerge at higher interaction strengths, which from the point
of view of the single-particle spectra, is already the regime of
the insulating phase. Instead of suppressing the spectral
weight, the increases of the coupling interaction strength re-
sults in a narrow satellite peak. The integrated spectra de-
picted in the inset of Fig. 5�b� shed some light on this result.
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FIG. 4. �Color online� The same as Fig. 3 with the same nota-
tion, however we inspect here the two-particle spectral function
away from half filling for U /W=3 and for various electron occu-
pancies. Inset shows the integrated spectra according to Eq. �6�.

FIG. 5. �Color online� The frequency dependence of the two-
particle spectral function at half filling, calculated with the first-
order perturbation approximation �a� and with the full ladder ap-
proximation �b�. Various curves correspond to different interaction
strengths. Inset shows the integrated spectra. The single-particle
quantities are obtained from DMFT. Same notation and units as
Fig. 3.
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The integrated spectra within the ladder approximation ex-
hibit a suppression of the weight for higher frequencies in
contrast to results of the first-order approximation. We re-
mark that in the ladder approximation the suppression of the
integrated spectra is not related to a diminishing of the
weight of the two-particle spectral function but is associated
with the width of the spectra that become narrow as the
interaction increases. All in all we can conclude for these
results that the �� ,2e� technique is the appropriate tool for
testing the validity of approximate schemes for the two-
particle Green’s function.

The two-particle spectral function away from half filling
is depicted in Fig. 6 for various occupancies and for U /W
=3; calculations are performed within the first-order approxi-
mation and within the ladder approximation. No gap forma-
tion in the two-particle spectra takes place. This is consistent
with the behavior of the single-particle spectral function for
which the hole doping of the insulating phase stimulates the
formation of quasiparticles. In the first-order approximation,
one obtains the usual broad Gaussian-type structure that di-
minishes as a function of the dopant concentration. A some-
what similar situation is also observed for the results of
DMFT-LA. In the latter, however, one observes an intense
low-energy peak in the case close to half filling. The peak
decreases as the doping increases. The results of both these
approaches are in contrast to those obtained via DMFT
+QMC where the largest spectral weight is obtained for the
high doping concentration. Therefore, these results do not
reflect the fact that an additional doping leads to an increase
in the double occupancy which is clearly supported by the
sum rule results plotted in the inset of Fig. 6. Here one ob-
serves that the spectral function at the maximum value of the
doping obtains the smallest spectral weight. A similar finding
has been observed in Ref. 21 where the BLA has been uti-
lized. In their result, the decrease in the electron occupancy

also increases the peaks in the spectra, which they assume to
be a violation of the two-particle sum rule. On the other
hand, by using the time-dependent Gutzwiller approximation
the opposite situation occurs: the two-particle spectral weight
diminishes as the Mott insulating phase is approached, which
is in line with what we obtained above within the DMFT-
QMC.

V. TWO-BAND ISOTROPIC HUBBARD MODEL

The single-band Hubbard model on which we based our
above discussion is useful for systems with only a single
band being close to Fermi energy. To inspect the role of the
orbital degrees of freedom, which is known to be important
for the properties of strongly correlated systems, a multior-
bital model is needed. It is the aim of this section to study the
influence of the orbital degeneracy on the single- and two-
particle spectra.

The results for the single-particle spectral function within
the two-band Hubbard model are presented in Fig. 7. The
results are similar to those obtained within the single-band
Hubbard model �cf. Fig. 3�. The metallic phase shows an
intense quasiparticle peak that diminishes as the coupling
interaction becomes stronger. The formation of the gap for a
high interaction strength shows the existence of the insulat-
ing phase in this degenerate system. An essential point that
distinguishes the Mott transition in the single band from the
degenerate band case is the value of the critical coupling
necessary to obtain a dip in the spectral function. This be-
havior is well documented in the works of Ref. 48 employing
the Gutzwiller approximation. There, a relation has been es-
tablished between the critical coupling and the orbital degen-
eracy. From the orbitally resolved spectral function depicted
in the embedded figures, one also learns that each band un-
dergoes the same transition from metal into insulating phase.

FIG. 6. �Color online� The same as in Fig. 5, however we in-
spect here the role of varying the electron occupancy n at an inter-
action strength of U /W=3. �a� shows the first-order approximation
results whereas in �b� the predictions of the ladder approximation
are plotted.
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FIG. 7. �Color online� The DMFT-QMC results for the fre-
quency dependence of the single-particle spectral function A��� of
the two-band isotropic Hubbard model at half filling. Various curves
corresponds to different interaction strengths U in units of the band
width W �here W=1�. The insets show the orbitally resolved spec-
tral functions for the first �upper inset� and the second band �lower
inset�.
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For anisotropic bandwidth each band undergoes an indepen-
dent metal-insulator transition, a behavior coined as the or-
bital selective Mott transition.49

The results of DMFT-QMC calculations for the two-
particle spectral function are illustrated in Fig. 8 that con-
tains the two spectral functions of the total band �a� and the
interband �b�. From Fig. 8 we see that a small increase in the
Coulomb interaction in the weak-coupling regime hardly af-
fects the overall spectral weight. Furthermore, increasing the
interaction strength leads however to the reduction in the
spectra as well as to a shift of the dominant peak to higher
energy. The two particle spectral function of the total bands
from the first order approximation and the ladder approxima-
tion is depicted in Figs. 9�a� and 9�b�, respectively. As ex-
pected, the former approach delivers the broad Gaussian fea-
ture which is a consequence of the self-convolution. As the
interaction increases the spectral weight is shifted to higher
energies and the low energy gap becomes evident. In con-
trast, the results of ladder approach �see Fig. 9�b�� show an
enhancement of the spectral intensity as the interaction in-
creases. Despite the fact that a higher coupling is necessary
for the formation of the gap, the behavior of the spectral
function of the total bands for the two band Hubbard model
mimics that of the single band case �see Fig. 5�.

For the case of interband spectra, there is a clear signal of
the spectral weight reduction already in the metallic case. As
the insulating phase is approached, the two-particle spectra
show a double-peak structure. The two-particle spectra ob-
tained by means of the first-order approximation as well as
by the ladder approximation are shown in Figs. 10�a� and
10�b�, respectively. The behavior of the two-particle spectra
in the single-band Hubbard model obtained within the same
scheme �see Fig. 5� �e.g., the gap existence, absence of spec-
tral weight reduction� is also observed in the present case. In
the metallic case however there are features predicted by

both approximations namely a double-peak structure that dis-
appears in the insulating phase. Other notable features such
as the increase in the weight as the coupling strength in-
creases are present in the results of both methods. The inte-
grated spectra of the degenerate model indicate a violation of
the sum rule for the two-particle spectra by both the first-
order approximation and the ladder approximation. From the
three scheme: QMC-DMFT, first-order, and ladder approxi-
mations, the DMFT-QMC methods provides the more rea-
sonable predictions which practically always obey the sum
rule as a constraint on the two-particle spectral function. This
is because both the single and the two-particle propagators
are calculated on an equal footing in the self consistency
DMFT. An accurate single-particle approach when formulat-
ing the two-particle propagator17 does not however guarantee
the fulfillment of the sum rules. The use of an accurate ap-
proach in the single-particle spectra captures however perti-

FIG. 8. �Color online� The two-particle spectral function of the
degenerate Hubbard model at half filling as a function of the two-
particle initial energy � measured in units of W. The calculations
are performed by the DMFT-QMC method including �a� total bands
and �b� interband. The interaction strengths U are varied.

FIG. 9. �Color online� The same as in Fig. 8 for the total bands,
however we show in �a� the results of the first-order perturbation
approximation and in �b� those of the ladder approximation.

FIG. 10. �Color online� The same as in Fig. 9 for the interband
Hubbard model at half filling. The figure shows the results �a� of the
first-order approximation and �b� of the ladder approximation.
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nent features such as the gap opening in the insulating state
which is also observed in the result of DMFT-QMC.

VI. FINAL REMARKS AND CONCLUSIONS

We shall now comment on the possible implementation of
our proposal. It is a widely accepted wisdom that the single-
band Hubbard model can be employed to explain the results
of single-particle or particle-hole properties of vanadium ses-
quioxide V2O3. It is shown40 that the variation in the Cou-
lomb repulsion U is realized by changing the chemical com-
position or applying hydrostatic pressure. We therefore also
argue in this respect that the two-particle properties as we
have presented here can be accessed in the similar manner.
For the two-band Hubbard model, the results can be again
implemented to describe the physics of V2O3. In this case
one can investigate to role of the orbital degrees of freedom.
The inclusion of orbital degrees of freedom allows the appli-
cations of our model to wider class of systems. As for the
experimental geometry, our theory is limited by the fact that
the employed self-energy is local. Thus, our predictions are
best tested by fixing in Fig. 1 the momenta of the detected
electrons. What should be varied is then the photon energy
��. Since the momenta and the energies of the detected elec-
trons are fixed by the experiment, the only quantity which is
scanned is the initial correlated two-particle energy �. A
simulation of the experiments for varying momenta and fixed
� requires an explicitly nonlocal self-energy which goes be-
yond the validity of the present model.

To summarize, in this work we explored the potential of
two-particle photoemission for the study of two-particle cor-
relations in correlated systems. We identified the conditions
under which the two-particle photocurrent is related to the
two-particle spectral function. Calculations have been per-
formed within the framework of the single and the two-band
Hubbard model. We performed calculations and compared
the results of three different schemes DMFT-QMC, the first-
order perturbation, and the ladder approximations based on
the DMFT single-particle spectra. In the single-band case,
the two-particle spectral function evaluated with DMFT-
QMC is shown to be dependent on the double occupancy in
the system. As for the single-particle spectral function, an
increase in the electronic correlation strength results in sup-
pression of spectral weight of the two-particle spectra and in
an opening of a gap near zero two-particle frequency. The
first-order perturbation and ladder approximation calcula-
tions are qualitatively different from the DMFT-QMC pre-
dictions. A finding that can be directly tested by two-particle
photoemission spectroscopy. The inclusion of the orbital de-
generacy brings about an increase in the critical coupling and
additional interband contributions to the spectra; these fea-
tures should also be distinguishable by two-particle photo-
emission experiments.
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