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We report a metal-insulator transition in disordered graphene with low coverages of hydrogen atoms. Hy-
drogen interacting with graphene creates short-range disorder and localizes states near the neutrality point. The
energy range of localization grows with increasing of H concentration. Calculations show that the conduc-
tances through low-energy propagating channels decay exponentially with sample size and are well fitted by
one-parameter scaling function, similar to a disorder-driven metal-insulator transition in two-dimensional dis-
ordered systems.
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Graphene, a single layer of graphite, has its unique elec-
tronic structure with a zero gap and quasiparticles described
by massless Dirac fermions.1,2 The linear dispersion relation
near two inequivalent Brillouin-zone corners leads to very
unusual transport phenomena. Dirac fermions can perfectly
transmit through a potential barrier at normal incidence due
to the absence of backscattering,3 so called the Klein
paradox.4 The metallic conduction of graphene is robust
against long-range disorder, whose potential varies slowly on
the scale of the interatomic distance.5,6 Thus, Dirac fermions
cannot be generally localized by long-range disorder, in con-
trast to the Anderson localization theory,7,8 while a metal-
insulator transition of Kosterlitz-Thouless type was recently
reported in graphene with strong long-range impurities.9 On
the other hand, random short-range disorder induces the in-
tervalley scattering between the two valleys, eventually lead-
ing to localization.10,11

The chemical reaction of atoms and molecules with
graphene can give rise to a short-range disorder potential.
Several experiments reported that graphene undergoes a
metal-insulator transition by dosing with atomic
hydrogen12,13 or molecules such as NO2.14 At high coverages
of adsorbates, the electronic structure of graphene may be
significantly modified due to the change in hybridization
from sp2 to sp3. According to first-principles calculations,15

when all C atoms react with hydrogen, graphene turns into a
new insulating material with the band gap of about 3.5 eV,
known as graphane. Other theoretical studies showed that
chemisorbed molecules such as H and OH suppress the con-
ductivity on one side of the Dirac point and derive the sys-
tem further toward the localized state at higher adsorbate
concentrations.16 As the insulating behavior of hydrogenated
graphene was observed at substantially low doses,13 there is
other possibility that short-range disorder by hydrogen in-
duces a localized insulating state.12

In this Brief Report we perform numerical calculations to
investigate the localization behavior of disordered graphene
by hydrogenation using a simple tight-binding �TB� model.
To exclude the formation of a band-insulating graphene, we
consider low coverages of atomic hydrogen. We find that
conductances in a narrow range of energies near the Dirac
point are well described by one-parameter scaling function,
exhibiting a metal-insulator transition.

Our calculations are performed using a combined ap-
proach of the density-functional theory and the TB method.

As the electron conduction takes place by hopping along the
C � orbitals, we consider a single-band TB Hamiltonian to
describe interactions between graphene and hydrogen

H = − � �
�l,m�

Cl
†Cm + �

n

Hn, �1�

Hn = �Hdn
†dn − �H�Cpn

† dn + Cpn
dn

†� . �2�

Here ��=2.6 eV� is the hopping integral between the
nearest-neighbor C � orbitals, Cl�Cl

†� is the annihilation �cre-
ation� operator on the lth site of graphene lattice, �H is the
coupling strength between the C and H orbitals, �H is the H
on-site energy, dn �dn

†� is the annihilation �creation� operator
on the adsorbate site, and pn is the host site bonded to the H
atom. The parameters, �H�=5.72 eV� and �H�=0 eV�, are
determined by fitting to the first-principles band structure of
hydrogenated graphene. In first-principles calculations, we
use the generalized gradient approximation �GGA� �Ref. 17�
for the exchange-correlation potential and ultrasoft
pseudopotentials18 for the ionic potentials, as implanted in
the VASP code.19 The wave functions are expanded in plane
waves with an energy cutoff of 400 eV. We test various hex-
agonal supercells with different sizes, which contain up to
four H atoms, and find good agreements between the TB and
GGA band structures, without including the second nearest-
neighbor hopping parameter in the TB model.

To describe the transport properties of hydrogenated
graphene, we set up a device model such that disordered
graphene is sandwiched between two semi-infinite graphene
electrodes, as shown in Fig. 1. In the device region, a square-
shaped sample with the length L is assumed with periodic
boundary conditions imposed in the transverse direction to
remove the effect of the edge states in sample. For various
coverages, hydrogen atoms are placed on one side of
graphene because the TB approach cannot distinguish the
difference between both sides. For large systems, we use the
recursive Green’s function method20 to calculate the density
of states and the two-terminal conductance, gL=2 Tr�tt†�,
where t is the transmission matrix and the factor 2 accounts
for spin degeneracy.21

A single H atom on graphene breaks the sublattice sym-
metry, opening a band gap and creating a localized level at
the Dirac point. The wave-function amplitude of the local-
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ized state is zero in the same sublattice as the C atom bonded
to hydrogen, whereas it decays rapidly with distance from
the adsorbate in the opposite sublattice, similar to an ideal C
vacancy.22 This similar behavior results from the formation
of a covalent C-H bond involving the pz orbital of the C site
where H is adsorbed, effectively removing one C atom from
the lattice. If a small amount of H is adsorbed on graphene,
the formation of localized levels strongly depends on the
types of adsorption sites due to their unique wave-function
amplitudes. The densities of states and two-terminal conduc-
tances are compared for graphene samples with various H
densities �nH up to 10 %� in Fig. 2, where nH is defined as the
ratio of the number of adsorbates to the total number of the C
atoms in graphene. We consider two different configurations
for the positions of adsorbates, which are in the same sublat-
tice �A or B� or in both the A and B sublattices with equal
amounts. For each concentration, the adsorbate sites are cho-
sen at random with the H atoms on top of the host atoms. In
the former configuration, all the localized states induced by
adsorbates are positioned at the same energy, E=0 �Fig.
2�a��, because these states are decoupled in the same sublat-
tice. The van Hove singularities which appear at E= �� in
clean graphene become softened as nH increases. Although
the selective dilution of adsorbates is unlikely to occur, it is
interesting to note that adsorbates develop the gap opening.
The energy gap has a tendency to increase with increasing
nH.23 In the gap region, the densities of states are zero, ex-
cept for strong peaks by the localized states, and conduc-
tances are severely suppressed �Fig. 2�c��, indicating that hy-
drogenated graphene becomes a band insulator.

When adsorbates are random in both the A and B sublat-
tices, the localized states have nonzero wave-function ampli-
tudes at the opposite sublattice sites. Due to the level split-
ting by interactions, the gap opening is suppressed, with
several sharp peaks superimposed on the finite density of
states near the Dirac point. This feature is very similar to the
case of random vacancy defects.22 In the region of high en-
ergies, the variation in normalized conductances with energy
is similar to that for the H adsorption in the same sublattice,
regardless of the H concentration. The logarithmic plot of
normalized conductances shows clear differences, especially
in the low-energy region, where the finite density of states is
formed. The logarithmic conductances severely fluctuate, in-
dicating a signature of localization, as shown in Fig. 2�d�.
The energy range of fluctuating conductances grows with
increasing of the H concentration. In addition, although con-
ductances are larger than those for adsorbates in only one
sublattice, they are much suppressed due to scattering be-
tween the localized states.

To see more precisely the localization behavior of low-
energy states, we examine the hypothesis of one-parameter
scaling which has been widely used in two-dimensional �2D�
disordered electronic systems.8 In the scaling theory of local-
ization, we consider the intrinsic conductance g,24 which is
given by the relation, 1

g = 1
gL

− 1
2Nc

, where Nc is the number of
channels at the energy E and 1

2Nc
is the contact resistance.

Using the dimensionless conductance g, the scaling function
��� is defined as7,8,25

��g� =
d�ln g�
d ln L

. �3�

Here � . . . � denotes the ensemble average of ln g over con-
figurations chosen for the random distribution of adsorbates
in both the A and B sublattices of graphene sample with the
size L. We test various system sizes up to L=44 nm, which
contains 7.5�104 sites. For each adsorbate concentration in
a given sample size, we use 300–1000 configurations, which
ensure the numerical convergence in the average.

Figure 3 shows the variation in �ln g� with the sample size
for different energies to within 0.8 eV from the neutrality
point, in which the density of states is greatly affected by
adsorbates. When adsorbate densities are low, nH�0.5%,
conductances are slightly fluctuated due to small sample
sizes for L	20 nm �Figs. 3�a� and 3�b��. For nH=0.5%,
�ln g� remains nearly constant with increasing L, regardless
of the energy E in the vicinity of the Dirac point. This result
is consistent with the fact that the density of states is not
significantly affected at low densities of adsorbates, with

L

Lelectrode electrode

FIG. 1. �Color online� A device model for disordered graphene
with random hydrogen adsorbates between two semi-infinite
graphene electrodes.
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FIG. 2. �Color online� The densities of states for graphene
samples with hydrogen atoms randomly distributed on �a� the same
sublattice sites and �b� on both the A and B sublattice sites. The
normalized conductances, gL /gL

max, where gL
max is the maximum

conductance of clean graphene at E= ��, are plotted as a function
of energy in �c� and �d� for samples �a� and �b�, respectively. The
insets show the logarithmic plots of gL /gL

max. Lines with open
circles, triangles, squares, and filled circles correspond to the H
concentrations of 0.5%, 1%, 5%, and 10%, respectively, whereas
plain black lines are for pristine graphene.
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only sharp peaks at the Dirac point �Fig. 2�b��. As nH in-
creases to 1.0%, �ln g� with E=−0.2 eV starts to decrease
with L while no change occurs for higher energy channels.
The decreasing behavior of �ln g� with E=−0.2 eV becomes
significant for high adsorbate densities of 5% and 10%, as
shown in Figs. 3�c� and 3�d�. It is interesting to note that the
energy range, in which �ln g� decreases with L, increases
with increasing nH. For nH=10%, we find the linearly de-
creasing behavior of �ln g� for all the propagating channels
down to E=−0.8 eV, with different slopes. As the conduc-
tance decays exponentially with respect to the sample size,
the slope represents the inverse of localization length �
�.
The localization lengths are estimated to be in the range of
2–7 nm for nH=10%, exhibiting the increasing behavior with
the channel energy. This result indicates that the disorder
effect on conductance becomes more significant for low en-
ergies �Figs. 3�c� and 3�d��. In addition, for a given channel
energy, the localization length tends to decrease with increas-
ing nH. Thus, it is expected that a metal-to-insulator transi-
tion occurs as the adsorbate density increases. The charge
density plots for the conducting channels also show the char-
acteristics of localization. For hydrogenated graphene with
L=14 nm, the charge densities of the states around E=
−0.6 eV are compared for different adsorbate densities in
Figs. 4�a� and 4�b�. For the low density of 1%, the energy
states near E=−0.6 eV exhibits the extended charge densi-
ties over the whole sample. Thus, this channel has the me-
tallic conduction with the localization length much larger
than the sample size. As nH increases to 10%, the localization
is extended to higher-energy states, reducing the localization
length to a few nanometers. The localized behavior of the
energy states around E=−0.6 eV is clearly seen in the plot
of charge densities.

From the results for �ln g� in Fig. 3, the scaling function
��g� is drawn as a function of �ln g� in Fig. 4�c�. The calcu-
lated values for ��g� for different adsorbate concentrations
and different energies are well fitted by an one-parameter
function. For �ln g��1, ��g� is nearly zero, implying that

graphene is in the 2D metallic phase, in which conductance
is almost independent of the sample size. For �ln g�	−2, as
��g� is linearly proportional to �ln g� with a slope of 1, the
conductance follows the localization function, g�exp
�−L /
�, in the insulating phase. In the intermediate region,
−2	 �ln g�	1, ��g� is smoothly connected from the metal-
lic to insulating phase, satisfying the hypothesis of the scal-
ing function.

We point out that ��g� is always negative in Fig. 4�c�
while its value is very small for �ln g��0. Thus, the conduc-
tance tends to decrease continuously with increasing L, sug-
gesting that an infinitely large graphene with H adorbates
would act as an insulator. Note that our scaling function for
short-range disorders is very different from those obtained in
graphene subject to long-range disorders5,6 while it is similar
to that derived for strong long-range impurities.9 In the pres-
ence of long-range potential, the intervalley scattering of the
Dirac fermions is generally suppressed, resulting in the posi-
tive beta function which increases with decreasing g whereas
converges to zero for large g. Thus, the conductance in-
creases with sample size, robust against disorder, because
none of the states can be localized. In contrast, hydrogen
adsorbates in graphene act as short-range scatters and mani-
fest the intervalley scattering. Due to significant backscatter-
ing, the Dirac fermion states are localized, giving vanishing
conductance for a large system.

In summary, our study shows that, even with low hydro-
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FIG. 3. �Color online� The averaged conductances are plotted as
a function of sample size �L� for the H concentrations of �a� 0.5%,
�b� 1%, �c� 5%, and �d� 10%. In �c� and �d�, the insets show the
localization lengths �
� for different energies.
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FIG. 4. �Color online� The charge densities �in clouds� of the
states around E=−0.6 eV from the neutrality point are drawn for
samples with the H concentrations of �a� 1% and �b� 10% and L
=14 nm. Dots stand for the positions of random H atoms. �c� The
beta function is plotted as a function of �ln g� for different energies
and different H concentrations.
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gen concentrations of 5–10 %, a metal-insulator transition
can occur by the localization of electron states. We find that
the conductance decays exponentially with increasing of the
sample size, satisfying the one-parameter scaling function in
the 2D localization theory. This result provides an explana-
tion for the recent observation of a metal-insulator transition
on graphene-terminated SiC�0010� surface decorated with
small amounts of atomic hydrogen.13 If the adsorbate density
increases higher, the gap opening is likely to be a major
cause for the insulating behavior, as observed by
experiments.12,15 There is also the possibility that adsorbate
atoms are clustered at high densities, modifying the Dirac
fermion nature into an insulating phase. Finally we point out
that other adsorbates such as F atoms and CH3, C2H5,
CH2OH, and OH molecules may also induce a metal-

insulator transition, which satisfies the beta function in Fig.
4�c�. Recent theoretical calculations26,27 showed that CH3,
C2H5, and CH2OH molecules on graphene give rise to local-
ized states in the midgap, similar to that of an H adsorbate,
and low conductances around the Dirac point. Similarly, ad-
sorbates such as F and OH directly interact with the host
atoms, forming localized levels. As these defect levels are
rather dispersive, there may be an asymmetry in conductance
with respect to the neutrality point.
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