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Sources of negative differential resistance in electric nanotransport
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A negative differential resistance (NDR) in nanotransport is often ascribed to electron correlations. We
present a simple example revealing that finite electrode bandwidths and energy-dependent electrode density of
states can cause a significant NDR, which may occur even in uncorrelated systems. So, special care is needed
in assessing the role of electron correlations in the NDR.
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The fact that the current-voltage (I-V) characteristics of
the dc transport can exhibit a negative differential resistance
(NDR) in systems described within a single-particle picture
and is not necessarily related to electron correlations is well
known in semiconductor physics.! However, in the nano-
physics community the NDR in the /-V curve is often as-
cribed to (presumably strong) electron correlations. In fact,
some calculations performed on simple but nontrivial models
of correlated electrons, like the interacting resonant level
model, found no NDR effect far away from resonance,>>
while other calculations revealed a more* or less>® pro-
nounced NDR effect at resonance. At the end of this note, we
shall return to the NDR effect within the interacting resonant
model. Beforehand—and this is the main aim of the present
work—we want to emphasize that other, more common
sources of the NDR are relevant for nanotransport as well.
Therefore, special care is needed if one attempts to ascribe
the NDR to electron correlations.

The naive “argument” behind the confusion that the NDR
is an electron correlation effect seems to be the following.
Within the Landauer approach of the transport in uncorre-
lated systems, the current resulting from the imbalance be-
tween the source and drain chemical potentials ug=ep
+eVyy/2 and up=ep—eV,,/2 is expressed as an integral of
the transmission coefficient T(g) over energies from &=, to
e=ugs. A NDR cannot occur because the current monotoni-
cally increases since the integrand is positive [T(g) =0] and
the integration range increases as the voltage V,; becomes
higher.

To illustrate that this is not the case, let us consider a
two-terminal setup (Fig. 1), consisting of a nanosystem
[quantum dot(s) or molecule(s)] linked to semi-infinite leads
(source and drain) at zero temperature. For simplicity, their
bandwidth 47 as well as their coupling to (say,) the dot 7 will
be supposed to be identical. By gradually rising the source-
drain voltage V, starting from V,=0, the drain current [,
will first progressively increase because the energy window
AE of the (elastic) electron tunneling processes allowed by
Pauli’s principle becomes broader [Fig. 1(a)]. However, fur-
ther increasing V,; beyond half of the electrode bandwidth
(eV,,=21) will diminish this energy window [Fig. 1(b)], and
this will be accompanied by a current reduction, which be-
comes more and more pronounced as the electrode band
edge is approach. For eV,;=4t, elastic tunneling is no longer
possible, and the current is completely blocked (I,,=0). This
fact that the current /,; should diminish as V,; exceeds Vi,
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and is completely suppressed above the band edge (41) ap-
plies for a general two-terminal setup for a sufficiently weak
hybridization I'y=27*/1.

To make the analysis more specific, let us consider a point
contact (noninteracting resonant level) model, wherein the
nanosystem consists of a single nondegenerate energy level
&, linked to one-dimensional semi-infinite electrodes. The
second-quantized Hamiltonian reads as

H=-1 E (Cjcl—l + HC)
1=-1

s cje,— > (clep +He.)

I=-1 =1

+up D cle+ sgcgco —cl o+ cley+He). (1)
=1

As usual, we set t=1 and gr=0. We assume &,=0 (n-type
conduction) for simplicity, but because model (1) possesses
particle-hole symmetry, one can replace g, by |sg| below.
The electrode-dot coupling 7 yields well-known expressions
of the embedding self-energies 2 (e)=A(g)—il'\(g)/2 (x
=S,D), where”?
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FIG. 1. (Color online) Schematic representation of a typical
two-terminal setup. By gradually increasing the source-drain volt-
age V,,; the energy window AFE of the allowed elastic tunneling
processes (a) increases for eV,;<2t, but (b) beyond the point
eV, =2t (electrode half-bandwidth) it decreases. Elastic tunneling
cannot occur for eV, =4t.
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FIG. 2. (Color online) I-V curves at resonance (g,=&p=0) for
7=0.05,0.1,0.2,0.4 computed exactly (thick lines) and within ap-
proximation (i) described in the text (thin lines). Current I, in units
L =mel'y/h.

S

G l(e)=e~e,~Z5(e) - Zp(e) 3)

to obtain the retarded Green’s function G(g) of the embedded
dot. With the aid of the latter, the electric current can be
expressed as (electron spin is disregarded)

Iy= %J SdST(e) = ;Elf SdSFS(S)FD(8)|G(8)|2

Mp Mp

=€fﬂs de I'p(e)ls(e)
h,, [e—g,- Ae))P+T ()4 ’

(4)

where T'(e) =Tp(e)+Tg(e) and A(e) =Ap(e)+Agle).

I-V characteristics computed exactly by means of Eq. (4)
at resonance (g,=0) are depicted by the thick lines in Fig. 2.
These curves show that, indeed, the current is suppressed as
the bias approaches the bandwidth and disappears beyond
eV, >4t. Away from resonance (g, 0), another aspect is
visible in Fig. 3(a). The current vanishes even below the
bandwidth 4f. Practically, the suppression is complete at
Va=4t—¢&,; beyond this value, the I-V curves only exhibit
negligible tails of widths ~T'y=272/1. On the other side, the
exact I-V characteristics of Figs. 2 and 3(a) reveal that the
current decreases well before reaching the value V,=2t/e,
which one could expect from Fig. 1. This demonstrates that
the finite bandwidth effect discussed above is only one rea-
son why the NDR should occur.

Significant physical insight can be gained by examining
three limits of Eq. (4):

(i) One can approximate the embedding energies by their
values at e=pu, (25p=-il'y/2) in the whole integration
range, which means to simply ignore the @ step functions in
Eq. (2). One then gets the current

el eV-2¢ eV+2e
19 = —O(arctan#g + arctané) . (5
h 2T, 2T,

As this amounts to assume that the electrode bandwidth is
the largest energy scale (more precisely, for V,,,&,,7<1),
Eq. (5) is usually referred to as the wide band limit.
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FIG. 3. (Color online) I-V curves out of resonance for 7=0.1
(T'y=0.02) computed (a) exactly and (b) within approximation (i)
described in the text for £,=0,0.2,0.4,0.6,0.8, 1 (values increasing
downwards). Current in units et/h.

(ii) Next, one can compute the current using the electrode
density of states (DOS) I, for e=pu,, but unlike above, con-
sidering the Heaviside 6 functions in Eq. (2)

r A A
PO S S
4= L= 20P) arc anzr0 arc aHZFO (6)

where A, =[min(eV,,,41—eV,y) *2¢,]X (1-7/¢*). Similar
to approximation (i), the electrode DOS is assumed constant,
but the fact that the electrode bandwidths are finite (the main
physical aspect underlying Fig. 1) is taken into account by
this approximation.

(iii) Because the main contribution to the integral in Eq.
(4) comes from the pole of the Green’s function of the iso-
lated dot, one can use the embedding energies calculated at
e=g,. In fact, this approximation yields very accurate [-V
curves, which are not shown because they could be hardly
distinguished from the exact curves within the drawing ac-
curacy of Figs. 2, 3(a), 4, and 5. More instructive is however
to furthermore assume that the voltage V,, is sufficiently
high and extend the integration in Eq. (4) from —% to +o.
The result is

Jhish _ e I'(e, - eVI2)['(g, +eV/2)
T Rl (e,—eV2) + (e, +eV/2)

™)

I-V curves in the limit (i) are depicted in Fig. 2 (thin
lines), Figs. 3(b) and 4. They show a monotonically increas-
ing current, which exhibits a step at eV;=2g, of width 6V
increasing with 7 and rapidly saturates at an &,-independent
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FIG. 4. (Color online) I-V curves for 7=0.1 computed exactly
and within the approximations described in the text: (a) at reso-
nance £,;=0 and (b) out of resonance, £;,=0.2. Current in units et/ h.
Labels as in Egs. (5)—(7).

value I},=mel’y/h. Such curves are usually shown in text-
books, and this feeds the lore of the absent NDR in uncorre-
lated systems.

What is wrong with the naive argument against the NDR
in uncorrelated systems is that the transmission is not inde-
pendent of V,,;. The V,; dependence enters via the electrode
densities of states I's p, [cf. Eq. (2)].

On one side, this dependence is considered by the 6 func-
tions of Eq. (2), which diminish the window of allowed tun-
neling processes. Approximation (ii) that accounts for this
yields two qualitatively correct results: an NDR beyond V;,
where the predicted I-V curve exhibits a cusp (Fig. 5) and a

FIG. 5. (Color online) I-V curves on resonance (g,=0) for the
three electrode-dot couplings 7 specified in the inset computed ex-
actly and within approximation (ii) described in the text (label fb).
Notice that the latter exhibit a cusp at eV,;=2¢ that marks the NDR
onset in this approximation, which can be substantially higher than
the exact NDR onset.
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FIG. 6. (Color online) Curves for the NDR onset voltage VISZ,D R
computed from Eq. (8) for several level energies €,. Notice that for
smaller electrode-dot couplings 7 and not too far away from reso-

nance, Vﬁg) R is significantly smaller than 2 (half of electrode’s
bandwidth).

vanishing current for eV,;=4¢. Quantitatively, the NDR on-
set (at Vy,=V,,) is unsatisfactory; compare these approxi-
mate curves (label fb) with the exact ones in Figs. 4 and 5.
The NDR occurs well below the point predicted by this ap-
proximation.

On the other side, not only the 6 functions but also the &
dependence of the electrode DOS [the square roots in Eq.
(2)] is important. It is this fact that makes the finite band-
width argument incomplete. The & dependence of Iy is
accounted for within approximation (iii). The comparison
with the exact curves (Fig. 4) reveals an excellent agreement
at sufficiently higher voltages (as assumed within this ap-
proximation) and demonstrates that, to describe quantita-
tively the NDR, one has to consider both the allowed energy
window, which is finite, and the energy dependence of the
electrode DOS.

In Fig. 4, we present exact I-V characteristics from Eq. (4)
along with those computed within the three aforementioned
approximations [Egs. (5)—(7)]. As visible there, approxima-
tion (i) is accurate for lower voltages, while approximation
(iii) is accurate for higher voltages. The crossover occurs at a
voltage VP, which can be identified with the NDR onset.
This value can be obtained by equating

L) = L ®

Curves for Vi\;D R are presented in Fig. 6. They show that for
situations not very far away from resonance and sufficiently
weak electrode-dot couplings 7, V?;DR is considerably smaller
than the value eV;,=2r expected from the finite bandwidth
argument. The significant departure of the NDR onset pre-
dicted exactly and within approximation (ii) is also clearly
depicted in Fig. 5. For smaller 7’s one can deduce an ana-
lytical estimate (c=4)

VPR = 2+ c(17)1. 9)

Interesting for nanotransport are the electron level(s) not
too misaligned with electrode’s Fermi level; otherwise, as
illustrated by the curve for g,=¢ in Fig. 3(a), the current is
very small. Therefore, the results on Vi\ij R expressed by Eq.
(9) and Fig. 6 are perhaps the most relevant ones from an

193401-3



BRIEF REPORTS

experimental perspective. At resonance and realistic param-
eters [r=1 eV and 7=1 meV (Ref. 9)], Eq. (9) yields
V?QDR24O meV. Based on this estimate, we argue that the
NDR discussed here can be observed. On one side, correla-
tions are important only at much lower voltages; in single-
electron transistors (SETS) (Ref. 9), the relevant scale is
the Kondo temperature Ty (eV,;<kgTx=<0.1 meV). For
voltages of tens of mV, correlation effects (e.g., Kondo’s)
are suppressed; the present uncorrelated limit is justifiable.
On the other side, the estimated NDR onset voltages
(~10 mV) are much lower than the electrode bandwidth
(~1 eV), and a material damage prior to the NDR onset can
be ruled out. For Si-based SETs, the material can support
even much higher values, V,;~1 V.!° So, we hope that the
present estimate will stimulate experimentalists to search
NDR effects at moderate V. Again quite relevant for experi-
ments, the NDR onset can be controlled by tuning the level’s
energy &, with the aid of a gate potential. Gating methods
were routinely employed for nanosystems in the past’ and
recently also in molecular transport.'! In (weakly correlated)
molecules, the level e, would be either the highest occupied
molecular orbital (HOMO) (Ref. 11) or the lowest unoccu-
pied molecular orbital (LUMO) (as in Fig. 1), depending on
which is closer to . There, 7~1 eV and |g,|~1 eV.!" So,
the NDR-onset [cf. Eq. (8) and Fig. 6] is expected at V,
values of a few eV, slightly higher than used in experiment.!!

The present analysis can be extended without difficulty to
nanosystems or molecules with several “active” electron lev-
els. As long as these levels €41,842,... AI€ well separated
energetically and the hybridization is weak enough (a differ-
ent situation can also be encountered, see Ref. 12), they
manifest themselves as current steps at the voltages eV,
=2¢g,1,2¢€ ... However, even in this case the finite elec-

gl>=%g2>:
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trode bandwidth and the energy dependence of the electrode
DOS remain possible important sources of an NDR.

Similar to  other  situations  encountered in
nanotransport,'>'* we believe that the results for uncorre-
lated systems are instructive and could also be useful to cor-
rectly interpret the nanotransport in correlated systems. In
the present concrete case, they could help to unravel the
physical origin of the NDR. In the light of the present analy-
sis, it is plausible to ascribe an NDR as an electron correla-
tion effect in cases where the NDR was found within calcu-
lations to a correlated nanosystem carried out within the
wideband limit. This is, e.g., the case of Refs. 5 and 6, where
a weaker NDR effect was obtained at resonance at stronger
Coulomb contact interactions. As suggested by Fig. 3, the
farther away from resonance, the more is the NDR onset
pushed toward higher voltages (eV;*>2|e,|). The values of
V.4 chosen in the figures shown in Ref. 3 do not belong to
this range and the absence of an NDR could be related to this
fact. Unlike the wide (infinite) band limit assumed in the
aforementioned references, a discrete model of the elec-
trodes, with a finite bandwidth 4, exactly as in Eq. (1), has
been utilized for the numerical calculations of Ref. 4 at reso-
nance. The I-V curves reported there exhibit a pronounced
NDR effect. However, in view of the finite bandwidth as-
sumed in that work, attributing this effect to electron corre-
lations at rather high voltages should be made with special
care. We believe that in order to interpret this effect reliably
one should first carefully subtract the contribution to the
NDR due to the finite bandwidth and the energy-dependent
electrode DOS discussed above.
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