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The Gilbert damping in ferromagnetic semiconductors is theoretically investigated based on the s-d model.
In contrast to the situation in metals, all the spin-conserving scattering in ferromagnetic semiconductors
supplies an additional spin-relaxation channel due to the momentum-dependent effective magnetic field of the
spin-orbit coupling, thereby modifies the Gilbert damping. In the presence of a pure spin current, we predict a
contribution due to the interplay of the anisotropic spin-orbit coupling and a pure spin current.
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The ferromagnetic systems have attracted much attention
both for the abundant fundamental physics and promising
applications in the past decade.1,2 The study on the collective
magnetization dynamics in such systems has been an active
field with the aim to control the magnetization. In the litera-
ture, the magnetization dynamics is usually described by the
phenomenological Landau-Lifshitz-Gilbert equation,3

ṅ = �Heff � n + �n � ṅ �1�

with n denoting the direction of the magnetization. The first
and second terms on the right-hand side of the equation rep-
resent the precession and relaxation of the magnetization un-
der the effective magnetic field Heff, respectively. The relax-
ation term is conventionally named as the Gilbert-damping
term with the damping coefficient �. The time scale of the
magnetization relaxation then can be estimated by
1 / ���Heff�,4 which is an important parameter for dynamic
manipulations. The coefficient � is essential in determining
the efficiency of the current-induced magnetization switch-
ing, and experimental determination of � has been carried
out intensively in metals5 and magnetic semiconductors.6

To date, many efforts have been made to clarify the mi-
croscopic origin of the Gilbert damping.7–12 Kohno et al.8

employed the standard diagrammatic perturbation approach
to calculate the spin torque in the small-amplitude magneti-
zation dynamics and obtained a Gilbert torque with the
damping coefficient inversely proportional to the electron-
spin lifetime. They showed that the electron-nonmagnetic
impurity scattering, a spin-conserving process, does not af-
fect the Gilbert damping. Later, they extended the theory into
the finite-amplitude dynamics by introducing an SU�2� gauge
field2 and obtained a Gilbert torque identical to that in the
case of small-amplitude dynamics.9 In those calculations, the
electron-phonon and electron-electron scatterings were dis-
carded. One may infer that both of them should be irrelevant
to the Gilbert damping in ferromagnetic metals since they are
independent of the electron-spin relaxation somewhat like
the electron-nonmagnetic impurity scattering. However, the
situation is quite different in ferromagnetic semiconductors,
where the spin-orbit coupling �SOC� due to the bulk inver-
sion asymmetry13 and/or the structure inversion asymmetry14

presents a momentum-dependent effective magnetic field �in-
homogeneous broadening15�. As a result, any spin-

conserving scattering, including the electron-electron Cou-
lomb scattering, can randomize the spin precession of the
itinerant electron and hence results in a spin-relaxation chan-
nel �i.e., the D’yakonov-Perel’ �DP� mechanism16� which af-
fects the Gilbert damping. In this case, many-body effects on
the Gilbert damping due to the electron-electron Coulomb
scattering should be expected. Sinova et al.17 studied the
Gilbert damping in GaMnAs ferromagnetic semiconductors
by including the SOC to the energy-band structure. In that
work, the dynamics of the carrier spin coherence was
missed.18 The issue of the present work is to study the Gil-
bert damping in a coherent frame.

In this Brief Report, we apply the gauge-field approach to
investigate the Gilbert damping in ferromagnetic semicon-
ductors. In our frame, all the relevant scattering processes,
even the electron-electron scattering which gives rise to
many-body effects, can be included. The goal of this work is
to illustrate the role of the SOC and spin-conserving scatter-
ing on Gilbert damping. We show that the spin-conserving
scattering can affect the Gilbert damping due to the contri-
bution on spin-relaxation process. We also discuss the case
with a pure spin current, from which we predict a Gilbert
torque due to the interplay of the SOC and the spin current.

Our calculation is based on the s-d model with itinerant s
and localized d electrons. The collective magnetization aris-
ing from the d electrons is denoted by M=Msn. The ex-
change interaction between itinerant and localized electrons
can be written as Hsd=M�dr�n ·��, where the Pauli matrices
� are spin operators of the itinerant electrons and M is the
coupling constant. In order to treat the magnetization dynam-
ics with an arbitrary amplitude,9 we define the temporal
spinor operators of the itinerant electrons a�t�
= �a↑�t� ,a↓�t��T in the rotation coordinate system with ↑�↓ �
labeling the spin orientation parallel �antiparallel� to n. With
a unitary transformation matrix U�t�, one can connect the
operators a↑�↓� with those defined in the lattice coordinate
system c↑�↓� by a�t�=U�t�c. Then, an SU�2� gauge field
A��t�=−iU�t�†���U�t��=A��t� ·� should be introduced into
the rotation framework to guarantee the invariance of the
total Lagrangian.9 In the slow and smooth precession limit,
the gauge field can be treated perturbatively.9 Besides, one
needs a time-dependent 3�3 orthogonal rotation matrix
R�t�, which obeys U†�U=R�, to transform any vector be-
tween the two coordinate systems. More details can be found
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in Ref. 2. In the following, we restrict our derivation to a
spatially homogeneous system, to obtain the Gilbert-
damping torque.

Up to the first order, the interaction Hamiltonian due to
the gauge field is HA=�kA0 ·ak

†�ak and the spin-orbit cou-
pling reads

Hso =
1

2�
k

hk · c†�c =
1

2�
k

h̃k · ak
†�ak �2�

with h̃k=Rhk representing the momentum-dependent effec-
tive magnetic field.13,14 Here, we take the Planck constant
�=1. We start from the fully microscopic kinetic spin-Bloch
equations of the itinerant electrons derived from the nonequi-
librium Green’s-function approach,15,19

�t�k = �t�k�coh + �t�k�scat
c + �t�k�scat

f , �3�

where �k represent the itinerant electron-density matrices de-
fined in the rotation coordinate system. The coherent term
can be written as

�t�k�coh = − i�A · �,�k� − i�1

2
h̃k · � + �̂HF,�k	 . �4�

Here �,� is the commutator and A�t�=A0�t�+Mẑ with A0 and
Mẑ representing the gauge field and effective magnetic filed

due to s-d exchange interaction, respectively. �̂HF is the Cou-
lomb Hartree-Fock term of the electron-electron interaction.
�t�k �scat

c and �t�k �scat
f in Eq. �3� include all the relevant spin-

conserving and spin-flip scattering processes, respectively.
The spin-flip term �t�k �scat

f results in the damping effect
was studied in Ref. 9. Let us confirm this by considering the

case of the magnetic disorder Vimp
m =us� jS̃ j ·a

†�a	�r−R j�.
The spin-flip part then reads

�t�k�scat
f = �t�k�scat

f�0� + �t�k�scat
f�1� �5�

with �t�k �scat
f�i� standing for the ith-order term with respect to

the gauge field, i.e.,

�t�k�scat
f�0� = −


nsus
2Simp

2

3 �
k1�1�2

���k1


 �t�T�1
��T�2

�k
��t�

�	��k1�1
− �k�2

� − �
 ↔ �� + H.c., �6�

�t�k�scat
f�1� =

i2
nsus
2Simp

2

3
����A0

��t� �
k1�1�2

���k1


 �t�T�1
��T�2

�k
��t�

�
d

d�k1�1

	��k1�1
− �k�2

� − �
 ↔ �� + H.c., �7�

where T��i , j�=	�i	�j for the spin band �. Here �k

=1−�k

and �k
�=�k. �
↔�� is obtained by interchanging 
 and �

from the first term in each equation. �ijk is the Levi-Civita
permutation symbol. The gauge-field term, �t�k �scat

f�1�, results
from the spin correlation of a single magnetic impurity at
different times.9 It induces a spin polarization proportional to
ẑ�A0

��t� which gives a Gilbert torque. The damping coeffi-
cient is inversely proportional to the spin-relaxation time �s
determined by the spin-flip scattering �t�k �scat

f�0�. The spin-flip

scattering term in Eq. �3� thus reproduces the result of Ref. 9.
We now demonstrate that the Gilbert-damping torque

arises also from the spin-conserving scattering. For the dis-
cussion of the spin-conserving term, it is sufficient to ap-
proximate the spin-flip term as �t�k �scat

f =−��k−�k
e� /�s, with

�k
e representing the instantaneous equilibrium distribution

�i.e., �k
e is �k without the gauge field and Pk

s �. Equation �3�
then reads

�t�k = − i�A · �,�k� − i�1

2
h̃k · �,�k	 + �t�k�scat

c − ��k − �k
e�/�s

+ Pk
s . �8�

Here, we add an additional term, Pk
s , to describe the source

of a pure spin current due to the magnetization dynamic
pumping4 or electrically injection20,21 in order to discuss the
system with a pure spin current. We neglect the Coulomb
Hartree-Fock effective magnetic field since it is approxi-
mately parallel to the s-d exchange field but with a smaller
magnitude.

By averaging density matrices over the momentum direc-
tion, one obtains the isotropic component �i,k=�

d�k

4
 �k. The
anisotropic component is then expressed as �a,k=�k−�i,k. It
is obvious that this anisotropic component does not give any
spin torque in the absence of the SOC since �kTr���a,k�
=0. Below, it is shown that this component leads to the
damping when coupled to the spin-orbit interaction.

By denoting the isotropic component of the equilibrium
part ��k

e� as �i,k
e and representing the nonequilibrium isotropic

part by 	�i,k=�i,k−�i,k
e , we write the kinetic spin-Bloch equa-

tions of the nonequilibrium isotropic density matrices 	�i,k
and those of the anisotropic components �a,k as

�t�i,k = −
	�i,k

�s
− i�A · �,	�i,k� − i�1

2
h̃k · �,�a,k	

− i�A0 · �,�i,k
e � , �9�

�t�a,k = �t�a,k�scat
c − i�A · �,�a,k� − i�1

2
h̃k · �,	�i,k	

− i�1

2
h̃k · �,�a,k	 + i�1

2
h̃k · �,�a,k	 + Pk

s , �10�

respectively. The overline in these equations presents an an-
gular average over the momentum space.

We further define �a,k
�0� as the anisotropic density in the

absence of the gauge field, A0. As easily seen, it vanishes
when Pk

s =0. The anisotropic component involving the gauge
field is denoted by �a,k

�1� =�a,k−�a,k
�0� . Equation �10� is ex-

pressed in terms of these components as

�t�a,k
�0� = − i�M · �,�a,k

�0� � + �t�a,k
�0� �scat

c + Pk
s − i�1

2
h̃k · �,�a,k

�0�	
+ i�1

2
h̃k · �,�a,k

�0�	 , �11�
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�t�a,k
�1� = �t�a,k

�1� �scat
c − i�A · �,�a,k

�1� � − i�1

2
h̃k · �,	�i,k	

− i�1

2
h̃k · �,�a,k

�1�	 − i�A0 · �,�a,k
�0� � . �12�

Within the elastic-scattering approximation, the electron-
phonon scattering as well as the electron-nonmagnetic impu-
rity scattering can be simply written as �l,m�a,k,lm

�1� Ylm /�l,
where the density matrices are expanded by the spherical
harmonics functions Ylm, i.e., �a,k,lm

�1� =�
d�k

4
 �a,k
�1� Ylm. �l is the

effective momentum relaxation time. The exact calculation
of the Coulomb scattering is more complicated. Neverthe-
less, one can still express this term in the form of �a,k

�1� /Fk���,
where Fk is a function of the density matrices22 and reflects
many-body effects. For simplification, we just introduce a
uniform momentum relaxation time �l

� in the following cal-
culation. Expanding Eq. �12� by the spherical harmonics
functions, one obtains

�t�a,k,lm
�1� = − i�A · �,�a,k,lm

�1� � − i�1

2
h̃k,lm · �,	�i,k	

− i�A0 · �,�a,k,lm
�0� � − i�1

2
h̃k · �,�a,k

�1�	
lm

−
�a,k,lm

�1�

�l
� ,

�13�

where the expansion coefficient of any term fk is expressed
as fk,lm=�

d�k

4
 fkYlm. In the strong scattering regime, i.e., 1
�l

�

�M and 1
�l

� � �hk�, the first and fourth terms are much smaller
than the last term, hence can be discarded from the right side.
By taking the fact that the time derivative is a higher-order
term into account, one also neglects �t�a,k,lm

�1� . The solution of
Eq. �13� can be written as

�a,k,lm
�1� = − i�l

�
�1

2
h̃k,lm · �,	�i,k	 + �A0 · �,�a,k,lm

�0� �� .

�14�

Substituting it into Eq. �14� and rewriting the equation in the
leading order, one obtains

�t�i,k = − i�A · �,	�i,k� −
i

2
�h̃k · �,�a,k

�0� � − i�A0 · �,�i,k
e �

− �
lm

�l
�

4
�h̃k,lm · �,�h̃k,lm · �,	�i,k�� −

	�i,k

�s
. �15�

The fourth term on the right-hand side of the equation is
proportional to the second-order term of the SOC, which
gives the spin-dephasing channel due to the DP
mechanism.16 This term can be expressed by �DP

−1 	�i,k with
�DP

−1 standing for the spin dephasing rate tensor, which can be
written as ��DP

−1 �i,j =�l,m��l
���hk,lm�2	ij −hk,lm

i hk,lm
j �
 by per-

forming the ensemble averaging over the electron distribu-
tion. In the following, we treat �DP as a scalar for simplifi-
cation and define the total spin lifetime as

�r = 1/��DP
−1 + �s

−1� , �16�

then the combination of the last two terms in Eq. �15� gives
	�i,k /�r. Similar to the previous procedure, we discard �t�i,k
in Eq. �15� and obtain

i�A · �,	�i,k� + 	�i,k/�r = − i�1

2
h̃k · �,�a,k

�0�	 − i�A0 · �,�i,k
e � .

�17�

By taking 	s̃i=
1
2�kTr��	�i,k�, s̃i

e= 1
2�kTr���i,k

e �, and s̃a,k
�0�

= 1
2Tr���a,k

�0� �, one can write the solution as

	s̃i =
ṽ + 2�rA � ṽ + 4�r

2�ṽ · A�A
1 + 4�A�2�r

2 − s̃i
e, �18�

where ṽ= s̃i
e+�r�kh̃k� s̃a,k

�0� . s̃i
e is just the equilibrium spin

density, which is parallel to the magnetization, i.e., s̃i
e= s̃i

eẑ.
Now, we pick up the transverse component in the form of
ẑ�A0

�, 	s̃�, since only this component results in a Gilbert
torque of the magnetization as mentioned above. We come to

	s̃� = 2ṽz�A0
� � ẑ��ex

2 �r/��r
2 + �ex

2 � �19�

with �ex=1 / �2M�. By transforming it back to the lattice co-
ordinate system with R�ẑ�A0

��= 1
2�tn,9 one obtains

	s� = − ṽz��tn��ex
2 �r/��r

2 + �ex
2 � . �20�

This nonequilibrium spin polarization results in a spin torque
performed on the magnetization according to T=−2Mn
�	s, i.e.,

T = ṽz�n � �tn��ex�r/��r
2 + �ex

2 � . �21�

Compared with Eq. �1�, the modification of the Gilbert-
damping coefficient from this torque is

� = ṽz�ex�r/�Ms�r
2 + Ms�ex

2 � , �22�

We first discuss the case without the source term of the spin
current. In this case, the anisotropic component �a,k

�0� vanishes
and ṽz= s̃i

e. We see that the Gilbert damping then arises from
1 /�r �Eq. �16��, i.e., from both the spin-flip scattering and the
DP mechanism.16 Our main message is that this DP contri-
bution is affected by the spin-conserving scattering processes
such as the electron-electron interaction and phonons. The
temperature dependence of the Gilbert damping and the
current-induced magnetization switching can thus be dis-
cussed quantitatively by evaluating �r. We note that our re-
sult reduces to the results of previous works7,9 when only the
spin-flip scattering is considered.

We should point out that our formalism applies also to
metals, by considering the case 1

�l
� �M. In this case, the last

term of Eq. �13� can be neglected and the effect of the spin-
conserving scattering through �l

� becomes irrelevant.
When the pure spin current is included, we found addi-

tional contribution due to the interplay of the spin current
and the SOC since we have
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ṽz = s̃i
e + �R��r�

k
hk � sa,k

�0� �	
z

= s̃i
e + s̃z

sc �23�

with the spin current associated term s̃z
sc defined accordingly.

The origin of s̃z
sc can be understood as follows. The aniso-

tropic spin polarization sa,k
�0� arising from the pure spin current

rotates around the SOC effective magnetic field hk, which is
also anisotropic. This precession finally results in an isotro-
pic spin polarization ssc=�r�khk�sa,k

�0� in the presence of
spin relaxation. This term contributes to the spin polarization
of the itinerant electrons along the direction of the magneti-
zation, i.e., s̃z

sc, thereby modifies the Gilbert-damping term by
s̃z

sc / s̃i
e.

The additional Gilbert damping due to the spin current
found here is different from the enhancement of the damping
in the spin-pumping systems, where the existence of the in-
terface is essential.4 In other words, what contributes there is
the divergence of the spin current, as is understood from the

continuity equation for the spin, indicating that the spin
damping is equal to � · js+ ṡ �s is the total spin density�. In
contrast, the damping found in the present Brief Report
arises even when the spin current is uniform if the spin-orbit
interaction is there.

In summary, we have shown that the spin-conserving scat-
terings in ferromagnetic semiconductors, such as the
electron-electron, electron-phonon, and electron-
nonmagnetic impurity scatterings, contribute to the Gilbert
damping in the presence of the SOC because of the inhomo-
geneous broadening effect. We also predict that a Gilbert
torque arises from a pure spin current when coupled to the
spin-orbit interaction.
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