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Abrikosov-Gor’kov work on pairbreaking in isotropic materials is generalized to anisotropic Fermi surfaces
and order parameters. New scaling relations for states with a strong pairbreaking are found for the specific-heat
jump �C�Tc

3; for the penetration depth that deviates from the zero-T value as ��=�T2 at low temperatures
with ��Tc

−3, and for the slopes of the upper critical fields Hc2� �Tc��Tc. A remarkably simple relation between
these at first sight unrelated quantities is found: �C�2Tc

4 / �Hc2� �=�0 /16�2 is a universal constant. The predic-
tions are checked on CeCoIn5 and the possibility to apply them to iron-based materials is discussed.
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I. INTRODUCTION

A half century old and still relevant work of Abrikosov
and Gor’kov �AG� on the pairbreaking in isotropic materials
contains more than well known and broadly used results such
as the famous formula for the critical temperature suppres-
sion by magnetic impurities,

ln
Tc0

Tc
= ��1 + �s

2
� − ��1

2
� , �1�

Tc0 is the critical temperature of the material free of magnetic
impurities, �’s are the digamma functions, �s=1 /2�Tc	s
with 
=kB=1, and 	s is the spin-flip scattering time.1 The
AG description of the so-called “gapless state” that emerges
at near-critical concentration of magnetic impurities when
Tc�Tc0 is commonly considered as a peculiar case with not
much experimental implications due to stringent conditions
to be satisfied for such a state to exist.

However, it appears that in a number of new materials
much more complex than elemental metals of AG concern,
the gapless state is not that rare an occurrence. Recently, the
AG idea has been applied to understand such basic properties
of iron-based materials as the specific heat or the temperature
behavior of the London penetration depth.2,3 Complexity of
these materials �few-bands Fermi surfaces, anisotropic order
parameters of a not-yet-established symmetry, a complicated
role of doping that cannot be considered as just a source of
scattering� makes it difficult to apply the AG theory per se
developed for a superconductor with isotropic order param-
eter on a Fermi sphere containing uncorrelated magnetic im-
purities.

In this paper, the AG idea on the gapless state is general-
ized to anisotropic Fermi surfaces and order parameters. Part
of this work has been presented in short papers of Refs. 2
and 3 done for specific applications. Potentially, the results
given below may have a broader value and deserve proper
presentation. They show that physical properties of the state
emerging in materials with a strong pairbreaking such as the
specific heat, the London penetration depth, and the upper
critical field are tightly bound and satisfy a few scaling rela-
tions which may serve as signatures for a strong pairbreak-
ing. The most surprising of those is the relation

�C�2Tc
4

�Hc2� �
=

�0

16�2 , �2�

where �C is the specific-heat jump at Tc, �=d� /d�T2� is the
slope of the London depth � as a function of T2 at low
temperatures, Hc2� �Tc� is the slope of the upper critical field at
Tc �if � is taken, e.g., for the ab plane of a uniaxial material,
the corresponding Hc2 is in the c direction�. A remarkable
feature of this relation is that while all quantities on the left-
hand side �LHS� depend on the density of states, Fermi sur-
face characteristics, scattering rates and the order parameter
symmetry, no material parameters enter this formula. This
suggests that although the derivation given below is done for
the Fermi-surface averaged order parameter ���=0 �as for
the d-wave or approximately for the �s order parameter�,
the result may have a broader applicability. This conjecture is
supported by the fact that Eq. �2� holds for the isotropic case
of AG that can be checked by taking the needed quantities
from Ref. 1.

It is also worth noting that the quantities on the LHS Eq.
�54� are measured in independent experiments and the com-
bination shown reduces to a universal number at the right-
hand side �RHS�. This property may serve as a stringent test
for presence of a strong pairbreaking in a material.

In the next section, the formal scheme is described, some
details of which are given elsewhere;2,3 the main points are
reproduced here to make the presentation tractable. Then the
Ginzburg-Landau �GL� equations are derived to obtain the
specific-heat jump �C�Tc

3 and the slope of the upper critical
field Hc2� �Tc. The derivation of the penetration depth fol-
lows. The section on new scaling relations and comparison
with data available in Sec VIII conclude the paper.

II. METHOD

Perhaps, the simplest for our purpose is the Eilenberger
quasiclassical version of the weak-coupling Gor’kov’s theory
that holds for a general anisotropic Fermi surface and for any
gap symmetry,4

v�f = 2�g − 2f +
g

	−
�f� −

f

	+
�g� , �3�
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− v��f+ = 2��g − 2f+ +
g

	−
�f+� −

f+

	+
�g� , �4�

g2 = 1 − f f+, �5�

��r,kF� = 2�TN�0� �
�0

D

�V�kF,kF��f�kF� ,r,��kF�
. �6�

Here, v is the Fermi velocity, �=�+2�iA /�0, A is the vec-
tor potential, and �0 is the flux quantum. ��r ,kF� is the order
parameter that in general depends on the position kF at the
Fermi surface of other than the isotropic s-wave symmetry.
The functions f�r ,v ,�, f+, and g originate from Gor’kov’s
Green’s functions integrated over the energy variable near
the Fermi surface. Further, N�0� is the total density of states
at the Fermi level per one spin; the Matsubara frequencies
are =�T�2n+1� with an integer n. The averages over the
Fermi surface are shown as �¯ �.

The scattering in the Born approximation is characterized
by two scattering times, the transport scattering time 	 re-
sponsible for conductivity in the normal state, and 	m for
spin-flip processes,

1

	�

=
1

	
�

1

	m
. �7�

The strong scattering in unitary limit is not considered here.
Usually, two dimensionless scattering parameters are em-
ployed,

� =
1

2�Tc	
and �m =

1

2�Tc	m
, �8�

or equivalently ��=���m. 
 and kB are set unities, except
when comparisons with data are discussed.

Commonly, the effective coupling V is assumed factoriz-
able, V�kF ,kF��=V0��kF���kF��.5 This assumption is quite re-
strictive as far as complicated Fermi surfaces and interac-
tions are concerned. E.g., within two-band schemes with four
coupling constants Vij, the factorizable model implies
V11V22−V12V21=0. Still, the assumption appears to work
well for one-band materials and it simplifies the algebra con-
siderably. One then looks for the order parameter in the form

��r,T;kF� = ��r,T���kF� . �9�

The function ��kF� describes the variation in � along the
Fermi surface and is conveniently normalized,

��2� = 1. �10�

Then, the self-consistency Eq. �6� takes the form

��r,T� = 2�TN�0�V0 �
�0

D

���kF�f�kF,r,�� . �11�

Instead of dealing with the effective microscopic electron-
electron interaction V and with the energy scale D, one can
use within the weak-coupling scheme the critical temperature
Tc0 of the �hypothetic� clean material utilizing the identity

1

N�0�V0
= ln

T

Tc0
+ 2�T �

�0

D 1


, �12�

which is equivalent to the BCS relation �0�0�=�Tc0e−�

=2D exp	−1 /N�0�V0
; � is the Euler constant. Substitute
Eq. �12� in Eq. �11� and replace D with infinity due to fast
convergence,

�

2�T
ln

Tc0

T
= �

�0

� ��


− ��f�� . �13�

GL domain and Tc(� ,�m)

Near Tc, f �1, g=1− f f+ /2 and Eq. �3� reads

1

2
v�f = � − +f +

�f�
2	−

−
f f+

2
�� +

�f�
2	−

� +
f�f f+�
4	+

. �14�

Here,

+ =  + 1/2	+, �15�

and the terms at the RHS are arranged according to their
order in powers of �t=1−T /Tc: the terms on the upper line
are of the order �t1/2 whereas on the lower line ��t3/2. Note
that on the LHS, �f � f /���t.

One looks for the solution f = f1+ f2+¯, where f1��t1/2,
f2��t, etc. Hence, in the lowest order

0 = � − +f1 + �f1�/2	−. �16�

Taking the average over the Fermi surface one obtains

�f1� = ���/m, m =  + 1/	m �17�

�note the difference in definitions of + and m�. Hence,

f1 =
1

+�� +
���

2	−m
� . �18�

Similarly, comparing terms of the order �t one gets

�f2� = 0, f2 = −
1

2+
2 v��� +

���
2	−m

� . �19�

Evaluation of higher-order corrections for arbitrary � an-
isotropy is increasingly cumbersome unlike the case ���=0
for which one finds for the uniform state,

f3 = −
�

2+
3��2 −

��2�
2	++�, �f3� = 0. �20�

The critical temperature of materials with anisotropic or-
der parameter is suppressed by scattering. In zero field, all
quantities are coordinate independent; besides, as T→Tc, g
→1. Therefore, one can utilize f of Eq. �18� in the lowest
order and substitute it in the self-consistency Eq. �13� to
obtain for Tc,
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1

2�Tc
ln

Tc0

Tc
= �

�0

� � 1

c
−

1

c
+ −

���2

2c
mc

+	−
� , �21�

where the subscript c shows that ’s are taken at Tc. The
sums here are expressed in terms of digamma functions,

ln
Tc0

Tc
= ��1 + �+

2
� − ��1

2
� − ���2

����1 + �+

2
� − ��1

2
+ �m� . �22�

In this form, this generalization of the AG Eq. �1� for the Tc
suppression for any �Born� scattering and for an arbitrary
symmetry of the order parameter is due to Openov.6 Within a
two-band scheme, the Tc suppression has been given by Gol-
ubov and Mazin.7

If Tc→0, one can use asymptotic expansion ��z�=ln z
−1 /2z for large arguments since �, �m→�. The leading term
then gives that Tc=0 when scattering times satisfy the rela-
tion

1

	m
� 	m

2	+
�1−���2

=
�0�0�

2
. �23�

Here, �0�0�=�Tc0e−� is the zero-temperature gap of the
scattering-free material. Clearly, this reduces to the AG criti-
cal rate 1 /	m=�0�0� /2 for isotropic order parameters. If
���=0 �e.g., for the d wave�, one has the critical combined
rate: 1 /	+=�0�0�.

For a general anisotropy ����0,1 in the absence of spin-
flip scattering �	m→�� the LHS is zero and Eq. �23� has no
solutions for 	, i.e., Tc does not turn zero for any 	. However,
a finite 	 at which Tc=0 does exists for any finite 	m. One

can show that near the critical value 	+,crit
���2−1

=�0�0��	m /2����2
, the critical temperature behaves similarly

to the AG gapless case: Tc� �	+−	crit
+ �1/2.

Combining Eqs. �13� and �21� one excludes the unphysi-
cal Tc0,

�

2�T
ln

Tc

T
= �

�0

� � �

tc
+ +

����2

2tc
mc

+	−

− ��f�� , �24�

where t=T /Tc.

III. STRONG PAIRBREAKING, Tc™Tc0

Situations of interest here are of Tc strongly suppressed
relative to Tc0. It is convenient for this purpose to rearrange
Eq. �24� by adding and subtracting � /+ under the sum. The
following manipulation is self-evident:

2�T �
�0

� 1

tc
+ −

1

+� = �
n=0

� � 1

n + 1/2 + �+/2

−
1

n + 1/2 + �+/2t
�

= ���+

2t
+

1

2
� − ���+

2
+

1

2
�

� − ln t −
1 − t2

6�+
2 . �25�

The parameter �+ is large if Tc→0 and one can use large
arguments asymptotics of the digamma functions. Combin-
ing Eqs. �24� and �25� one obtains the self-consistency equa-
tion in the form

��1 − t2�
12�T�+

2 = �
�0

� � �

+
+

����2

2tc
mc

+	−

− ��f�� . �26�

A. GL equation, Š�‹=0

The GL equations are obtained by utilizing smallness of
� / and of v�� /2 near Tc. Hence, one can use Eqs.
�18�–�20� for f and the self-consistency Eq. �26�. Since f3 is
calculated above for ���=0, only this case will be considered
below. For the case of exclusively transport scattering �	m
=��, the GL equations have been derived in Ref. 8. It is done
here for a finite 	m.

To write the self-consistency Eq. �26� near Tc one has to
express ��f� with the help of Eq. �14�. To this end, one
applies �� /+. . .� to Eq. �14� keeping terms up to the order
�t3/2,

��f� =
�

+
− � �

2+
v�f� − ��f1

2�

2+
� +

�f1
2���f1�
4	++

�27�

and substitutes the result in Eq. �26�,

��t

6�T�+
2 = �

�0
�3� ��4�

2+
3 −

1

4	++
4� −

��2vivk��i�k�

4 �
�0

1

+
3 .

�28�

All terms here are of the order �t3/2 so that ’s are taken at
Tc.

The sums on RHS are expressed in terms of � functions
of parameters � which are large in the situation of interest.
One obtains after straightforward algebra,

��1 −
�2

�0
2� = − ��2�ik�i�k� , �29�

where the zero-field order parameter is given by

�0
2 =

4�2Tc
2�t

3��4� − 2
�30�

and the tensor of squared coherence length is

��2�ik =
3��2vivk�
8�2Tc

2�t
. �31�

B. Slopes of the upper critical field at Tc

For a uniaxial material, the slope of the upper critical field
along the c direction near Tc is given by
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dHc2,c

dT
= −

4��0kB
2

3
2��2va
2�

Tc �32�

�in common units�. Although the pairbreaking parameters do
not enter this result explicitly, they affect Hc2,c and its slope
via Tc��+�.

It is worth recalling that in isotropic s-wave materials, the
slope Hc2� �Tc in the clean limit because

Hc2 = −
�0�1 − T/Tc�

2��0
2 , �0 �


v
�0

�
1

Tc
. �33�

For the dirty case Hc2� is Tc independent; indeed,

Hc2 �
1 − T/Tc

�0�
, �34�

where � is the mean-free path. The proportionality of Hc2� to
Tc is a property of the AG gapless state. In our case, the
result �32� is obtained for a strong pairbreaking in materials
with anisotropic order parameter.

IV. ARBITRARY TEMPERATURES

For a strong Tc suppression, as was shown by AG, the
formalism used for derivation of the GL equations near Tc
applies at all temperatures.1 Physically, this is because the
pairbreaking suppresses the order parameter so that the ex-
pansion in powers of � and its derivatives can be done at any
T. The calculation then proceeds in a manner similar to that
near Tc.

In the zero-field state, we look for solutions of Eilen-
berger equations as f0= f �1�+ f �2�+¯, where f �1���, f �2�

��2, etc. We then obtain

f0 =
�

+
+

�

2+
3� ��2�

2	++
− �2� + O��5� . �35�

One can see that even at low temperatures f0,max�	+Tc
�1 /�+�1 because for a strong pairbreaking Tc→0. This is
a quasiclassical justification for the AG statement that f �1
at all T’s.

The T dependence of � �or �� is obtained from the self-
consistency equation. For a strong pairbreaking, this is Eq.
�26� with ���=0 in the case considered. Using f of Eq. �35�,
one obtains for the field-free state,

�2 =
2�2�Tc

2 − T2�
3��4� − 2

, �36�

this reduces to the result �30� near Tc and to AG form for
�=1.

V. SPECIFIC HEAT

Eilenberger Eqs. �3� and �13� in zero field can be obtained
minimizing the functional4

F = N�0���2 ln
T

Tc0
+ 2�T �

�0
��2


− �I�� , �37�

I = 2�f + 2�g − 1� +
f�f�
2	− +

�g�g� − 1�
2	+ . �38�

The function g here is an abbreviation for �1− f2. Taking
account of the self-consistency Eq. �13�, we obtain the en-
ergy difference between the normal and superconducting
states,

−
Fs − Fn

2�TN�0�
= �

�0
��f + 2�g − 1� +

f�f�
2	− +

g�g� − 1

2	+ � .

�39�

One can check that this reduces to the known result for iso-
tropic s-wave cases with or without pairbreaking.9 This of-
fers a straightforward way to calculate the specific heat near
Tc. The calculation, in general, is tedious because one has to
keep track of terms up to �4��t2. Again, only the case ���
=0 is considered.

Up to the fourth order in � we have with the help of Eq.
�35�,

g = 1 −
�2

2+
2 +

3�4

8+
4 −

�2��2�
4	++

5 , �40�

where all ’s are taken at Tc. Substituting these in the energy
difference one finds for large �+,

−
Fs − Fn

2�TN�0�
=

�4

4 ����4�
+

3 −
1

2	++
4� =

�4�3��4� − 2�	+
2

12�T
.

�41�

Thus, with Eq. �30� for the zero-field order parameter, the
energy difference between the normal and superconducting
states reads

Fn − Fs =
2�4N�0�	+

2

3
2�3��4� − 2�
kB

4�Tc
2 − T2�2 �42�

in common units. The electronic specific heat follows

Cs

T
= ��e − �Tc

2/3� + �T2, �43�

� =
8�4kB

4N�0�	+
2


2�3��4� − 2�
. �44�

Here, �eT is the electronic heat capacity of the normal phase.
Hence, not only Cs /T is linear in T2 but the linear part of Cs
is reduced,

�ef f = �e − �Tc
2/3 �45�
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so that the reduction is proportional to Tc
2.

The specific-heat jump at Tc is

�C = Cs − Cn =
2�

3
Tc

3. �46�

Within a weak-coupling scheme, �C for an arbitrary � an-
isotropy has been obtained in Ref. 10.

VI. LONDON PENETRATION DEPTH

Let us now consider the response to a small current

j = − 4��e�N�0�T Im �
�0

�vg� . �47�

Weak currents leave the order-parameter modulus unchanged
but cause the condensate to acquire an overall phase ��r�.
One then looks for perturbed solutions as

� = �0ei�, f = �f0 + f1�ei�,

f+ = �f0 + f1
+�e−i�, g = g0 + g1, �48�

where the subscript 1 denotes small corrections to the uni-
form state f0 ,g0. In the London limit, the only coordinate
dependence is that of the phase �, i.e., f1 ,g1 are r indepen-
dent. The Eilenberger equations provide the corrections
among which we need only g1,

g1 =
if0

2vP

2+
=

i�0
2vP

2+
3 . �49�

Here, �0=�0� is the zero-field order parameter, see Eq.
�30�, and P=��+2�A /�0�2�a /�0 with the “gauge-
invariant vector potential” a.

Substitute g0+g1 in Eq. �47� and compare the result with
4�ji /c=−��2�ik

−1ak to obtain

��2�ik
−1 =

8�2e2N�0�T
c2 �vivk�

2��2 �
�0

1

+
3

=
16�3e2N�0�kB

2	+
2

c2
2�3��4� − 2�
�vivk�

2��Tc
2 − T2� , �50�

where the second line is for �+�1.
It is now easy to obtain the low-T behavior of ��ab

=�ab�T�−�ab�0� for a uniaxial material,

��ab = �
T2

Tc
3 , � =

c


8�kB	+
� 3��4� − 2

�e2N�0��va
2�2�

. �51�

One readily obtains for T=0,

�ab�0� = 2�/Tc. �52�

VII. SCALING RELATIONS

The relations �43� and �44� for the specific heat, Eq. �32�
for the slope of Hc2, and Eqs. �50�–�52� for the penetration
depth contain material parameters: the density of states N�0�,
Fermi velocities vi, the parameter � of the gap anisotropy,

and the combined scattering time 	+. One can express the
ratio �3��4�−2� /	+

2 in terms of the coefficient � of Eq. �43�
and substitute the result in the expression for ��0�, thus es-
tablishing a relation between the behavior of the specific heat
and the penetration depth. �va

2�2� can in turn be expressed in
terms of the Hc2 slope of Eq. �32�. Surprisingly, all material
parameters drop out of the expression

��ab
2 �0�Tc

3

�Hc2,c� �
=

3�0

8�2 �53�

with a universal quantity on the RHS.
The relation �53� involves the slope �=d�Cs /T� /d�T2�

and the zero-T penetration depth ��0�, both of which are
difficult to access experimentally 	the first due to the neces-
sity to subtract the phonon contribution from the measured
C /T, the second because usually only the deviation of ��T�
from ��0� is measured
. Fortunately, one can avoid these
difficulties using another scaling relation. Writing Eq. �51� as
��ab=�T2 with �=� /Tc

3 one finds

�C�2Tc
4

�Hc2,c� �
=

�0

16�2 = 1.27 � 10−9 G cm2. �54�

Measurement of the jump �C does not require the phonon
contribution be subtracted and determination of �
=d���� /d�T2� does not require knowledge of ��0�.

VIII. DISCUSSION

The scaling relations �53� and �54� are derived for a single
band materials with an order parameter satisfying ���=0.
However, the very fact that no material parameters enter
these relations suggests that they might be applicable for a
broader class of materials with a strong pairbreaking. An
indication of such a possibility comes from AG work on the
gapless state in isotropic materials with magnetic impurities.
One can easily deduce from their paper the quantities of
interest here,

�C =
4�4kB

4N�0�	m
2

3
2 Tc
3, Hc2� =

��0kB
2	m

2
2v2	
Tc �55�

and

� =� d�

d�T2�
�

T=0
=

c
2

8�4kB
3Tc

3� m

�Ne2		m
, �56�

where N is the density of carriers of a mass m. Direct sub-
stitution shows that the relation �54� is satisfied.

Four quantities on the LHS of Eqs. �53� and �54� are
measured in independent experiments so that these results
might be used as a stringent test of the pairbreaking scenario.
Materials in which the scaling relations discussed here have
a good chance to hold are suggested below.

Clearly, ���=0 for the d-wave compounds. Hence, the
underdoped cuprates with a strongly suppressed Tc may be
among materials satisfying the above scaling formulas and
the relations �53� and �54�, in particular. It is worth noting
that the scaling Eq. �52� is supported by the surface
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resistance11 and optical data12 for a series of samples of
YBa2Cu3O6+x with Tc varying from 3 to 17 K.

1. CeCoIn5

Another example where the model developed here may
work is CeCoIn5. This is a clean heavy-fermion d-wave
superconductor13,14 with Tc=2.3 K; in the normal phase, the
material is a paramagnet.15 Note that quantities entering the
relation �53� are either for zero field 	� and ��0�
 or for
temperatures near Tc �Hc2� � so that the domain of interest here
is not affected by complications related to paramagnetic con-
strains or to possible Fulde-Ferrell-Larkin-Ovchinnikov
phase.

The penetration depth for this material is found to behave
according to

�ab = 358 nm/�1 − t2 �57�

practically at all temperatures that agrees with the strong
pairbreaking prediction, Eq. �50�.16 Moreover, Cs /T �where
Cs is the electronic part of the specific heat� is close to being
linear in T2 at low temperatures17 in agreement with Eq. �43�.
Reading the data on Cs /T from Fig. 2b of Ref. 17, one esti-
mates the coefficient of the T2 term as ��3.5
�104 erg /cm3 K3. The slope of the upper critical field is
also known: Hc2,c� �11.5 T /K as reported, e.g., in Ref. 16.
Then, the LHS of the scaling relation �53� is estimated as
4.8�10−9 G cm2. This is reasonably close to the universal
number 3�0 /8�2=7.6�10−9 G cm2 on the RHS of this re-
lation.

Similar agreement is found if one tries to check the scal-
ing relation �54�. According to Ref. 17, for the material of
interest �C /Tc�2 J /mol K2 that translates to �C
�3.6 erg /cm3 K. The low-temperature behavior of the pen-
etration depth following from Eq. �57� ��ab��T2 with �
�3.4�10−6 cm /K2. Using these numbers one obtains

�C�2Tc
4

�Hc2,c� �
� 1.2 � 10−9 G cm2, �58�

that is notably close to �0 /16�2=1.27�10−9 G cm2.

2. Iron-based materials

The model used here is restricted to materials with one
Fermi-surface sheet. Clearly, multiband iron-based materials
do not belong to this group. However, quite a few experi-
mentally measured properties of these materials behave in
agreement with the results derived above for a strong pair-
breaking. Perhaps, the most remarkable of those properties
is the specific-heat jump �C proportional to Tc

3 reported
by Bud’ko, Ni and Canfield for “122” series of
Ba�Fe1−xCox�2As2 and Ba�Fe1−xNix�2As2 with Tc ranging
from a few up to about 40 K.18 The data shown in Fig. 1 are
in a profound agreement with the strong pairbreaking result
�46�.

Moreover, the data for slopes of Hc2 compiled in Ref. 2
for a number of “1111” compounds are clearly show Hc2�
�Tc. A similar compilation for “122” series is also consistent
with the scaling Eq. �32� albeit with a considerable scatter.

The third piece of evidence in favor of the strong pair-
breaking in iron-pnictides is the low-temperature behavior of
the London penetration depth ��T�. The power-law behavior
of ��ab�Tn with n�2 has been seen in many iron-based
materials.19 Moreover, the prefactor � /Tc

3 in Eq. �51� ex-
tracted from the data varies from one material to another
approximately as 1 /Tc

3 that further supports the pairbreaking
scenario.

At this point, there are not yet enough data for a reliable
check of the scaling relation �53� or �54� for which one needs
all quantities entering these relations for the same sample.
Still, an attempt to roughly estimate, e.g., the RHS of Eq.
�54� for the optimally doped Ba�Fe1−xCox�2Fe2As2 gives a
number �5�10−9 G cm2 of a correct order of magnitude.

Notwithstanding a good agreement of the data with the
strong pairbreaking results �C�Tc

3, Hc2� �Tc, and ��ab
�T2 /Tc

3, applicability of the model proposed here to iron-
based materials is still in question. Besides simplifications
mentioned above of a one-band weak coupling with the scat-
tering in a weak Born limit, the question of what physical
meaning, if any, one should associate with the parameter Tc0
which at least implicitly present in any AG-based model. The
point is that the specific-heat data of Fig. 1 suggest that even
in the materials with Tc�40 K the pairbreaking is still
strong. Adopting a rough estimate of N�0� and the experi-
mental �C, one can evaluate 	+ along with the scattering
parameter �+, that allows one to estimate Tc0 from Eq. �1�.
This order-of-magnitude estimate places Tc0 well in the
room-temperature range. Does this mean that by a clever
choice of dopants one can get rid of the pairbreaking scatter-
ing and, therefore, push critical temperatures of iron-based
materials to much higher values than those currently ob-
served? The answer is, probably, negative. The point is that
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FIG. 1. �Color online� The specific-heat jump versus Tc for a
few 122 compounds shown on a log-log plot. The dashed line cor-
responds to �C�Tc

3. The data for the upper four entries in the
legend are from Ref. 18; the new data points for mixed Co-Cu
doping are taken by the same group, but have not been included in
the original publication. The literature data are taken from Refs.
19–25.
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the spin fluctuations in iron pnictides might be responsible
for the effective coupling forming the Cooper pairs and, at
the same time, cause the pairbreaking. If so, one cannot get
rid of the pairbreakers without destroying the superconduc-
tivity itself.

To conclude: scaling relations for anisotropic supercon-
ductors with a strong pairbreaking are proposed. The formu-
las relating independently measured specific-heat jumps,
slopes of the upper critical field, and the low-temperature
behavior of the penetration depth are derived within a one-
band weak coupling scheme but, being independent of ma-
terial parameters, may hold for a broader class of materials.

Note added in proof: Recently reported �SR data,26 con-
firm the scaling ��0��1 /Tc of Eq. �52�.
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