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We present a derivation of the low-energy Lagrangian governing the dynamics of the spin degrees of
freedom in a spinor Bose condensate for any phase in which the average magnetization vanishes. This includes
all phases found within mean-field treatments except for the ferromagnet for which the low-energy dynamics
has been discussed previously. The Lagrangian takes the form of a sigma model for the rotation matrix
describing the local orientation of the spin state of the gas.
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I. INTRODUCTION

A. Spin ordering in ultracold gases

In recent years the field of ultracold atomic physics has
attracted the attention of a great many condensed-matter
theorists, largely due to the prospect of finding novel realiza-
tions of many-body systems. Part of the appeal doubtless lies
in the exquisite experimental control that may be exercised
over the parameters of a system in which many of the com-
plicating factors familiar from the solid state �disorder,
phonons, etc.� are absent. Certain intrinsic aspects of ultra-
cold atomic gases—not dependent on the specifics of the
experimental setting—are qualitatively novel, however, and
without antecedent in the study of condensed matter. In this
latter category we may place the possibility of spontaneous
ordering of the spin degrees of freedom in a Bose gas. In-
deed, prior to the “ultracold revolution” the only Bose super-
fluid that could be studied in the laboratory was 4He, which
has zero spin. With the advent of optical trapping of Bose
condensates of alkali atoms, which allows for a fully rota-
tionally invariant setting, the experimental study of spin or-
dering within a hyperfine multiplet came within reach.1,2

The earliest theoretical works motivated by these devel-
opments explored possible ordered phases using a mean-field
description, in both the spin 1 and spin 2 hyperfine
multiplets.3–6 In this description the concept of spontaneous
symmetry breaking plays a central role. Up until very re-
cently, however, there were no experiments in which this
spontaneous ordering was apparent. The reason for this is
that the simplest experimental protocol for the investigation
of the hyperfine state of the gas is to apply a magnetic field
gradient to split a gas cloud into different components in a
Stern-Gerlach experiment.1,2 The different components are
subsequently imaged to determine their �relative� occupan-
cies. This technique naturally imposes a quantization axis
and any information concerning the coherence between dif-
ferent hyperfine levels is lost. Thus magnetic alignment in
the plane perpendicular to this axis, which depends on the
relative phase of these different levels, cannot be observed.

The characterization of magnetic ordering in atomic gases
has taken a leap forward in the last few years thanks to the
work of the Berkeley group, who demonstrated in situ dis-
persive imaging of the transverse magnetization of a gas of
87Rb in the spin 1 multiplet,7 and subsequently employed
this technique to investigate a number of fascinating aspects

of this system, including the dynamics of spontaneous sym-
metry breaking, defect production, and the role played by
magnetic dipole forces.8–10

The above developments illustrate two important needs.
First, imaging of the spin order was necessary to bring much
of this new physics out into the open. Second, the nonequi-
librium character of most experiments requires that the
mean-field theory of equilibrium ordered states be supple-
mented with a dynamical description of the relevant order
parameters.

It is our hope that the next few years will see the devel-
opment of imaging techniques capable of detecting some of
the spin orders to be discussed in Sec. III of which an aver-
age magnetization is only the simplest. The aim of this work
is to address the second need: uncovering the low-energy
description of the order parameter. For the case of the Bose
ferromagnet, which is appropriate to the spin 1 87Rb system,
this description was provided in an earlier paper.11 In this
work we will focus instead on states with vanishing average
magnetization. For reasons that will be become clear in the
following sections these cases are qualitatively different.

B. Low-energy descriptions

In an ordered phase of matter we expect that the low-
energy degrees of freedom consist of variations in the order
parameter on some manifold of symmetry broken states
�Goldstone modes�, together with any conserved quantities.
In our earlier work on the Bose ferromagnet11 the degrees of
freedom were the local magnetic moment m and the super-
fluid velocity v. In the long-wavelength limit these were
found to obey the coupled equations

Dm

Dt
−

�2

2m
m � �2m = 0, �1�

� · v = 0, � � v =
�s

2m
�abcma � mb � �mc, �2�

where D
Dt = �

�t +v ·� is the convective derivative. Equation �1�
is a modified Landau-Lifshitz equation and gives rise to qua-
dratically dispersing spin waves when linearized around a
solution m=const.

The quadratic dispersion is a consequence of the two
transverse deviations of the order parameter being canoni-
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cally conjugate. For the phases with vanishing average mag-
netization that are the focus of this work, the conjugate vari-
ables involve deviations from the order-parameter manifold.
This results in linearly dispersing Goldstone modes. The
situation is analogous to the case of spin waves in an anti-
ferromagnet, where the conjugate variables are the difference
in magnetization on neighboring sites—the Néel order
parameter—and the sum.

It also follows from the vanishing of the average magne-
tization that the order-parameter dynamics and superfluid
flow are decoupled except for a global topological constraint.
Again, this is quite different from the case of the ferromag-
net, where the two are coupled together in the equations of
motion. It follows that we can write a Lagrangian for the
spin degrees of freedom only. This Lagrangian is expressed
in terms of a rotation matrix R that specifies the local orien-
tation of the spin state relative to some reference state. By
expressing the matrix elements of R in terms of an orthonor-
mal triad Rab= �eb�a, with ea ·eb=�ab, the spin Lagrangian
may be written as

Lspin =
1

2�
a=1

3

�Ĩa��tea�2 − g̃a��ea�2� . �3�

Here Ĩa are g̃a are some constants to be specified later, which
depend on the ordered phase in question. The Lagrangian,
Eq. �3�, is the main result of this paper. The only other phase
for which the spin Lagrangian was previously obtained is the
polar phase of the spin 1 gas, to be discussed below, in which

Ĩa= g̃a=0, a=2,3, giving the familiar O�3� model.12

C. Outline of this paper

The structure of the remainder of this paper is as follows.
In Sec. II we review the basic description of a spinor con-
densate, and, in particular, the structure of the interaction
Hamiltonian. Section III describes in detail the ground-state
manifolds of the different phases of spinor condensates, be-
ginning with the simplest nontrivial case, spin 1, before in-
troducing the Majorana �or stellar� representation that is very
useful in visualizing spin states. The global structure and
local geometry of the order-parameter manifolds are then
introduced, as well as a parametrization for the dynamical
variables conjugate to the order parameter. After this the
derivation of the low-energy Lagrangian is a relatively
simple matter, and is described in Sec. IV along with the
derivation of the equations of motion. We have tried to keep
the presentation pedagogical throughout, though at various
points there are parenthetical technical comments that the
casual reader should feel free to ignore.

In a related work, Barnett et al.13 have derived the full
equations of motion of a spinor condensate in terms of the
Majorana representation and applied a group-theoretical
analysis to the determination of all normal modes about an
ordered ground state. We pursue a complimentary goal of
obtaining the full nonlinear Lagrangian for the Goldstone
modes only.

II. BASICS OF SPINOR BOSE CONDENSATES

A. Lagrangian

One could take the point of view that the description of
the dynamics of a dilute spinor gas is no different from its
spinless counterpart, being governed by the time-dependent
Gross-Pitaevskii equation, with Lagrangian density

L = i�†�t� − H��†,�� �4�

�we set �=m=1 from now on�. For a spin s gas � is a 2s
+1 component spinor and the Hamiltonian density has the
form

H��†,�� =
1

2
� �† � � + Hint��†,�� , �5�

where the first term is the kinetic energy. The interaction part
Hint��† ,�� is quartic in � and its form will be given below
for s=1 and 2. We will not discuss the influence of the trap-
ping potential, save to assume that it preserves rotational
symmetry. For stationary solutions of the form ��r , t�
=e−i�t��r� the time-dependent description reduces to the
time-independent Gross-Pitaevskii theory with � the chemi-
cal potential. Instead of treating the action S=�drdtL classi-
cally, we can interpret it as the quantum action in a coherent-
state path integral. Little that we will have to say will depend
upon this distinction.

In fact this superficial similarity between the spinless and
spinful problems is quite misleading. The ground state in a
uniform system corresponds to some constant �. In the spin-
less case this fixes � up to a phase once the density
�=�†� is specified. But in the spinful case we still have to
find the correct “direction” of � in the complex
2s+1-dimensional spinor space, determined by minimizing
the interaction Hamiltonian Hint��† ,��. The interactions will
be assumed to respect rotational symmetry, so this minimum
is only unique up to rotation �specified by the three Euler
angles, say�. Choosing this rotation—starting from some ar-
bitrary reference state—specifies the spontaneous breaking
of rotational symmetry in the ground state. The slow varia-
tion in this rotation in space and time constitutes the low-
energy dynamics of the system, the description of which is
the subject of this work. To characterize these low-energy
manifolds we must first specify the form of Hint.

B. Interaction Hamiltonian

The structure of Hint has been discussed in many works,
starting with the first papers treating spinor Bose conden-
sates. We will therefore keep the following discussion rela-
tively brief. Low-energy scattering between a pair of bosons
occurs in the s-wave channel only, and can be treated as a
�—function interaction, characterized by a set of interaction
constants gS, S=0,2 , . . . ,2s for a pair of bosons with total
spin S. Bose symmetry dictates that the interaction vanishes
for odd total spin.

For spin 1, the resulting interaction may be presented in
the form3,4
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Hint =
c0

2
��†��2 +

c2

2
��†S�1���2, �6�

where S�s� are the spin s angular momentum matrices. Equa-
tion �6� is the sum of a density-density and a spin-spin inter-
action. For spin 2 we have5,14

Hint =
c0

2
��†��2 +

c1

2
��†S�2���2 +

c2

10
�� · ��2. �7�

Here � ·�=�m=−s
s �−1�s+m�m�−m is a scalar representing the

amplitude of singlet pairs of spin s �Eq. �6� can be expressed
using this operation instead of the spin-spin interaction. In
the spin 2 case both terms are needed�. Our use of c2 for two
different quantities matches the notation of the works cited
above, where one may find explicit expressions for
ci, i=0,1 ,2 in terms the constants gS defined above.

In the spin 1 case it is fairly clear how to minimize Eq. �6�
at fixed density. For the spin 2 case things are less obvious.
In the next section we will discuss a method of parametrizing
the spinor � that allows us to visualize the resulting states.

III. IDENTIFYING THE SPIN DEGREES OF
FREEDOM

In this section we will introduce the Majorana �or stellar�
representation of spin states. This provides a vivid way to
picture spin ordering in higher spin condensates in which
rotational symmetry is manifest. None of the calculations of
Sec. IV depend on this representation; its use is rather in
providing a concrete way to picture the ground-state mani-
fold. Before beginning it is worth setting the scene with a
more pedestrian discussion of the spin 1 case.3,4

A. Phases of the spin 1 gas

Let us minimize Eq. �6� with a spinor � normalized to
unity �thus we are adopting units in which the density �=1�.
This is a matter of minimizing �maximizing� �†S�1�� for c2
�0 �c2	0�. One way to make the resulting states clearer is
to work in Cartesian components. The relationship to the
usual components �m m=−1,0 ,1 is

�x = −
1
�2

��1 − �−1� ,

�y = −
i

�2
��1 + �−1� ,

�z = �0. �8�

In this basis the angular momentum matrices take the form
�Si

�1�� jk=−i�ijk. Then we can write the complex spinor �=a
+ ib, where a and b are two real vectors satisfying a2+b2

=1, and

�†S�1�� = 2a � b .

For c2	0 the interaction energy is minimized for a and b
perpendicular and equal in magnitude. This state is termed

ferromagnetic as it corresponds to maximal polarization of
the spin. The resulting order-parameter manifold corresponds
to the set of all configuration of a pair of orthogonal vectors
and is thus identified with the group of rotations SO�3�

For c2�0 a and b are aligned. The resulting polar state
�the name originates from an analogous state in superfluid
3He� can therefore be written as

�n,
 = ei
n �9�

for n a real unit vector. Note that this parametrization has
some redundancy in that the points �
+� ,−n� and �
 ,n� are
identified. The resulting manifold is known as the mapping
torus of the antipodal map of the sphere S2.

The global topology of the above ferromagnetic and polar
order-parameter manifolds naturally determines the character
of the topological defects in the ordered phases, and certain
features of the ordering transitions, some of which have al-
ready been discussed in the literature.15 This is not the focus
of the present work and topology will not be further dis-
cussed, even though the defect physics of the higher spin
condensates promises to be highly nontrivial.16,17

The polar state has �n,

† S�1��n,
=0. Nevertheless the

above discussion makes it clear that polar ordering involves
a choice of axis: the spinor �n,
 is the m=0 state with respect
to the axis n. It is natural to ask for an operator that acquires
a nonzero expectation value in the polar state. The obvious
candidate is the spin 2 quadrupole tensor �or nematicity�

Nab
�s� =

1

2
�Sa

�s�Sb
�s� + Sb

�s�Sa
�s�� −

s�s + 1�
3

�ab �10�

with

�n,

† Nab

�1��n,
 =
1

3
�ab − nanb.

Such expressions are familiar in the study of nematic liquid
crystals, where the vector n is known as the director. In the
liquid-crystal context the identification of n and −n without
the phase factor in Eq. �9� �the order-parameter manifold is
then the real projective plane RP2� makes for very different
defect physics, however.18 Nematic ordering in solid-state
magnetic systems has been the subject of much experimental
and theoretical work in recent years with a good deal of
uncertainty still remaining. The observation of the polar state
in the spin 1 Bose gas would therefore be an important mile-
stone.

Searching for higher spin order parameters as the spin of
the gas particles increases becomes arduous. We now turn to
a more convenient representation of the spin order.

B. Majorana (stellar) representation

The representation of a general spin s state that �some-
times� bears his name was discovered by Majorana in
1932,19 and independently several times since,20,21 though it
has antecedents in 19th century mathematics.22 A very nice
discussion can be found in Ref. 23.

The result is very simple to state and represents a gener-
alization of the Bloch sphere for spin 1/2 to arbitrary spin.
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Up to normalization and a phase—thus in more mathemati-
cal terms we are parametrizing the complex projective space
CP2s—an arbitrary spin s state can be specified by locating
2s indistinguishable points on the unit sphere �see Fig. 1�.
Such a configuration is sometimes called a constellation, for
reasons that will become clear.

There are two steps to understand why this is so. First,
imagine forming our spin s from 2s spin 1/2 in the totally
symmetric subspace. An arbitrary state may then be written
as a totally symmetric spinor �AB¯C=��AB¯C�, where the
round brackets denote the operation of
symmetrization and each of the 2s indices can take the value
↑ or ↓. The relationship between �AB¯C and the
corresponding 2s+1 component spinor � is

�m = � 2s

s − m
�1/2

�↑↑ ¯ ↑
s+m

↓↓ ¯ ↓
s−m

, m = − s, . . . ,s .

Next contract every index of �AB¯C with A= � 1
z �. Denoting

by ��z� the resulting polynomial of order 2s, the fundamen-
tal theorem of algebra tells us

��z� 	 �AB¯CAB
¯ C = N


i=1

2s

�z + zi� �11�

with N some normalization. Thus �AB¯C may be written

�AB¯C = ��A�B¯�C� �12�

with the principal spinors �A, �B, etc. related to the �zi� by

�↑
�↓

= z1,

�↑
�↓

= z2,

¯

�↑
�↓

= z2s �13�

relations that are unchanged if we normalize the spinors, in
which case they correspond to 2s points on the Bloch sphere
with coordinates �
i ,�i�, i=1, . . . ,2s,

��↑,�↓� = ei�1/2 cos

1

2
,e−i�1/2 sin


1

2
� ,

��↑,�↓� = ei�2/2 cos

2

2
,e−i�2/2 sin


2

2
� ,

¯

��↑,�↓� = ei�2s/2 cos

2s

2
,e−i�2s/2 sin


2s

2
�

�notice that �AB¯C in Eq. �12� is not in general normalized
when the principal spinors are�. Then �minus� the roots of
��z� can be written zi=ei�i cot 
i /2 and correspond to ste-
reographic projection from the north pole to the plane tan-
gent to the sphere at the south pole.

The beautiful feature of the Majorana representation is
that rotations act simply as rotations on the Bloch sphere. Of
course, it is useful to have an explicit expression for the
polynomial ��z� in terms of the 2s+1 components of the
spin s state �. It is easy to show

��z� = �
m=−s

s

�mzs−m 2s

s − m
�1/2

. �14�

If spinor indices are raised and lowered using the antisym-
metric tensors �AB and �AB �with �↑↓=1 and �AB=−�AB�

�A = �AB�B ↔ �A = �B�BA,

then rotational invariance upon contraction of indices is
guaranteed �in fact the result is invariant under the larger
group SL�2,C�, a result that will be useful later�. If we de-
note by �̄ the result on � of raising all indices of the corre-
sponding symmetric spinor, then one can readily see that
�̄m= �−1�s+m�−m, and thus

� · � = �
m=−s

s

�m�̄m = �AB¯C�AB¯C.

After raising indices of the principal spinors we
have �↑ /�↓=−1 /z1, etc. Under stereographic projection
z→−1 /z� represents the antipodal map on the unit sphere.
Thus we see that the spinor �̄� is represented by a set of
points antipodal to those representing �. Furthermore, the
Majorana representation of a normalized state with �� ·��
=1, corresponding to �=e2i
�̄�, consists of pairs of antipodal
points �and is thus only possible for integer spin�. This fact
will be useful in minimizing the interaction energy �recall the
form of Eq. �7��. The transformation T :�m→ �T��m= �̄m

� is
in fact the �antiunitary� operation of time reversal.

N

S

FIG. 1. �Color online� Majorana representation of a s=3 spin
state with arrows representing the principal spinors.
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C. Spin ordering in the Majorana representation

The use of the Majorana representation to visualize spin
ordering in a Bose gas was suggested in Ref. 24. Let us first
see how the phases of the spin 1 gas discussed in Sec. III A
appear in this representation, before moving on to the spin 2
case.

1. Spin 1

As mentioned in Sec. II B, Eq. �6�, the interaction Hamil-
tonian in the spin 1 case may be written as

Hint =
c0 + c2

2
��†��2 −

c2

2
�� · ��2. �15�

For c2�0 we should maximize �� ·��2. Based on the discus-
sion of the previous section, this corresponds to placing the
two points antipodally in the Majorana representation. It is
evident that the corresponding spin 1 spinor is just the sym-
metric m=0 state with respect to the resulting axis. This is
just the polar state described before.

For c2	0 the energy is minimized if �� ·��2=0, which
can be achieved by making the two principal spinors equal
since �A�A=0. It is clear that this represents the ferromagnet,
being a maximally polarized �or coherent� spin state, a result
that generalizes to arbitrary s.

2. Spin 2

Suppose that in Eq. �7� c1�0. The corresponding term in
the Hamiltonian can be fully satisfied by states with
�†S�2��=0. The state

��,� =�
e−i�/2 sin �/2

�2

0

ei�/2 cos �/2
0

e−i�/2 sin �/2
�2

� �16�

has principal spinors forming a polyhedron with four identi-
cal triangular faces known as a disphenoid �see Fig. 2�. Since
this polyhedron has three orthogonal twofold axes, it cannot
have a nonzero magnetization. Any spin 2 spinor may be
brought to this form by a SL�2,C� transformation.20 To fix
the parameters �, � in Eq. �16� we turn to the third term in
Eq. �7�. If c2	0, this term is minimized by placing four
points in two antipodal pairs so that �� ·��2=1. The principal
spinors form a rectangle, corresponding to �=0 in Eq. �16�.
The aspect ratio of the rectangle varies with �, with �
= �2n+1�� /3 being a square and �=0 corresponding to a
pair of points at either pole. The fact that the energy is mini-
mized for any � in this parameter regime is rather surprising
and we will return to it briefly below. This state will be
referred to as rectangular in the following �in Ref. 24 it was
called nematic since Nab�0�.

For c2�0 �� ·��2 should be minimized. This can be done
by taking �=�=� /2. The result is a regular tetrahedron.
Note that this state has Nab=0.

Since the ferromagnet also has �� ·��2=0, it is preferred
over the tetrahedron when c2�0 but c1	0. For c2	0 and
c1	0, one must compare the energy of the rectangular state
with that of the ferromagnet. The resulting phase diagram
can be found in Refs. 5 and 24. Note that while the rectan-
gular state maximizes the magnitude of the quadratic scalar

I 	 � · � = �ABCD�ABCD, �17�

the tetrahedral state maximizes the cubic invariant

J 	 �CD
AB �EF

CD�AB
EF. �18�

The inclusion of a sextic term proportional to �J�2 in the
interaction energy would lift the accidental degeneracy in the
� parameter discussed above. A microscopic derivation of
such a term is discussed in Refs. 25 and 26, with a positive
sign favoring the square state ��= �2n+1�� /3� and a nega-
tive sign the uniaxial state in which two pairs of points co-
incide ��=0�. The inclusion of such a term in our formalism
is a straightforward matter and we will not discuss it further.

The rectangular and tetrahedral states evidently have cer-
tain discrete symmetries that are rather hard to discern by
inspection of Eq. �16�, and indeed went unnoticed in the
earliest works on the spin 2 condensate.5,6 It appears that the
term “cyclic” used in several works to describe the tetrahe-
dral phase is a consequence of a misidentification of the
symmetry. This illustrates the utility of the Majorana repre-
sentation in the visualization of spin order.

D. Ground-state manifolds

1. Global structure

In Sec. III A we identified the order-parameter manifolds
of the phases of the spin 1 gas. With the help of the Majorana
representation we can now do the same for the spin 2 case.
Roughly speaking, we expect the manifold to consist of all

(b)

(a)

(c)

FIG. 2. �Color online� Top: disphenoid corresponding to the
Majorana representation of the state with �=� /4, �=� /2 in Eq.
�16�. Bottom left: rectangular state with �=0, �=� /2. Bottom
right: tetrahedron with �=�=� /2.
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configurations related to those of Sec. III C 2 by rotation.
Some rotations will leave the configuration of principal
spinors unchanged, however, so the manifold cannot simply
be identified with the rotation group SO�3�. In mathematical
terms the problem is to determine the orbits of a reference
spinor under the action of the spin s representation of the
rotation group.

If we ignore the phase of the spinor for a moment, so that
we are considering orbits in CP2s, this problem can be solved
using the Majorana representation by considering the mani-
fold of constellations generated by all possible rotations.21

For instance, the ferromagnetic spin 1 state has orbit in CP2

equal to S2 �and this is true in general for any spin s coherent
state� while for the polar state we have S2 with antipodal
points identified: the real projective plane RP2. In general if
one finds a configuration of principal spinors unchanged un-
der some subgroup of ��SO�3� �the stabilizer subgroup of
a constellation�, then the orbit is given by SO�3� /�. Thus in
the case of spin 1, �=SO�2� for the ferromagnet. For the
polar phase, � includes � rotations about axes in the plane
normal to the axis defined by the two Majorana points and is
thus isomorphic to O�2�.

The reader will notice that these are not the order-
parameter manifolds identified in Sec. III A for the spin 1
case. We have neglected the phase of the spinor, which is a
real degree of freedom. We might then guess that any spinor
on the order-parameter manifold can be written

�R,
 = ei
D�s��R��0, �19�

where D�s��R� is the spin s representation of the rotation R
and �0 is some reference spinor corresponding to the phase
in question. This does not mean that the order-parameter
manifold is SO�3��U�1� because the stabilizer subgroups
mentioned above leave the spinor corresponding to a particu-
lar constellation unchanged up to a phase. We denote these
phases as ���� with ���. They must form a one-
dimensional unitary representation of �,

���1�2� = ���1� + ���2� mod 2�

and allow us to make the identification

�R,
 = �R�,
−���� � � � �20�

showing that the order-parameter manifold is SO�3��U�1�
�̃

,
where the tilde is to denote the action of � on SO�3�
�U�1� and �R ,
�→ �R� ,
−�����.

The simplest case to consider is the polar phase with �
=O�2�, for which the only nontrivial phase is a −1 associated
with the � rotation that exchanges the Majorana points. If �
were SO�2� with only trivial phases, the ground-state mani-
fold would be S1�S2, with the first factor coming from the
U�1� and the second from SO�3�/SO�2�. The � rotation and
the associated minus sign are responsible for the identifica-
tion �
+� ,−n�= �
 ,n� already discussed in Sec. III A.

To turn to a less trivial example, let us see how this works
for the case of the tetrahedral phase. In this case �=T, the
symmetry group of the tetrahedron. A tetrahedron has three
orthogonal twofold axes and four threefold axes. For the rep-
resentative spinor given earlier

� =�
�− i

2

0

� i

2

0

�− i

2

� , �21�

the z axis is aligned with one of the twofold axes. One easily
verifies that z-axis rotations through � leave the spinor un-
changed. Alternatively, we can align one of the threefold
axes with the z axis with the choice �see Fig. 3�

� =�
0

�2

3

0

0

�1

3

� �22�

�this is most easily seen by considering the Majorana poly-
nomial, which has a root at z=0, so that one vertex is at the
north pole�. Now a rotation through �2� /3 is seen to repro-
duce the same spinor but with phase factors e�2�i/3. It is not
hard to verify that these phases form a one-dimensional rep-
resentation of T �the other nontrivial one-dimensional repre-
sentation comes from changing the sense of the threefold
axes�. The topological properties of the resulting space
SO�3��U�1�

T̃
, and the implications for superfluid vortices in the

tetrahedral phase, were discussed in Ref. 17.
For the rectangular phase �=D2 in general, but D4 for the

square case ��= �2n+1�� /3�. Here Dn denotes the dihedral
group. The only nontrivial phases occur in the latter case, as
may be seen by considering the value �=�, when the four
points lie on the equator of the Bloch sphere. Then we have

N

S

FIG. 3. �Color online� Tetrahedron with threefold axis marked,
see Eq. �22�.
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� =�
1
�2

0

0

0

1
�2

� �23�

and a �� /2 rotation about the z axis is seen to give rise to a
−1.

This construction generalizes readily to other ordered
states of arbitrary spin once the corresponding stabilizer sub-
groups and phases are identified.24 Note that when � is dis-
crete, as for the spin 2 phases other than the ferromagnet, the
order-parameter manifold is four dimensional.

2. Local geometry

Next we turn to the local properties of the order-parameter
manifold. The inner product naturally endows this space with
a metric.27 Using the parametrization, Eq. �19� consider two
states �R,
 and �R�,
� related 
�=
+d
 and R�=RR� with
Rab

� =�ab−�c�abc an infinitesimal rotation corresponding to

D�s��R�� = 1 − i� · S�s�.

We find the squared distance between these two states to be

��R�,
� − �R,
�2 = d
2 + �a�bgab − 2d
� · ��0
†S�s��0� ,

�24�

where the tensor gab is

gab 	
1

2
�0

†�Sa
�s�,Sb

�s���0. �25�

Equation �24� makes it clear that if �0
†S�s��0�0, rotations

and phase changes are coupled together. This coupling was
discussed in Ref. 11 for the case of the ferromagnet, the only
one of the phases discussed in Sec. III with �0

†S�s��0�0. The
discussion of the general case is relegated to Appendix. Our
main interest is in the other phases having �0

†S�s��0=0, for
which Eq. �24� decouples into separate contributions from
the change in phase and the rotation, with the latter being
characterized by the metric tensor gab. Note that gab is sim-
ply related to the nematicity Nab in Eq. �10�. The notion of
distance described by the metric tensor is left invariant, i.e.,

preserved if states �R,
 are mapped by R→ R̃R for some R̃,

but not right invariant, under which g→ R̃gR̃T.
Focusing now on the spin 2 case, we evaluate the metric

for the state, Eq. �16�,

g =�
2 + cos � + �3cos � sin � 0 0

0 2 + cos � − �3cos � sin � 0

0 0 4 sin2�

2
� . �26�

For the tetrahedral phase ��=�=� /2� g=2�1, showing that
the order-parameter manifold has a left and right invariant
geometry. This is perhaps not surprising given the highly
symmetric arrangement of points in the Majorana represen-
tation. For the point �=�=0 in the rectangular phase, we see
that g=diag�3,3 ,0�. The physical meaning is clear: because
we have two points at either pole the stabilizer subgroup is
O�2�, so that the order-parameter manifold is only three di-
mensional. The same holds true for the spin 1 polar phase.

We will see that the metric plays a crucial role in fixing
the dynamics on the order-parameter manifold.

E. Conjugate variables

Having characterized the order-parameter manifold for
the spinor condensates, we are almost ready to study the
dynamics on that manifold. It remains to identify the conju-
gate variables. We expect these to be coupled by the first
term of Eq. �4�, which expresses the conjugacy of � and �†.
Substituting the parametrization, Eq. �19�, into that term
gives

i�†�t� = − �t
 + i�0
†�D�s�†�tD

�s���0 = − �0
†�0�t


+ �0
†�t · S�s��0, �27�

where �t,a= 1
2�abc�RT�tR�cb are the components of the angular

velocity. By analogy with rigid body dynamics, we refer to
this as the “body frame” angular velocity: Eq. �27� shows
that it is conjugate to the body frame angular momentum
�0

†S�s��0, i.e., that of the unrotated state. As is well known,
the time integral of the term i�†�t� has an alternative inter-
pretation as the Berry phase associated with the time evolu-
tion of �. In this context the formula �27� appears in Ref. 28.

In the cases of interest �0
†S�s��0=0 so that the variables

conjugate to the rotations are nonzero only as one deviates
from the order-parameter manifold. To account for the devia-
tion caused by nonzero �t, we recognize that �t appears in
the Lagrangian a magnetic field. In the limit of slow varia-
tions in R, the response �0→�0+�� can then be taken to be
the static response to this field, that is, the susceptibility

LOW-ENERGY DYNAMICS OF SPINOR CONDENSATES PHYSICAL REVIEW B 81, 184526 �2010�

184526-7



max
��

��t · �S�s���0+�� − H��0 + ���� �
1

2
�ab

�0�t,a�t,b.

�28�

The superscript on the susceptibility is to remind us that it
depends upon the ground state �0. As written in Eq. �28� �ab

�0

is the mean-field susceptibility but the argument is more gen-
eral. In a Born-Oppenheimer-type approximation the true
susceptibility, including many-body effects, will give the re-
sponse to slow rotations of the ordered state.29

It remains to evaluate the susceptibility. It is not clear that
a simple analytic answer exists for a general interaction
Hamiltonian for a spin s condensate, even in the mean-field
approximation. Below we give an ansatz that works for the
spin 1 and spin 2 cases. We first generalize the parametriza-
tion, Eq. �19�, to

�R,l,
 = ei
D�s��R��l, �29�

where �l is a state with �l
†Ss�l= l. Note that

�R,l,

† S�s��R,l,
 = Rl.

Rl is angular momentum in the “lab frame.” For the devia-
tion corresponding to �l, we make the ansatz

�l = N�l�B�s��l��0, �30�

where N�l� is some normalization factor, and

B�s��l� = exp�1

2
�g−1�ablaSb

�s�� . �31�

It is not hard to see that to quadratic order the normalization
takes the form

N�l� = 1 −
1

4
�g−1�ablalb + ¯ �32�

and that to this order �l
†Ss�l= l, as required. The effect of the

l distortion on the tetrahedral state is shown in Fig. 4. At first
order the deviations generated by Eq. �30� lie in the subspace
spanned by Sb

�s��0. These have the feature that any orthogo-
nal deviation does not give rise to a nonzero l. This is not
however enough to guarantee that these deviations describe
the response to a field, because the l distortion could couple
to an orthogonal deviation in the interaction Hamiltonian
Hint, and this coupling could contribute to the susceptibility.

To see why this is not the case for the spin 1 and spin 2
condensates, consider the interaction Hamiltonians given in
Eqs. �6� and �7�. First, the ��†S�1,2���2 terms evidently only

have quadratic deviations in l: any orthogonal deviation can-
not produce a nonzero value of �†S�1,2�� at first order by
assumption. Second, the term involving � ·� has only qua-
dratic deviations in l arising from the normalization factor
N�l�, since � · �S��=0.

Our reason for writing the exponential in Eq. �31� is the
following. The matrix D�s��R�B�s��l� that acts on �0 is a polar
decomposition of the Ds,0 representation of an element of
SL�2,C�.30 Now SL�2,C� /Z2 is isomorphic to the connected
Lorentz group. This isomorphism has a beautiful physical
counterpart. The Lorentz transformations have a natural ac-
tion on the celestial sphere, the space of light rays on the past
�say� light cone. Further, the elements of SL�2,C�,

A = a b

c d
�, ad − bc = 1

have a natural action on the Bloch sphere: �
�↑
�↓

�→A�
�↑
�↓

�, cor-
responding to a Möbius transformation on the stereographic
coordinates z=�↑ /�↓,

z →
az + b

cz + d
�33�

�the fact that A and −A correspond to the same Möbius trans-
formation accounts for the Z2 quotient above�. Remarkably,
group elements related by the isomorphism mentioned above
correspond to identical transformations of the sphere.31 The
deformations of Eq. �30� are just those generated on the ce-
lestial sphere by a boost of the frame of reference, which, in
particular, determines the aberration of the fixed stars. Thus
the name “stellar representation” sometimes used to describe
the Majorana picture of spin states is more than picturesque.

With the parametrization, Eq. �29�, we have accounted for
six spin degrees of freedom �plus the superfluid phase�: three
rotation variables parametrizing the order-parameter mani-
fold and three conjugate variables. The remaining 4s−6 vari-
ables required to specify the spin state do not correspond to
any broken symmetries and must describe gapped modes.

For the spin 2 case, the missing two degrees of freedom
are contained in the �complex� ratio of the two SL�2,C� in-
variants in Eqs. �17� and �18�.

� =
I3

J2 . �34�

The powers are chosen so that the normalization in Eq. �30�
drops out. By construction � is unchanged for all l and R
starting from the state Eq. �16�, and can be expressed in
terms of � and �.

This concludes our discussion of the spin degrees of free-
dom in a spinor condensate. With this background, we will
see that the derivation of the low-energy Lagrangian is ex-
tremely straightforward.

IV. DYNAMICS NEAR THE ORDER-PARAMETER
MANIFOLD

A. Low-energy Lagrangian

We are going to use the parametrization, Eq. �29�, in the
Lagrangian, Eq. �4�. In doing so, we are treating the problem

N

S

N

S

FIG. 4. �Color online� Distortion of the tetrahedral state shown
in Fig. 2 due to boosts in the z direction
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as a constrained dynamical system, in which deviations from
the ground-state manifold associated with the gapped modes
described in the previous section are assumed to be infinitely
stiff. The Lagrangian for the spin degrees of freedom then
takes the form

Lspin = �t · l −
1

2
gab�i,a�i,b − Hint�l� , �35�

where �i,a= 1
2�abc�RT�iR�cb i=x ,y ,z, in analogy to the earlier

definition of �t,a, and we have used the metric tensor defined
in Eq. �25�. We could additionally allow for a variation �� in
the density of the gas, which is conjugate to the phase 
, to
describe the density modes, but will not do so here. In Eq.
�35� we have not included the gradient of the conjugate vari-
ables �including ��� in the part arising from the kinetic en-
ergy, as such terms can be neglected in the long-wavelength
limit of interest. The conjugate variables do however appear
in the interaction term

Hint�l� =
1

2
�I−1�ablalb. �36�

The notation is of course chosen to emphasize the rigid body
analogy, in the language of Sec. III E Iab=�ab

�0, the mean-field
susceptibility. The precise form of the “inertia tensor” will
depend on the phase under consideration; we discuss the spin
2 phases for definiteness. In that case the interaction Hamil-
tonian has the form, Eq. �7�. Computing the quadratic varia-
tion in this expression with the conjugate variables is facili-
tated by the SL�2,C� invariance of the third term: its
variation is determined solely by the normalization in Eq.
�32�. We obtain

�I−1�ab = � c1�ab tetrahedral phase

c1�ab −
c2

5
�g−1�ab rectangular phase.� �37�

It is then straightforward to eliminate the l degrees of free-
dom using the equation of motion, obtained from Eq. �35�,

la = Iab�t,b

to obtain the final result

Lspin =
1

2
Iab�t,a�t,b −

1

2
gab�i,a�i,b. �38�

Equation �38� represents the main conclusion of this work,
being the low-energy Lagrangian for the spin degrees of
freedom of the condensate. It takes the form of a sigma
model in 3+1 dimensions with target space SO�3� �if we
ignore the possibility of vortices in the superfluid phase 
 the
subtle global structure of the ground-state manifold dis-
cussed in Sec. III D 1 can be ignored�. In the case of the
tetrahedral phase, the metric tensor g=21, and the Lagrang-
ian, Eq. �38�, becomes that of the principal chiral model,
having independent left and right SO�3� symmetries.

An alternative form for Eq. �38� follows from noting that,
if M =diag�m1 ,m2 ,m3�,

Mab��,a��,b = tr�M̃��RT��R�

with

M̃ = �tr M�1 − 2M .

Thus we have

Lspin =
1

2
tr�Ĩ�tR

T�tR − g̃�iR
T�iR� . �39�

By expressing the matrix elements of R in terms of an ortho-
normal triad Rab= �eb�a with ea ·eb=�ab this may be written
as

Lspin =
1

2�
a=1

3

�Ĩa��tea�2 − g̃a��ea�2� . �40�

Recall that for the spin 1 polar phase and for the special
value �=0 in the spin 2 rectangular phase the metric tensor
has one zero eigenvalue and two equal nonzero eigenvalues.

As a result both g̃ and Ĩ have two vanishing eigenvalues, and
Eq. �40� reduces to the usual O�3� /O�2� sigma model.

B. Equations of motion and spin-wave spectrum

We find the equations of motion corresponding to Eq. �38�
by writing the variation

�RT�R�ab = − �c�abc.

This gives

��� = ��� − � � ��. �41�

Substitution into Eq. �38� leads to the equations of motion,

�t�I�t� − �i�g�i� + �t � �I�t� − �i � �g�i� = 0. �42�

It follows from their definition that �� satisfy the �Maurer-
Cartan� equation

���� − ���� +
1

2
�� � �� = 0. �43�

Note that if �� is interpreted as a non-Abelian gauge field,
the above condition corresponds to vanishing field strength,
and to the absence of topological defects.

The equations of motion can be linearized by ignoring the
right-hand side of Eq. �43�, allowing us to write ��=���.
The linear equations of motion following from Eq. �42� are
then

�t
2I� − �i�ig� = 0,

a wave equation describing the propagation of three spin-
wave modes with velocities

va =�ga

Ia
, a = 1,2,3.

For the spin 2 case Eq. �37� gives
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va = �
�2c1 tetrahedral phase

�gac1 −
c2

5
rectangular phase� �44�

with ga given by the diagonal elements of Eq. �26� with �
=0. For the square case ��= �2n+1�� /3� we have g
=diag�4,1 ,1� and

v1 =�4c1 −
c2

5
, �45�

v2 = v3 =�c1 −
c2

5
. �46�

These results check with Ref. 6, which also includes the
normal phonon mode as well as the mode associated with
variations in the � and � parameters in Eq. �16�. In the case
of the rectangular phase this latter mode appears gapless in
mean-field theory, but as explained in Sec. III C 2, this is the
result of an accidental degeneracy that does not persist in the
next order of approximation.

V. DISCUSSION

We have achieved our goal of providing a framework in
which the parameters entering the low-energy spin Lagrang-
ian of an arbitrary ordered state of a spinor condensate �with
�0

†S�s��0=0� may be easily calculated. Though we focused
on the spin 2 states, any other state can be treated by the
same method once the problem of minimizing the mean-field
energy is solved. The extension of the present formalism to
spin ordered Mott insulating phases in which the phase vari-
ables are quantum disordered does not present any particular
difficulties.

Perhaps the most interesting problem that we have not
addressed in detail relates to the character of topological de-
fects in these systems. The occurrence of non-Abelian stabi-
lizer subgroups means that vortices have very novel
characteristics.16,17 We mention one consequence of our
work for the quantum description of such vortices. The phase
factors associated with elements of the stabilizer subgroups
that were discussed in Sec. III D 1 will appear in the path
integral when vortices are present, as may be seen from Eq.
�27�. Consider an imaginary time path integral with fields
obeying the boundary condition

��r,� + �� = ��r,�� .

If, as we go from �→�+�, the field at a point r is subject to
a rotation that evolves from R→R�, for ���, the 
 variable
must increase 
→
−���� in order to ensure periodicity of

the fields, leading to a phase factor ei����� in the path integral
�� is the density�. Reference 32 discusses the effect of these
phases for the simplest case of the spin 1 polar phase �or
rather the Mott insulating phase based upon it�, where they
are �1 and the defects are Abelian. The non-Abelian case
remains unexplored.
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APPENDIX: METRIC ON THE ORDER-PARAMETER
MANIFOLD FOR ŠS‹Å0

In the general case the distance between states on the
ground-state manifold has the form Eq. �24�. Let us define a
�Berry� vector potential

a = − i�0
†D†dD�0 = − � · �S�s��0, �A1�

where �¯ �0 denotes an expectation in the state �0, �a

= 1
2�abc�RTdR�cb, and d denotes the exterior derivative �we

find it convenient to use the language of differential forms�.
The vector potential allows us to define a covariant deriva-
tive da	d− ia. The metric tensor d�† � d� can then be cast
in the form

d�†
� d� = �0

†dD†
� dD�0 + d
 � d
 + d
 � a + a � d
 =

− �0
†D†daD � D†daD�0 + �d
 + a� � �d
 + a�

= �a � �bgab + �d
 + a� � �d
 + a� . �A2�

The gauge-invariant metric tensor gab that appears in the first
term takes the form27

gab =
1

2
��Sa

�s� − �Sa
�s��0,Sb

�s� − �Sb
�s��0��0. �A3�

The vector potential is associated with the field strength

da = − d� · �S�s��0 =
1

2
�abc�a ∧ �b�Sc

�s��0, �A4�

where in the second step we have used the Maurer-Cartan
equation, Eq. �43�. Equation �A4� has a more familiar form,
as may be seen by introducing a unit vector m0 parallel to
�S�s��0. Then we have

�abc�a ∧ �bm0,c = ������a�a����m0,�� ∧ ��b�b����m0,��m0,� = �����RTdR����m0,�� ∧ �RTdR����m0,��m0,�

= �����RTdR����m0,�� ∧ �RTdR����m0,���R
TR����m0,�� = ����dR���m0,�� ∧ dR���m0,��R���m0,��

= ����dm� ∧ dm�m�, �A5�
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where m=Rm0 and in the penultimate line we have used the
fact that the determinant of the rotation matrices is unity. As
a result

da =
1

2
�abc�Sa

�s��0dmb ∧ dmc, �A6�

which generalizes the Mermin-Ho relation in Eq. �2� to an
arbitrary spin state.

An important example is provided by the ferromagnet, for
which the state �0 is a fully spin polarized �coherent� state,
and we have

g =
s

2
��ab − m0,am0,b� .

Then the first term of Eq. �A2� takes the form

�a � �bgab =
s

2
dm � dm .

The resulting metric sets the form of the Hamiltonian in Ref.
11.
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