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We study theoretically proximity-induced superconductivity and ferromagnetism on the surface of a topo-
logical insulator. In particular, we investigate how the Andreev-bound states are influenced by the interplay
between these phenomena, taking also into account the possibility of unconventional pairing. We find a
qualitative difference in the excitation spectrum when comparing spin-singlet and spin-triplet pairing, leading
to nongapped excitations in the latter case. The formation of surface states and their dependence on the
magnetization orientation is investigated, and it is found that these states are Majorana fermions in the
dxy-wave case in stark contrast to the topologically trivial high-Tc cuprates. The signature of such states in the
conductance spectra is studied, and we also compute the supercurrent which flows on the surface of the
topological insulator when a Josephson junction is deposited on top of it. It is found that the current exhibits
an anomalous current-phase relation when the region separating the superconducting banks is ferromagnetic,
and we also show that in contrast to the metallic case the exchange field in such a scenario does not induce 0-�
oscillations in the critical current. Similarly to the high-Tc cuprates, the presence of zero-energy surface states
on the topological surface leads to a strong low-temperature enhancement of the critical current.
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I. INTRODUCTION

Topological insulators1–4 represent a state of matter which
is distinct from all other condensed-matter systems. Their
hallmark is the formation of topologically protected, con-
ducting edge states �in two dimensions� and surface states �in
three dimensions �3D��, whereas the bulk retains an insulat-
ing behavior �see, e.g., Ref. 5 for a nice introduction�. These
surface states are characterized by a topological Z2 symmetry
and are robust against disorder and perturbations that respect
time-reversal symmetry. The key to this robustness is the fact
that the Brillouin zone of topological insulators feature an
odd number of Dirac cones �in contrast to the even number
of such cones in graphene�, which ensures that backscatter-
ing paths due to, e.g., impurities always interfere destruc-
tively.

After their prediction,3 topological insulators have been
experimentally observed in HgTe/CdTe quantum wells1 and
in Bi2Se3 /Bi2Te3 crystals.6 Recently, several works have in-
vestigated proximity-induced superconducting �S� and ferro-
magnetic �F� order on the surface of a topological
insulator.7–12 It has been found that the synthesis of the
abovementioned orders in the environment offered by the
topological insulator yield a number of interesting possibili-
ties. On the one hand, it has been shown that such hybrid
structures can host so-called Majorana fermions.13 This class
of excitations, in contrast to their Dirac equivalent, are their
own antiparticles and satisfy non-Abelian statistics.14 The
latter aspect, in similarity to the fractional quantum Hall ef-
fect, has prompted suggestions of using such excitations in
topological quantum computation owing to their robustness
toward decoherence effects. It should be noted that it re-

cently has been proposed that Majorana excitations may be
generated in semiconductor �superconductor heterostructures
in the presence of a magnetic field.15–17 On the other hand,
the study of topological insulators also attracts interest due to
the possibility of unveiling novel transport phenomena with
respect to spin and charge transports.18,19

In Ref. 20, it was recently shown how an interplay be-
tween unconventional superconductivity and ferromagnetism
on the surface of a topological insulator would give rise to a
number of effects with no counterpart in conventional metal-
lic systems. For instance, the proximity effect from a spin-
triplet superconductor would give rise to gapless excitations
in the topological insulator since the gap simply renormal-
ized the chemical potential. Moreover, it was demonstrated
how the zero-energy states21 formed due to a dxy-wave order
parameter were Majorana fermions in contrast to, e.g., the
topologically trivial high-Tc cuprates and that the dispersion
of these states would be highly sensitive to the orientation of
a magnetic field. All of these findings demonstrate that quali-
tatively new effects may be expected when superconducting
and ferromagnetic order conspire in the environment of a
topological insulator.

Motivated by this, in this work we present a comprehen-
sive treatment of hybrid superconductor � ferromagnet struc-
tures deposited on top of a topological insulator. In particu-
lar, we focus on their transport properties and how the
Andreev-reflection process is altered compared to in conven-
tional metallic systems. We study both point-contact spec-
troscopy and Josephson-junction geometries which are di-
rectly experimentally relevant, and allow for the possibility
of unconventional superconducting pairing such as p wave or
d wave. Our proposed model is shown in Fig. 1. A voltage or
current bias may be applied to a topological insulator where
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the surface is coated with a ferromagnetic insulator and a
superconductor. In this way, one may access both conduc-
tance spectra and the supercurrent characteristics in order to
probe how these are influenced by the environment of the
topological insulator.

The present authors have already published a letter20 re-
porting some of the results in the present paper. In addition
to the more detailed and comprehensive explanation of the
derivation and results, there are new results presented in
Secs. III A 4 and III B, and in the Appendix of this work.

II. THEORY

We will employ a Bogoliubov-de Gennes �BdG� approach
to obtain the bound states and transport properties of the
system under consideration. Using a Nambu basis

� = ��↑,�↓,�↑
†,�↓

†� , �1�

the Hamiltonian for the surface of a topological insulator
under the influence of either a superconducting or magnetic
proximity effect reads

Ĥ = �H0�k� + M� �� �k�

− �� ��− k� − H0
��− k� − M� �� , �2�

where we have defined

H0�k� = vF��xkx + �yky� − � �3�

and . . .� denotes a 2�2 matrix. The gap matrix �� �k� depends
on both the orbital and spin symmetries of the Cooper pair,
whereas the ferromagnetic contribution reads M� =m ·� with
an exchange field m= �mx ,my ,mz�. In the superconducting
region, we set M� =0 while in the ferromagnetic region we set
�� �k�=0. In the following, we set vF=1. It should be noted
that it is also possible to use a Rashba-type term in the nor-
mal �N�-state Hamiltonian H0, i.e., ��xky −�ykx� instead of
��xkx+�yky�. This gives rise to a different spin-momentum
locking on the Fermi surface, which was observed experi-
mentally in Ref. 22. Nevertheless, all our conclusions below

pertaining to the excitation spectrum and the qualitative be-
havior of the spin-singlet versus spin-triplet superconducting
scenarios are independent of whether one uses the Rashba-
or Dirac-type model for H0.

It is instructive to consider how the band structure on the
surface of the topological insulator depends on the doping
level and also the presence of a magnetic field. In the ab-
sence of proximity-induced ferromagnetism, the energy dis-
persion reads

	 = 
 �k� − � , �4�

which is equivalent to the massless, relativistic Dirac fermi-
ons in graphene. However, we underline once again that the
Brillouin zone of graphene contains an even number of such
Dirac cones whereas that number is odd in a topological
insulator. We also note in passing that depending on the mag-
nitude of the chemical potential �, it is possible to generate
so-called specular Andreev reflection23 on the surface of a
topological insulator between a region with and without a
superconducting gap �0 since the reflected hole may have
parallel group velocity and momentum when ���0.

In the presence of an exchange splitting induced by a
magnetization, the band dispersion becomes

	 = 
 ��kx + mx�2 + �ky + my�2 + mz
2 − � , �5�

It is seen that the exchange field enters in the same way as a
vector potential would in a conventional metal. While the
transverse components 	mx ,my
 of the magnetization shift
the position of the Fermi surface, the z component of the
field has a qualitatively different effect—it induces a gap in
the spectrum. This is seen by considering the � point k=0,
where the two bands become separated by an energy gap
2mz. The influence of the magnetization on the band struc-
ture is shown schematically in Fig. 2. As we shall see later,
the direction of the magnetization strongly influences the
transport properties of our system.

We close this section by briefly outlining the relation be-
tween the Hamiltonian in Eq. �2� and the Hamiltonian of the
bulk topological insulator. The Hamiltonian for a 3D topo-
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FIG. 1. �Color online� We consider a topological insulator where
superconductivity and/or magnetic correlations are induced on the
surface via the proximity effect to host materials with the desired
properties. The possibility of unconventional pairing such as d wave
is taken into account and the degeneracy of the band structure is
lifted in the presence of an exchange field induced from the ferro-
magnetic insulator. Any current flowing along the bottom surface of
the topological insulator is assumed to be suppressed by, e.g., grow-
ing it on an appropriate substrate.

FIG. 2. �Color online� The band structure on the surface of the
topological insulator. The helical surface states reside on a Dirac
cone, which is influenced in a qualitatively different manner for
various magnetization orientations.
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logical insulator such as Bi2Se3 /Bi2Te3 can be written down
by symmetry arguments as shown in Ref. 24. To account for
the surface states, the eigenstates � are obtained by diago-
nalizing the full Hamiltonian and then demanding that �
=0 at the boundaries. In this way, one obtains a set of surface
states with a linear energy-momentum dispersion which
cross at the � point. These surface states can be influenced
by finite-size effects25–27 if the topological insulator has a
sufficiently small width, typically a few nanometers in
Bi2Se3. In our work, we assume that this width is sufficiently
large to rule out any finite-size effects such that the surface
states simply can be described by a Dirac cone, which leads
to Eq. �2�.

III. RESULTS AND DISCUSSION

A. Conductance spectroscopy

In this section, we will focus on the transport properties
of hybrid structures deposited on top of a topological insu-
lator in order to investigate how the interplay between
ferromagnetism and superconductivity in this context can be
probed by conductance spectroscopy. To this end, we will
employ a scattering-matrix formulation along the lines of
Blonder-Tinkham-Klapwijk28 theory, including also the role
of unconventional superconducting pairing. To accommodate
superconductivity by means of the proximity-effect experi-
mentally, it is necessary to realize the condition ��0 to
have a sufficiently large density of states. Throughout this
paper, we will therefore be concerned with precisely this
situation and set ��0 everywhere on the surface of the
topological insulator except in the ferromagnetic region
where we consider �=0. The reason for this is twofold. First,
such a large Fermi vector mismatch effectively accounts for
a barrier between the nonsuperconducting and superconduct-
ing regions of the surface of the topological insulator, which
is expected to be present experimentally. Second, it is neces-
sary to use an insulating material between the voltage source
and the superconducting region in order to ensure that trans-
port occurs exclusively along the surface of the topological
insulator �and not through the bulk of the host material in-
ducing ferromagnetism�. In this way, a ferromagnetic insula-
tor deposited on top of the topological insulator would be
suitable experimentally, as depicted in Fig. 1. We now pro-
ceed to discuss the wave functions in each of the regions of
the surface of the topological insulator.

In the N region of the surface, we have M� =�� =0 and an
incoming right-moving electron with energy 	 may then suf-
fer two possible fates upon scattering: �i� reflection as an
electron or �ii� Andreev reflection as a hole. The total wave
function may then be written as

�N = eikyy��1,ei�,0,0�eikxx

+ re�1,− e−i�,0,0�e−ikxx + rh�0,0,1,− e−i��eikxx� , �6�

where � denotes the angle of incidence while re and rh are
the normal and Andreev scattering coefficients, respectively.
Here, kx=�N cos � is the x component of the momentum
which is nonconserved due to the broken translational sym-
metry, whereas ky =�N sin � is conserved.

In the F insulator region of the surface, we have �� =0 and
M� �0. We set the chemical potential to zero in this region
for reasons outlined above. In that case, the wave function in
the F region is in general a superposition of right- and left-
moving electrons, due the transmission from the N region
and reflection at the S interface, in addition to right- and
left-moving holes, due to Andreev reflection at the S inter-
face and normal reflection at the N interface. Thus, we obtain

�F = eikyy�a1�i�+,1,0,0�e−��++imx�x

+ a2�− i�+
−1,1,0,0�e��+−imx�x + a3�0,0,i�−,1�e��−+imx�x

+ a4�0,0,− i�−
−1,1�e−��−−imx�x� , �7�

where aj are the scattering coefficients and we have intro-
duced

�
 = �mz
2 + �ky 
 my�2,

�
 = − ��
 − �ky 
 my��/mz. �8�

It is instructive to consider in some more detail why the
wave function �F has the form of Eq. �7�. Diagonalizing the
Hamiltonian in the F region provides two eigenvalues for the
electronlike quasiparticles 	


e = 
��kx+mx�2+ �ky +my�2+mz
2

and two eigenvalues 	

h = 
��kx−mx�2+ �ky −my�2+mz

2 for
the holelike quasiparticles. Since we are considering an
incident electron with 	�0 from the N side, where the
chemical potential is assumed to satisfy �N 	�0 ,	
,
this excitation enters the F region in the band 	+

e

=��kx+mx�2+ �ky +my�2+mz
2 as an evanescent wave. We il-

lustrate this in Fig. 3. The Andreev-reflection process occur-
ring at the F �S interface gives rise to a hole excitation by
removing an electron from the band 	−

e . The hole dispersion
is opposite in sign to the electron dispersion of the band it
was generated in, and therefore in this case follows from 	+

h,

FN

2mx

εe
+

εe
−

εh
+

1 2

3

4

FIG. 3. �Color online� Illustration of the scattering processes
and the bands partaking in these at the N �F interface. An incoming
electron �1� with 	�0 from the N side can be transmitted �2� to the
F region in the band 	+

e . When this electron hits the S interface �not
shown�, it has a finite probability of being Andreev reflected. In this
process, an electron is taken �3� from the band 	−

e and transmitted to
the superconductor, leaving a hole �4� behind. This hole excitation
has a band dispersion which is displaced in momentum space with
a vector �2mx ,2my� compared to the electron band. Only the x
direction is shown above for clarity and we have set mz=0. For
nonzero mz, an energy gap 2mz opens between the Dirac cones in
the F region.
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which means that its group velocity is parallel to its momen-
tum. In effect, this is therefore a specular Andreev reflection.
By constructing the eigenvectors for the excitations in the
bands 	+

e and 	+
h, one finally arrives at Eq. �7� when taking

into account both left- and right-moving excitations.
Finally, we write down the wave function in the S region

of the surface which includes a contribution from both elec-
tronlike and holelike quasiparticles. As we shall see later, the
superconducting spin-triplet case is qualitatively different
from the spin-singlet case. The wave function below is there-
fore only valid for the spin-singlet case, such as s wave and
d wave, and reads

�S = eikyy�te�ei�,ei��+���,− ei���−�+�,e−i�+�eikx�x

+ th�1,− e−i��,ei��−��−�−�,ei��−�−��e−ikx�x� . �9�

Note that in writing down the above wave function we have
taken into account the possibility of anisotropic pairing, and
consequently defined

ei� = u+/u−, u
 =�1

2
�1 
 �	2 − �������2/	� ,

ei�
 = ���
�/����
��, �+ = ��, �− = � − ��. �10�

A difference in doping level between the N and S regions is
accounted for by �N sin �=�S sin �� since in an experimen-
tal situation the S region is often heavily doped �S
 �	 ,�0�. The doping level can be controlled electrically by
means of an applied gate voltage. If the N region is also
doped away from the Dirac point, �N=�S leads to ��=�. In
the next section, we set �N=�S �	 ,�0� unless specified
otherwise.

In order to calculate the Andreev-bound-state energies and
the conductance spectra of this junction, we need to solve for
the scattering coefficients. By matching the wave functions
at each interface, i.e., �N=�F at x=0 and �F=�S at x=L, we
obtain the system of equations Ay=b where we have defined

A = �A1 A2

A3 A4
� ,

y = �re,rh,a1,a2,a3,a4,te,th� ,

b = �− 1,− ei�,0,0,0,0,0,0� . �11�

The analytical expressions for the matrices A j can be found
in the Appendix. After solving the above system for the un-
known coefficients y, the normalized conductance G /G0 can
be calculated according to the formula,

G�eV� = �
−�/2

�/2

d� cos ��1 + �rh�eV,���2 − �re�eV,���2�

�12�

and the normalization constant is chosen as G0=G��eV�
�0� as usually done in experiments. The scattering coeffi-
cients rh and re depend on the angle of incidence � and the
energy 	. In the T→0 limit, the expression Eq. �12� follows
by letting 	→eV in the scattering coefficients as shown in

Ref. 28. We will also be interested in the bound-state ener-
gies of the junction, which correspond to resonant states that
persist even in the limit of a vanishing normal-state conduc-
tance. This is modeled by letting the width L of the junction
become very large compared to all other length scales. These
resonant states are found analytically by identifying the en-
ergies 	 where the probability for normal reflection vanishes,
i.e., re=0. We also note that at each angle of incidence �
there is an energy corresponding to a resonant state, as we
shall see.

1. s-wave singlet pairing

For a spin-singlet symmetry one finds that

�� �k� = ��k�i�y . �13�

The s-wave case has an isotropic order parameter ��k�=�0,
and diagonalization of Eq. �2� then yields the standard eigen-
values

	 = ���vF�k� − ���2 + ��0�2, � = 
 1, � = 
 1.

�14�

Employing the strategy described in the previous section, we
may calculate the resonant states by looking for energies that
produce re=0 when L→�. When my =0, one is able to write
down a manageable analytical expression for the proper con-
dition related to the formation of bound states,

e2i��+ + �− = 0. �15�

Here, we have defined the auxiliary quantities,

�
 = sin � + sin�2� + �� 
 �sin � + sin�2� + ��� ,

� = �ky − ��/mz, � = − i ln��/i�, � = �ky
2 + mz

2. �16�

In the range �	���0, one may write

� = atan��0
�1 − �	/�0�2/	� , �17�

which upon insertion into Eq. �15� yields the following so-
lution for the bound-state energy:

	 = �0 sgn	C−
/�1 + C−
2 , �18�

where we have introduced

C
 = tan�ln�
�−/�+

2i
� . �19�

We have checked analytically that Eq. �18� is identical to Eq.
�7� in Ref. 9. These bound states reside near the F �S inter-
face and decay over a distance comparable to the coherence
length. To explore how the magnetization influences the
bound-state dispersion, we plot in Fig. 4 the bound-state en-
ergy versus the angle of incidence �or equivalently the trans-
verse momentum index� for several choices of mz. It is seen
that the bound states have a dispersion only near �=0 when
the Zeeman field is small, �mz���. A zero-energy solution
is seen to be allowed for normal incidence as long as mz
is finite. It should also be noted that the chirality of the
bound states are determined by sgn	mz
. To see this, note that
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mz→ �−mz� leads to �→�+�. Due to the symmetry relations
�
��+��=−����� and ln��− /�+�=−ln��+ /�−�, it follows from
the definition of C
 that

sgn	C

 � sgn	mz
 . �20�

To investigate how the presence of such bound states is
manifested in the experimentally accessible electrical con-
ductance, we plot this quantity in Fig. 5. This is done by
solving numerically for the scattering coefficients, which en-
ables us to consider also the case my �0. The dependence on
the magnetization orientation is shown by considering a pure
�a� mx component, �b� my component, and �c� mz component.
Interestingly, the dependence in all of these three cases are
qualitatively very different, even though the s-wave order
parameter is rotationally invariant. As we shall see in what
follows, this stems from the unique band structure of the
surface states of the topological insulator.

The only common feature all three plots in Fig. 5 have is
the two coherence peaks at 	=�0 which exist when mj→0,
j� 	x ,y ,z
. In Fig. 5�a�, the conductance is invariant with
respect to mx, whereas in Fig. 5�b� it displays a considerable
dependence on the magnitude of my. To explain this feature,
the key point to observe is that the ky component of the

momentum is conserved in the geometry under consideration
since translational invariance holds in this direction. In this
way, the component of the wave vector in the x direction of
propagation will in general contain a real and imaginary part,
where the latter causes the wave to be evanescent �decaying�.
Even at normal incidence �=0, the wave becomes evanes-
cent whenever my �0. In contrast, mx only influences the real
part of the wave vector and does not influence the resistance
of the junction since it is of no consequence for length scale
of the decaying modes. Therefore, the conductance remains
invariant under a change in mx whereas it is strongly depen-
dent on the value of my. In fact, as my increases the overall
tendency of the conductance is that it is suppressed. In Fig.
5�c�, we consider how the conductance changes when vary-
ing the “mass gap” component mz. As mz grows, it is seen
that the appearance of the bound state is manifested by a
large enhancement of the zero-bias conductance. Therefore,
the two finite-energy peaks are merged into one zero-energy
resonance. Finally, we note that the dx2−y2-wave case is quali-
tatively similar to the s-wave case.

2. p-wave triplet pairing

Turning to the spin-triplet case, the gap matrix now reads

�� �k� = �dk · �� �i�y . �21�

Let us consider a general triplet state dk=��k�ẑ. Diagonal-
izing Eq. �2� produces the following eigenvalues:

	 = �vF�k� − ���2 + ���k��2. �22�

This equation is qualitatively different than Eq. �14� for the
s-wave case. Namely, the superconducting order parameter
now renormalizes the chemical potential and the excitations
remain gapless. From the dispersion Eq. �22� follows several
anomalous properties. By evaluating the corresponding wave
function, one may conclude that Andreev reflection is
strongly suppressed at the interface to a nonsuperconducting
region since there is no gap in the charge excitation spectrum
that can retroreflect a hole quasiparticle. Moreover, we have
verified that for any triplet symmetry the anomalous disper-
sion, Eq. �22�, is obtained. It also holds even if the Dirac-
type H0 is replaced with a Rashba-type H0 as mentioned
previously. Thus, the results for singlet and triplet pairing
differ qualitatively in a fundamental way, as the excitations
are gapped in the former case whereas they remain ungapped
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FIG. 4. �Color online� Plot of the bound-state dispersion in the
s-wave case for several values of �mz� /�. The chirality of the bound
state is controlled by the sign of mz. The solid lines correspond to
mz�0 while the dashed lines correspond to mz�0. �a� �mz� /�
=0.1, �b� �mz� /�=0.5, and �c� �mz� /�=0.9. The superconducting
gap �0 is used as the fundamental energy unit here and we set
� /�0=100.
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in the latter case. The structure of the eigenvalue in Eq. �22�
appears to be a direct result of the band structure in the
topological insulator, where the spin couples directly to mo-
mentum through the term �� ·k in the Hamiltonian. Due to the
fact that spin will be parallel to the momentum, it follows
that pairing between equal spins �triplet pairing� at k and −k
is not possible. This should be distinguished from the case of
graphene, where the operator � does not represent physical
spin but rather a pseudospin index related to the
sublattices.29–31

3. d-wave singlet pairing

We finally address the d-wave pairing state, focusing
here on a dxy-wave symmetry. The reason for why this sym-
metry is the most interesting is that it is known to produce
zero-energy surface states in the high-Tc cuprates. The order
parameter may in this case be written as ��k�=����
=�0 cos�2�−� /2� and diagonalization of Eq. �2� then yields
the standard eigenvalues

	 = ���vF�k� − ���2 + ������2, � = 
 1, � = 
 1.

�23�

Proceeding in the same fashion as the previously considered
s-wave case, we find the following condition for the bound-
state energies when my =0:

e2i��+ − �− = 0. �24�

As seen, the only difference from Eq. �15� is the sign of the
last term in the equation, although we shall see that this sign
change has fundamental consequences. Equation �24� yields
the following solution for the bound-state energy:

	 = ������sgn	C+
/�1 + C+
2 . �25�

We now consider how the magnetization influences the
bound-state dispersion in Fig. 6. The dispersion is weak, and
the bound-state energy is close to 	=0, for �mz���. Increas-
ing mz �mz�0� in the d-wave case has the important effect of

accommodating finite-energy bound states when moving
away from normal incidence. It is noted that in the same way
as for the s-wave case, the chirality of the bound state is
determined by the sign of mz.

The zero-energy states appear in the dxy-wave case even
in the absence of magnetization, as may be shown by solving
the scattering problem for a N �dxy-wave junction on a topo-
logical insulator when there is a Fermi surface mismatch
between the N and S regions. We now show that these zero-
energy bound states are Majorana fermions, in contrast to the
zero-energy states realized in the topologically trivial high-Tc
cuprates. The essential point in this context is the spin de-
generacy of the Fermi surface in the latter case, whereas for
a topological insulator this degeneracy is lifted. In both

cases, the 4�4 BdG Hamiltonian Ĥ satisfies a particle-hole
symmetry

�Ĥ�k�� = − Ĥ��− k� , �26�

where we have introduced the matrix32

� = �0� 1�

1� 0�
� . �27�

From this property, one may prove that if

�	 = �u1�k�,u2�k�,v1�k�,v2�k�� �28�

is an eigenfunction for the eigenvalue 	, then

��	�− k�� = �−	�k�

=�v1
��− k�,v2

��− k�,u1
��− k�,u2

��− k�� �29�

is an eigenfunction for �−	�. For a zero-energy bound
state 	=0, one must have �	=�−	, leading to internal-
symmetry relations between the coherence factors such as
u1�k�=v1

��−k�. The Bogoliubov quasiparticle creation opera-
tor for this state is constructed in the usual way as

�†�k� = u1�k�c↑ † �k� + u2�k�c↓
†�k�

+ v1�k�c↑�− k� + v2�k�c↓�− k� . �30�

Thus, we see that the Majorana criterion ��k�=�†�−k� is
satisfied. Now, the distinction between the zero-energy state
in the cuprates and the present context of a topological insu-
lator is precisely the spin degeneracy which allows one to
split up the 4�4 BdG equations to two separate 2�2 equa-
tions per spin. Due to the band structure on the surface of a
topological insulator, the 	=0 solution is not spin degenerate
and we obtain only one zero-energy mode. As pointed out in
Ref. 32, this guarantees the Majorana nature of the fermion.
We re-emphasize that this is different from topologically
trivial N �dxy-wave junctions, formed, e.g., by a normal metal
contacted to yttrium barium copper oxide �YBCO�, where
the zero-energy solutions are spin degenerate.

We now investigate how the presence of such bound
states are manifested in an experimentally accessible quan-
tity, namely, the electric conductance. To do so, we consider
an N �F �d-wave junction to check how the magnetization
can be used to manipulate the transport properties and give
signatures of the surface states. In Fig. 7, we plot the con-
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FIG. 6. �Color online� Plot of the bound-state dispersion in the
dxy-wave case for several values of �mz� /�. Similarly to the s-wave
case, the chirality of the bound state is controlled by the sign of
mz. The solid lines correspond to mz�0 while the dashed lines
correspond to mz�0. �a� �mz� /�=0.1, �b� �mz� /�=0.5, and �c�
�mz� /�=0.9. We have set � /�0=100.
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ductance, which normally is expected to produce the well-
known zero-bias conductance peak �ZBCP� due to midgap
resonant states.21

The common feature for all magnetization directions
in Figs. 7�a�–7�c� is that a zero-bias peak is present when
mj→0, in agreement with our previous analytical finding.
Due to the coupling between spin and momentum in the
band structure of the surface of a topological insulator, it is
interesting to check whether the direction of the magnetiza-
tion influences the conductance spectra. In a topologically
trivial N �F �dxy-wave junction, one can prove analytically
that the conductance is invariant with respect to the direction
of the magnetization m of the F layer. Increasing the ex-
change field in the F region, the ZBCP splits in the conven-
tional case,33 similarly to Fig. 7�c�. We here show that in
complete contrast to the topologically trivial case, the con-
ductance now features a strong dependence on the magneti-
zation orientation. We consider a magnetization in the x̂ and
ŷ directions in Figs. 7�a� and 7�b�, respectively. It is seen that
depending on the magnetization orientation, the conductance
features three qualitatively different types of behavior. For
m � x̂, G /G0 is invariant upon increasing mx. For m � ŷ, the
ZBCP vanishes upon increasing my. For m � ẑ, the ZBCP is
split upon increasing mz. In fact, the evolution of the conduc-
tance spectra in Fig. 7�c� is opposite to the s-wave case upon
increasing the magnetization: the zero-bias peak is split into
two finite-energy resonances. In effect, this means that the
characteristic features in the conductance spectra of s-wave
and d-wave superconductors can be completely reversed by
introducing a Zeeman field in the topological insulator. The
strong sensitivity to the direction of m is a new feature com-
pared the topologically trivial case which pertains directly to
the anomalous band structure of the topological insulator.
The difference between the mx and my cases shown in Figs.
7�a� and 7�b� is explained in the same way as for the s-wave
pairing scenario. As seen, an increase in my eventually sup-
presses the influence of superconductivity and the conduc-
tance is reduced.

4. Singlet-triplet mixing

Due to the lack of inversion symmetry and concomitant
presence of asymmetric spin-orbit coupling in the topologi-
cal insulator, one might envision a mixed s+ p-wave super-
conducting state induced by the proximity effect. For a chiral

p-wave state ��k�=�pei� �dk vector along the ẑ axis�, the
resulting eigenvalues read

	 = ��vF�k�2 + �2 + �s
2 + �p

2 − 2��R ,

R = vF
2 �k�2��2 + �p

2� + �s
2�p

2 cos2 2�, � = 
 1, � = 
 1.

�31�

In the limits �s→0 and �p→0, this reduces to the previous
expressions in this work. As seen, the presence of an s-wave
component ensures that the spectrum is gapped while a cou-
pling between the s-wave and p-wave components render the
excitations sensitive to the angle of incidence �. The analyti-
cal expression for the corresponding wave function in the s
+ p-wave case is unwieldy and we defer from any further
treatment of the transport properties of such a state here. The
key point we wish to illustrate with this discussion is that the
s-wave component �in general, the spin-singlet component�
is necessary to obtain a gapped spectrum but the interplay
between spin-singlet and spin-triplet pairing nevertheless
gives rise to a quasiparticle spectrum which is sensitive to
the direction of propagation.

B. Josephson current

We now turn to a study of the Josephson current in an
S �F �S structure deposited on top of the topological insulator.
Since the F region is assumed to be insulating, such as EuO
or EuS with band gaps of a few electron volts, the transport
is ensured to take place through Andreev-bound states
formed on the surface of the topological insulator. These
bound-state energies can be obtained by matching the wave
functions in a similar way as in the previous section. The
wave function in the F region remains the same while we
relabel �S→�S

r and concomitantly 	te , th
→ 	te
r , th

r
 where the
superscript “r” stands for the right region x�L. It then re-
mains to specify the wave function in the left superconduct-
ing region, which reads

�S
l = eikyy�te

l �ei�,− ei��−���,ei�−��−�−�,e−i�−�e−ikx�x

+ th
l �1,ei��,− ei��+��−�+�,ei��−�+�eikx�x�� . �32�

To identify the energy resonances for this system, we look
for an energy eigenvalue 	 which gives a nontrivial solution

0.2 0.4 0.6 0.8 1 1.2 1.4

−1

−0.5

0

0.5

1

mz/µ

(c)

eV
/∆

0

0.2 0.4 0.6 0.8 1 1.2 1.4

−1

−0.5

0

0.5

1

mx/µ

(a)

eV
/
∆

0

0.2 0.4 0.6 0.8 1 1.2 1.4

−1

−0.5

0

0.5

1

(b)

my/µ

eV
/∆

0

1

1.5

2

2.5

3

0.5

1

1.5

2

2.5

3

0.5

1

1.5

2

2.5

3
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for the boundary conditions �S
l =�F at x=0 and �F=�S

r at x
=L. It can be directly verified by setting up these equations
that this eigenvalue must satisfy det M=0, where

M = �M1 M2

M3 M4
� �33�

and the 4�4-matrices M j are given explicitly in the Appen-
dix. After some cumbersome but straight-forward algebra,
we obtain the following expression for the bound-state en-
ergy:

	 = �������1

2
�1 −

�����

�
 . �34�

where we have defined

����� = 2 cos��� − 2mxL�cos2 � sin2 �

− ��cos2 � + cos2 ���1 − cosh�2�L�� ,

� = 2 cos2 � cos2 � − cos2 � − cos2 �

+ cosh�2�L��cos2 � − cos2 �� . �35�

The definition of quantities such as � and � are found in Eq.
�16� and we have �=−1 in the s-wave case while �=1 in the
dxy-wave case. Above, we have set my =0 since an analytical
expression for the bound state becomes unwieldy otherwise.
The normalized Josephson current may now be evaluated
according to the standard expression,

I/I0 = �
−�/2

�/2

d� cos � tanh��	/2�
d	

d��
, �36�

which upon insertion of Eq. �34� produces

I/I0 = sin��� − 2mxL��
−�/2

�/2

d�
�0�g����2cos3 � sin2 �

	��tanh��	/2��−1 .

�37�

Above, we have defined ����=�0g���, such that g���=1 for
s-wave pairing and g���=cos�2�−� /2� for dxy-wave pairing.
Also, �� denotes the superconducting phase difference. The
energy 	 above is the bound-state energy obtained in the
previous sections. Below, we shall consider both the current-
phase relation and the dependence of the critical current on
the temperature T and the junction width L. The critical cur-
rent is measured experimentally as

Ic/I0 = max���I/I0� . �38�

To make contact with realistic experimental parameters, we
estimate the Fermi velocity as24 vF�5�105 m /s. Due to
the lattice mismatch between the host proximity materials
and the topological insulator, the induced superconducting
order parameter �0 can be expected to be substantially re-
duced in magnitude on the surface of the topological insula-
tor and may be assumed to satisfy �0�0.5 meV in the
d-wave case. The superconducting coherence length is then
 �650 nm. For a standard s-wave superconductor such as
Al or Nb, the gap is typically much smaller than in a high-Tc
cuprate and here one might estimate �0�0.1 meV. To en-

sure ballistic transport, shorter junction are preferable since L
must then be smaller than the mean-free path lmfp. Also, the
formula for the Josephson current above is valid under the
condition that the junction length satisfies L� . We under-
line that by considering Eq. �37�, we may immediately infer
that the current no longer necessarily vanishes at ��
= 	0,�
 as long as mx�0. Therefore, it is possible to actively
tune the current-phase relation by means of the transverse
magnetization component mx which enters in the gauge-
invariant phase difference between the superconducting or-
der parameters.

In Fig. 8, we consider first the energy of the Andreev-
bound state in the S �F �S junction, setting for simplicity mx
=0 since a nonzero mx simply would correspond to a con-
stant shift of ��. As mentioned previously, we have set my
=0 for all results pertaining to the Josephson current to ob-
tain analytical expressions. For normal incidence, it is seen
that the bound-state energy goes to zero at ��= 	−� ,�
 for
the s-wave case, whereas it is maximal �	=�0� when �
→ 
� /2. This is in agreement with the finding of Ref. 9. In
the dxy-wave case shown in Fig. 8�b�, the angular depen-
dence of the bound-state energy is modified strongly due to
the anisotropy of the gap. Experimentally, one may probe the
Andreev-bound states indirectly through their influence on
the current-phase relation, which we consider in Fig. 9. The
phase difference can be actively manipulated either by means
of current biasing the junction or tuning the magnetization
component mx. The curves are translated to left or right for
nonzero mx, depending on its sign.34 As seen, the current-
phase relation is qualitatively similar for the s-wave and
dxy-wave cases, although its magnitude is reduced for the
latter. This is related to the effective weakening of the gap
upon Fermi surface averaging of its absolute value compared
to the s-wave case. It is clear from Fig. 9 that the phase
relation is not purely sinusoidal but contains a contribution
from higher harmonics.

Next, we consider the dependence of the critical current
on the length L of the junction. This quantity is also routinely
measured in the context of S �F �S junctions. The most no-
table feature is that there are no 0-� oscillations in the cur-
rent, in spite of the presence of an exchange field mz in the F
region. To explain this, one should note that the influence of
the exchange field mz is fundamentally different in the
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FIG. 8. �Color online� Plot of the bound-state energy in the
Josephson S �F �S junction with an �a� s-wave and �b� dxy-wave
symmetries. We have set � /�0=100, mz /�=0.5, and L / =0.02.
Since mx simply corresponds to a shift in ��, we have set mx=0
here.
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present scenario where we consider states residing on the
surface of a topological insulator as compared to a normal
metal. In the present case it induces a gap in the spectrum
whereas in the latter case it splits the energy bands of the
majority and minority spins. As a result, the exchange field
does not induce any finite center-of-mass momentum for the
Cooper pair and hence a monotonous decay of the critical
current versus L should be observed regardless of the mag-
nitude of m. The main difference between the s-wave and
dxy-wave cases in Fig. 10 is that the current becomes sup-
pressed more rapidly as L grows in the latter scenario.

It is natural to next address the question: what happens
when the magnitude of the exchange field mz decreases and
eventually vanishes? This would in effect render the junction
into an S �N �S system. Several previous works35,36 have in-
vestigated a similar scenario when using a d-wave model
relevant for the high-Tc cuprates. In such a case, it was
shown that the critical current becomes strongly enhanced at

low temperatures in the dxy-wave case, whereas it saturates
in the s-wave case. The reason for this is the existence of
zero-energy Andreev levels in the dxy-wave junction. Above,
we considered the case mz�0 where such states are shifted
to finite energies as indicated by our previous results for the
conductance spectra. Now, we study how the temperature
dependence of the critical current evolves when mz decreases
and compare the s-wave and dxy-wave scenarios. This is
shown in Fig. 11. In contrast to Fig. 10, the current now
behaves qualitatively different in Figs. 11�a� and 11�b� cor-
responding to the s-wave and dxy-wave cases. In Fig. 11�a�,
the current saturates at a constant value as T /Tc→0, whereas
in Fig. 11�b� there is a strong enhancement in the same re-
gime which is more pronounced the smaller mz /� becomes.
Thus, such an anomalous temperature dependence serves as
a signature for the zero-energy states on the topological sur-
face in the same way as it does for the cuprates and can be
probed experimentally. We have verified that when mz�0,
the temperature dependence of the current is qualitatively the
same in the s-wave and dxy-wave cases.

We note that an inclusion of the orbital effect due to the
vector potential A simply would add a component to the
magnetization vector as a result of the linear energy-
momentum dispersion. The predicted results in this work can
be tested experimentally by fabricating a hybrid structure
such as the one shown in Fig. 1. In terms of actual materials,
EuO or EuS might be suitable as ferromagnetic insulators in
this context.37 For the d-wave superconductor, a high-Tc cu-
prate such as YBCO would be appropriate. Finally, we also
point out that the suppression of the superconducting order
parameter near the interface region has not been taken into
account here. Such an approximation is valid when there is a
strong Fermi surface mismatch, as considered throughout
this paper. Nevertheless, it could be interesting to see if the
gap suppression is able to host additional bound states near
the interface by employing a self-consistent solution of the
order parameter. We leave such issues for future work.
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FIG. 9. �Color online� Plot of the current-phase relation in the
Josephson S �F �S junction with an �a� s-wave and �b� dxy-wave
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IV. CONCLUSION

In summary, we have considered the interplay between
magnetic order and unconventional superconducting pairing
on the surface of a topological insulator. We find that the
charge excitation spectrum is rendered gapless for any spin-
triplet state, such that bound states are absent and Andreev
reflection is strongly suppressed. For spin-singlet pairing, we
find that the zero-energy surface states in the dxy-wave case
are now Majorana fermions, in contrast to the case of the
topologically trivial high-Tc cuprates. We have studied how
Andreev-bound states and Majorana fermions are influenced
by the internal phase of the superconducting order parameter,
and find that the ZBCP being the hallmark of the dxy-wave
state is qualitatively strongly modified in the present context.
In particular, it is highly sensitive to the magnetization ori-
entation, in contrast to the topologically trivial case. Our
findings can be directly tested through tunneling spectros-
copy measurements and we have estimated the magnitude of
the necessary experimental quantities.
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APPENDIX: MATRICES Aj AND Mj

Introducing the quantity �
=−i ln��
 / i�, we may write

A1 =�
1 0 ei�+ e−i�+

− e−i� 0 − 1 − 1

0 1 0 0

0 − e−i� 0 0
�, A2 =�

0 0 0 0

0 0 0 0

ei�− e−i�− 0 0

− 1 − 1 0 0
�, A3 =�

0 0 − ei�+−�+L−imxL − e−i�++�+L−imxL

0 0 e−�+L−imxL e�+L−imxL

0 0 0 0

0 0 0 0
� ,

A4 =�
0 0 − ei� − 1

0 0 − ei��+�� e−i�

− ei�−+�−L+imxL − e−i�−−�−L+imxL ei��−�+� − ei��−�−�−�

e�−L+imxL e−�−L+imxL − e−i�+ − ei��−�−�
� , �A1�

which are used to calculate the bound states and conductance spectra in the N �F �S junction. To obtain the Josephson current
in the S �F �S case, we use

M1 = �
ei� 1 ei�+ e−i�+

− ei��−��� ei�� − 1 − 1

e−i���+�−+�/2� − ei��+��−�+−�/2� 0 0

e−i��−+�/2� ei��−�+−�/2� 0 0
�, M2 = �

0 0 0 0

0 0 0 0

ei�− e−i�− 0 0

− 1 − 1 0 0
� ,

M3 =�
0 0 − ei�+−��++imx�L − e−i�++��+−imx�L

0 0 e−��++imx�L e��+−imx�L

0 0 0 0

0 0 0 0
� ,

M4 = �
0 0 − ei� − 1

0 0 − ei��+��� e−i��

− ei�−+��−+imx�L − e−i�−−��−−imx�L ei���−�++�/2� − ei��−��−�−+�/2�

e��−+imx�L e−��−−imx�L − e−i�++i�/2 − ei��−�−+�/2�
� . �A2�

Note that in writing down these matrices, we have explicitly separated out the superconducting U�1� phase corresponding to
the broken symmetry and defined −i�
=ei�
. Without loss of generality, we set it to 
� /2 on the right and left sides,
respectively. The phase factors �
 thus only contain information about the internal phase in k space for the order parameter.
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