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We study the influence of the inelastic relaxation time �̃E of the quasiparticle distribution function f�E� on
the phase slip process in quasi-one-dimensional superconducting rings at a temperature close to the critical
temperature Tc. We find that the initial time of growth of the order parameter ��� in the phase slip core after the
phase slip is a nonmonotonic function of �̃E which has a maximum at �̃E� �̃GL=�� /8kB�Tc−T� and has a
tendency to saturate for large �̃E��̃GL. The effective “heating” of the electron subsystem due to the increase in
��� in the phase slip center together with the above effect result in a nonmonotonic dependence of the number
of subsequent phase slips on �̃E in rings of relatively large radius �in which each phase slip reduces the current
density to a small fraction of its initial value�. During the phase slip process the order parameter distribution
has two peaks near the phase slip core due to the diffusion of the nonequilibrium quasiparticles from that
region.
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I. INTRODUCTION

More than 30 years ago it was found that the supercon-
ducting state can partially survive in quasi-one-dimensional
superconducting wire/bridge �with width/thickness less or
compared with the coherence length ��T��� even if the cur-
rent density becomes larger than the depairing current den-
sity jdep. In this state, a so-called phase slip center �PSC�
appears—a finite region of size of about ��T� where the order
parameter oscillates with the Josephson frequency �J
=2eV /� and a voltage drop V occurs over a large region
around the PSC �with size LPSC���T��. When the order pa-
rameter �= ���ei	 passes through zero in one point inside the
phase slip core the phase difference of the order parameter
changes�slips� by 2� near this point—which is responsible
for the name of this phenomena. Such a state was intensively
studied experimentally in the 1970s and 1980s �for reviews,
see Refs. 1–3 and the book of Tinkham4� and its existence
was also confirmed in wide thin superconducting films with a
current density distribution which is nearly uniform over the
width W���T� of the sample5–8 �it was called a phase slip
line�.

The interest to this subject was renewed recently when
new phenomena were observed experimentally in supercon-
ducting nanowires. We may mention the S behavior of
current-voltage characteristics in voltage driven regime,9

negative magnetoresistance,10–14 and enhancement of the
critical current in weak magnetic fields.13,15,16 The origin of
the last phenomena is still under debate17 and one of the
possible explanation is the dependence of the order param-
eter dynamics in the phase slip center on the applied mag-
netic field and the length of the wire.18 Besides there is prac-
tical interest in the understanding of the physics of the phase
slip process because new devices for the detection of single
photons19 and some organic molecules20 are based on the
local destruction of superconductivity in a current carrying
wire and the appearance of voltage pulses due to phase slips.

The first theoretical model �see Ref. 21� of the phase slip
process appeared soon after the discovery of this

phenomena22 and the authors proposed a phenomenological
description of the time-averaged properties of the phase slip
process �see for example4�. Its validity was verified directly
in the experiment of Dolan and Jackel23 and showed good
agreement with the majority of experiments but it did not
reveal the conditions for the existence of the order parameter
oscillations. Numerical solution of the full set of time-
dependent microscopic equations describing this process at
arbitrary temperature �see for example Ref. 24� looks prob-
lematic even now and the main tool for theoretical investi-
gation was the time-dependent Ginzburg-Landau equations
in the so-called local approximation �the time and space
variation of the order parameter are much larger than the
inelastic relaxation time of the quasiparticle distribution
function �̃E and its decay length L̃E=�D�̃E, where D is the
diffusion coefficient�. They were derived in the ’dirty’ limit
from the quasiclassical equations for the Green functions in
Ref. 25 and contain the time �̃E as a parameter �in the limit of
�̃E��� /�
1 they pass to ordinary time-dependent Ginzburg-
Landau equations—see Ref. 4�. Numerical solution of these
equations2,25 qualitatively supported the main features of the
phenomenological model: i.e., the existence of the order pa-
rameter oscillations in the phase slip core and the finite nor-
mal current near the phase slip core on a scale much larger
than the coherence length. But no quantitative agreement
with the experimental results was found2 because the major-
ity of the experiments were made at temperatures where the
local approximation model is inapplicable.

A first attempt to go beyond the local approximation was
made in Ref. 26. The author assumed that the deviation from
equilibrium of the odd in energy �also called longitudinal�
fL�E�= f�−E�− f�E� part of f�E� is negligible and concen-
trated on the effect of even in energy �transverse� fT�E�=1
− f�−E�− f�E� part of f�E�. In the present paper we show that
this assumption is invalid and fL plays a significant role in
the dynamics of the order parameter. Besides even in the
local approximation the deviation of fL from equilibrium
leads to an important effect—it considerably increases the
relaxation time of the order parameter.27
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The majority of the theoretical works on these phenomena
were made in the regime of constant applied current. How-
ever, it is rather difficult to find a solution of the microscopic
equations �describing the dynamics of �� satisfying the con-
dition j=const because in the boundary conditions for the
quasiparticle distribution function enters the voltage, not the
current28,29 �for further discussion see text below Eq. �4� in
Sec. II�. Because of that, as a model system, we study the
phase slip process in a superconducting ring �with radius R�
placed in an applied magnetic field Happl �in this case we may
use periodical boundary conditions for all physical vari-
ables�. If we start from the state with zero vorticity Lv
=��	dx /2�=0 then at some critical magnetic field the cur-
rent density in the ring reaches jdep and the superconducting
state becomes unstable. The starting phase slip process de-
creases j approximately by �j� jdep��T� /R after each phase
slip �because j	��	−2eA /c�, A is the vector potential and
has the same sign as �	 and each phase slip increases ��	�
by 1 /R�. The phase slip process stops when j is below some
critical value jc1 and we are interested to obtain the number
of phase slips Nps	�jdep− jc1� /�j during the transition pe-
riod. As we show below jc1 and hence Nps are defined by the
dynamics of the order parameter in the phase slip core which
depends on �̃E.

The paper is organized as follows. In Sec. II, we present
our theoretical model. In Secs. III and IV we discuss the
phase slip process in small and large rings, correspondingly.
Finally, in Sec. V, we discuss our results and their relation
with the phase slip process in a current carrying wire and
recent experiments on transport measurements in supercon-
ducting nanowires.

II. MODEL

To simulate the phase slip process at a temperature close
to Tc we use a set of equations first derived in Refs. 25 and
30 �for a comprehensive derivation of these equations see
Ref. 24� for “dirty” superconductors. They consist of the
Usadel equation for the normal ��E�=cos =N1�E�
+ iR1�E� and anomalous ��E�=sin =N2�E�+ iR2�E�
Green’s functions

d2

dx2 + ��2iE − 1/�E� − Q2 cos �sin  + 2���cos  = 0,

�1�

�where Q=�	 /�x−2eA /c is the superfluid velocity�, the
Boltzman-like equations for the longitudinal fL�E� and trans-
verse fT�E� parts of the quasiparticle distribution function
2f�E�=1− fL�E�− fT�E�

N1
� fL

�t
− ���N1

2 − R2
2� � fL� = −

N1

�E
�fL − fL

0� − R2
� fL

0
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� ���
�t

+ 2N2R2Q � fT, �2a�

N1
�
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 fT + �

� fL
0
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2fT −
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0
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�

+ 2N2R2Q � fL, �2b�

�where � is an electrostatic potential and fL
0�E�

=tanh�E /2kBT� is the equilibrium Fermi-Dirac distribution
function of the quasiparticles� and a time dependent equation
for the complex order parameter �= ���ei	 �we write them
separately for the dynamics of ��� and 	�

a1
� ���
�t

= a1
�2���
�x2 + 
1 −

T

Tc
− a2���2 − a1Q2 − �1�x,t����� ,

�3a�

a1���
�	

�t
= 2a1

� ���2Q

�x
− �2�x,t� , �3b�

which are similar to the ordinary time dependent Ginzburg-
Landau equations �see chapter 10 in the book of Tinkham,
for example4� but with the additional nonequilibrium terms

�1�x,t� = − �0
�R2�fL − fL

0�dE/���

and

�2�x,t� = − �0
�N2fTdE/��� .

In Eqs. �1�, �2a�, �2b�, �3a�, and �3b�, the order parameter
and energy are scaled by �0 ��0�1.76kBTc is the zero tem-
perature order parameter value in the weak-coupling limit�,
distance is in units of the zero temperature coherence length
�0=��D /�0 and time in units of t0=� /�0. Because of this
choice of scaling the numerical coefficients in Eqs. �3a� and
�3b� are a1�0.69 and a2�0.33. The current is scaled in
units of j0=�0 / ��0�ne�, the superfluid velocity in units of
Q0=�c /2e�0, and the electrostatic potential is in units of
�0=�0 /e �where �n is the normal state resistivity and e is the
electric charge�. The dimensionless time �E= �̃E� /�0 defines
the relaxation time of the nonequilibrium uniform distribu-
tion of the quasiparticles and the dimensionless length LE

2

=D�̃E /�0
2= �̃E�0 /� defines the range over which the nonequi-

librium nonuniform distribution of the quasiparticles decay
in the sample.

The current in the ring can be found using the following
equation:

j = 2a1���2Q + 
0

�

��N1
2 + N2

2� � fT + 2N2R2fLQ�dE . �4�

From Eqs. �1�, �2a�, �2b�, �3a�, �3b�, and �4� it becomes
clear why there is a problem with a wire carrying a constant
current. One needs to find a solution of Eqs. �1�, �2a�, �2b�,
�3a�, and �3b� �by sorting the boundary conditions for fL and
fT, which contains the voltage as a parameter� that satisfies
the condition j=const—which is an implicit problem and has
to be solved at each time step.
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Assuming that the effect of the free charges is negligible
in the superconductor the electrostatic potential is deter-
mined by the following expression:

� = − 
0

�

N1fTdE . �5�

We use periodic boundary conditions for the system of Eqs.
�1�, �2a�, �2b�, �3a�, and �3b�

�− S/2� = �S/2�, fL�− S/2� = fL�S/2� ,

fT�− S/2� = fT�S/2�, ��− S/2� = ��S/2� ,

where S=2�R is the circumference of the ring.
The characteristic inelastic scattering time �due to

electron-phonon collisions� is typically in the range �E
=0.5–16 000 for all existing low-temperature superconduct-
ors �for example, in Nb�E�102 and in Zn�E�104 �Ref. 24��.

Having in mind a real experimental situation we intro-
duced a pointlike defect �through the local suppression of the
critical temperature by less than 0.6%� located at x=0. As a
result the critical current density jc �and critical magnetic
field Hc� at which the superconducting state becomes un-
stable in an inhomogeneous ring is smaller �by less than 2%�
than the depairing current density in the homogenous ring. In
our simulations we use such a value of Happl �inducing the
screening current jc� j� jdep� which suppresses the order pa-
rameter only in the neighborhood of the defect. As an initial
state we take ���2= �1−T /Tc−a1A2� /a2, 	�x�=0 and A
=HapplR /2, which corresponds to the homogenous solution
of Eqs. �3a� and �3b� with the condition Lv=0 �state with
zero vorticity�.

We used the implicit Crank-Nicolson method for the nu-
merical solution of Eqs. �1�, �2a�, �2b�, �3a�, and �3b�. The
coordinate step of the grid was equal to �0 �which is much
smaller than ��T� for the studied temperature interval 0.9
�T /Tc�0.98� and the time step varied from 0.25t0 up to 2t0
depending on the variation of � in time.

III. RING WITH SMALL RADIUS

In Fig. 1, we present the time dependence of ��� in the
phase slip center �at x=0� for a ring with circumference S
=60�0 �R	9.5�0� at T=0.9Tc with �E=500 after turning on
the overcritical magnetic field Happl=1.018Hc. Because of
the small radius even one phase slip considerably lowers the
current density �see Fig. 1� and we found only a transition
with a change of vorticity of �Lv=1.

The decay time of the order parameter �tinit� from the
initial state to the moment when ���=0 in the phase slip core
strongly depends on �E �see inset in Fig. 1�. It could be
understood if we look at Eq. �3a�, which describes the dy-
namics of ���. Because ��� decreases the right hand side
�RHS� of Eq. �3a� is negative. Nonequilibrium effects enter
this equation via the potential �1, which is negative in this
regime ����� /�t�0� and roughly proportional to �E �see Eq.
�2a� in the limit when one can neglect diffusion and time
dependence for simplicity�. Therefore, potential �1 makes
the RHS of Eq. �3a� less negative and it may considerably

increase the decay time of ���. From a physical point of view
the negative sign of �1 means cooling of the electron sub-
system. This local dynamical cooling effectively makes the
current in the system closer to jdep �because jdep�T� increases
with decreasing temperature� and it enhances the decay time
of ���. The detailed dependence of tinit on �E is not the sub-
ject of the present paper and we presented these results just
to point out that the initial time decay is not linearly propor-
tional to �E as was expected from the local equilibrium ap-
proximation with an uniformly decaying order parameter.4,27

Although the order parameter decreases in the phase slip
center on a time scale much larger than �E the diffusion of
the nonequilibrium quasiparticles from the phase slip core
seems to play an important quantitative role on the value of
tinit �see also discussion on page 254 in Ref. 27�.

It is also clear that the nonequilibrium effects play an
important role only when the term �1��� is comparable to
the other terms in the RHS of Eq. �3a�. When ��� becomes
relatively small in the phase slip region the main terms in Eq.
�3a� are a1���Q2 �which could be rewritten as js

2 / ���34a1 us-
ing the equilibrium relation js=2a1���2Q� and a1�

2��� /�x2.
As a result for relatively small values of ��� �see Fig. 2� the
dynamics of the order parameter becomes independent of �E.
The potential �1 in the phase slip center31 stays finite and
reaches a maximal negative value when the order parameter
goes to zero �see Fig. 3�. This maximal value monotonically
increases in absolute value for small �E �see inset in Fig. 3�
and does not depend on �E when �E�15 �which scales with
�GL at T=0.9Tc�. The last property is connected with the fact
that the fast changes of the order parameter in the phase slip
center occurs mainly on a time scale 	�GL �see Fig. 2� and in
case �E��GL the deviation from equilibrium of the quasipar-
ticle distribution function fL− fL

0 	�−�GL

�GL d�t− tinit�� ��� /�t does
not depend on �E.

After the phase slip the order parameter starts to grow and
the sign of ���� /�t changes. It leads to a positive value of �1
�see Fig. 3� which impedes the growth of the order parameter
in a similar way as a negative �1 value impedes the order
parameter decay �compare different curves in Fig. 2 for t
− tinit�10 and t− tinit�−10�. But there is a finite time interval

FIG. 1. �Color online� Time dependence of the order parameter
�black curve� in the phase slip center and current density �green
curve� for a ring with circumference S=60�0 at T=0.9Tc for Happl

=1.018Hc and �E=500. In the inset we show the decay time of
����0� from the initial value ���2= �1−T /Tc−a1A2� /a2 to zero as
function of �E at the same applied magnetic field Happl=1.018Hc.
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just after the phase slip when the order parameter already
increases but �1 is still negative �see Fig. 3�. In this case
nonequilibrium effects accelerate the growth of the order pa-
rameter �the RHS of Eq. �3a� becomes larger for negative
�1�. But this effect is noticeable only for �E��GL because in
the local approach �when �E
�GL� the potential �1
	�E� ���2 /�t �Ref. 25� is positive just after the phase slip.
This delay time in the sign change of �1 results in a non-
monotonic dependence on �E of the initial time of growth of
�����tup� after the phase slip �see inset in Fig. 2�. It increases
at small �E��GL �following predictions of the local ap-
proach�, reaches the maximal value at �E	�GL and then de-
creases. For large �E��GL it does not depend on �E because
the nonequilibrium potential �1 saturates for large �E.

A positive sign of �1 �at t� tinit+�GL� means an effective
“heating” of the electron subsystem and the “heated” state
relaxes on a time scale �E because in a ring of small circum-
ference �comparable with LE� the diffusion from the most
“heated” �phase slip core� region is not effective. Below we
show that this effect together with the acceleration of the

order parameter growth due to nonequilibrium effects �in the
time interval tinit� t� tinit+�GL� considerably influences the
dynamics of the order parameter in rings of large radius
where several subsequent phase slips can occur.

IV. RING WITH LARGE RADIUS

In Fig. 4, we present the time dependence of the order
parameter for a ring with S=360�0�R	57�0� at T=0.9Tc and
three values of �E after turning on the overcritical magnetic
field Happl=1.018Hc. The initial part of the decay of the order
parameter is not shown �it is almost the same as for a small
radius ring�. The main feature observed in our calculations—
the nonmonotonic dependence of the number of phase slips
on �E �see insert in Fig. 4�b��. Nps increases for small �E
��GL, than rapidly decreases �when �E��GL� and than in-
creases again with a tendency to saturation for �E��GL.

In order to understand this Nps��E� dependence let us first
discuss why subsequent phase slips can occur in a ring. After
the first phase slip the order parameter ��� increases together
with the supervelocity Q	�	 but their rate of increase is
described by different equations �Eqs. �3a� and �3b�� and
they have different times of growth ����� and ��	, respec-
tively�. Therefore, there are two situations possible: �i� ����
���	 and �ii� �������	. In the first case the term −Q2���
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may become strong enough to make the RHS of Eq. �3a�
negative before the order parameter reaches the stationary
value �corresponding to the decreased value of the current
density in the ring�. From the physical point of view it cor-
responds to the situation when the superconducting current
js	���2Q locally �in the phase slip core� becomes large
enough to make the superconducting state with dynamically
suppressed order parameter unfavorable and it leads to a de-
crease in the order parameter and the appearance of the next
phase slip. In the case �ii� the supervelocity grows slower
than the other terms in the RHS of Eq. �3a� and the next
phase slip does not occur.

It is essential that the time scale over which Q �or �	�
varies is inversely proportional to the current density in the
ring ��		1 / �j� �see also Ref. 32�. Indeed the first term in the
RHS of Eq. �3b� could be estimated as �js /�x=−�jn /�x	
−jn�0� /L where L is a characteristic length scale for the de-
cay of the normal current near the phase slip core �x=0� and
we used the condition j= js�x , t�+ jn�x , t�=const�t�. The po-
tential �2 is roughly proportional to the electric potential
�compare equations for �2 and �� and hence its gradient is
proportional to the electric field E and the normal current
density via Ohm’s law jn=E /�n. Because jn cannot be larger
than the total current j�t� we obtain the relation ��		1 / �j�
which has a simple physical meaning—the larger the electric
field in the ring �E	 jn� j� the faster will change the veloc-
ity of the superconducting electrons. Using the condition for
the subsequent phase slip as �������	 we obtain an estimate
for the lower critical current density when dynamic phase
slip process can occur �j�� jc1	1 /����.

In the ring, each phase slip decreases the current by �j
� jdep��T� /R and the maximal number of subsequent phase
slips �assuming that all of them occur in the same point along
the ring� is Nps= �jdep− jc1� /�j. Our results for small rings
show, that ����	�tup is a nonmonotonic function of the in-
elastic time �E �see inset in Fig. 2 for �tup� and it provides the
related changes in jc1	1 /����	1 / t�up and Nps for not very
large �E �compare inset in Fig. 4�b� with inset in Fig. 2�.

At relatively large �E��GL the effective heating of the
electronic subsystem by the growth of the order parameter
increases Nps again. Due to the diffusion of the quasiparticles
�with energy larger than ���max—maximal value of the order
parameter near the phase slip center� �1 in the phase slip
center initially decays very fast after the phase slip �see posi-
tive peaks in Fig. 5�, but than its decay time becomes pro-
portional to �E �quasiparticles with energy less than ���max
cannot diffuse from the phase slip core—they relax to equi-
librium via inelastic processes�. Therefore, during some fi-
nite time the effective temperature Te�Tbath+�1Tc near the
phase slip center is larger than the bath temperature Tbath and
the current density in the ring locally can be larger than
jc1�Te� or even jdep�Te�. It provides the condition for the next
phase slip. This effect becomes strong when the time be-
tween subsequent phase slips is smaller than �E and there is
an essential accumulation of the “heat” in the phase slip core
�see Fig. 5�. It also explains the increase of �1�0� with in-
creasing �E after the second and further phase slips - com-
pare the two curves in Fig. 5 �note, that after the first phase
slip �1�0� is practically the same for both values of �E—see
discussion of Fig. 3�. But the difference is not large and this

can be the reason for the saturation of Nps �see inset in Fig.
4�b�� with increasing �E for the ring with the chosen param-
eters. In our case �j�0.05jdep is relatively large and we
cannot detect a decrease in jc1 for large �E.

Another effect which comes from the nonlocality of the
nonequilibrium state is the two peaks in the distribution
����x� around the phase slip center �see Fig. 6� that appears
during the transition period. At t� tinit the maximal deviation
from equilibrium occurs at x=0 and due to the diffusion of
the quasiparticles it spreads in space on a scale of about LE.
Because �1 is negative at t� tinit it leads to an enhancement
of the order parameter near the phase slip center. Besides the
term 2N2R2Q� fT in Eq. �2a� is positive for almost all time
and it acts as an additional source of nonequilibrium, which
enhances superconductivity near the phase slip core when
�fT �which is proportional to electric field� is different from
zero. During the transition period there are voltage pulses
�corresponding to phase slips� and it keeps the presence of
two peaks in the spatial dependence of the order parameter
and even leads to their increase �see Fig. 6�. Appearance of
these peaks enhances the effective ’heating’ �discussed in
above paragraph� because the nonequilibrium quasiparticles
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FIG. 5. �Color online� Time dependence of the nonequilibrium
term �1�0� in the Ginzburg-Landau equation �Eq. �3a�� for two
values of �E in case of a large ring �S=360�0�.
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in a wider energy interval 0�E� ���max cannot diffuse from
the phase slip core and have to relax to equilibrium within a
time 	�E. We should note that for relatively small �E��GL
such an effect is very weak.

V. DISCUSSION

The above results were obtained for T=0.9Tc. We also
performed calculations for higher temperatures 0.9�T /Tc
�0.98 and found qualitatively similar results. The dynamics
of the order parameter is governed by �E: the initial growth
time of ��� in the phase slip core after the phase slip is a
nonmonotonic function of �̃E which has a maximum at �̃E
� �̃GL=�� /8kB�Tc−T� and a tendency to saturate for large
�̃E��̃GL. This time is much smaller than the decay time of
���, which depends on �E. We also find peaks in the order
parameter distribution near the phase slip core during the
transition period which are most pronounced when �E��GL.
But due to the increased coherence length ��T� when ap-
proaching Tc �and hence an increase in the ratio �j / jdep�
already at T=0.98Tc we find transitions only with Nps=2 for
a ring with S=360�0 in the considered range of �E. This
makes it difficult to study the effect of ’heating’ on the phase
slip process and the critical current density jc1 �already after
two phase slips the current density in such a ring decreases
by 40%�.

Equations �2a� and �2b� are valid if the relaxation of the
quasiparticle distribution function to equilibrium occurs
mainly via inelastic electron-phonon interactions �with char-
acteristic time �̃E=�e−ph�. Furthermore it was assumed that
the phonon subsystem is in equilibrium and the electron-
electron relaxation time �e−e��e−ph.24 If �e−e��e−ph �for ex-
ample in Al and Zn they are of the same order already at T
	Tc� in Eqs. �2a� and �2b� the collision integrals should be
added, which are responsible for the change of fL and fT due
to the electron-electron interaction. They lead to a nonequi-
librium quasiparticle distribution function of Fermi-like type
with an effective temperature after some relaxation time of
the order �e−e. But the transition period �from the first phase
slip up to the last one� is about �̃E for large �̃E��̃GL �see Fig.
4�c� and 5� and, therefore, we expect a small influence on our
results when �e−e	�e−ph.

Our theoretical results could be verified with supercon-
ducting rings of different radius and made of two types of
material—with low and strong electron-phonon coupling.
The good candidates are Al��E	103� and Nb��E	102�. We
expect that the number of phase slips should be the same in
rings of small radius �R�3��T�� and Nps should be much

larger for Al rings than for Nb when R���T�.
We believe that the nonequilibrium effects discussed in

our work that are nonlocal in time and space should also
affect the minimal critical current density jc1 at which the
dynamical phase slip process can exist in a current carrying
wire. We expect that it has a nonmonotonic dependence on
�E: it should have a local minimum at �E	�GL, then a local
maximum at �E��GL and for large �E��GL jc1 should mono-
tonically decay with increasing �E.

Moreover, for a wire with length ��T�
L�LE, the
boundary conditions at its ends may influence the value of
jc1. If for example we have a “bad” contact �tunnel barrier
with low transparency� the diffusion of the nonequilibrium
quasiparticles to the leads is strongly suppressed and we
should observe a decrease of jc1 in comparison with long
wires with L�LE �effective heating increases in this case�.

In the case of a “good” contact �no tunnel junctions� the
diffusion of the nonequilibrium quasiparticles depends on the
value of the order parameter in the lead ���lead. Usually it is
larger than ��� in the wire where it is suppressed by the
transport current. Therefore, the diffusion is also suppressed
�but not so strong as for the “bad” contact� and we may
expect a small decrease of jc1 �in comparison with a long
wire L�LE�. But if we suppress ���lead �for example by an
external magnetic field� the diffusion of nonequilibrium qua-
siparticles becomes stronger, the heating is weaker and jc1
should increase. This mechanism could be responsible for
the observed, in many experiments, magnetic field enhanced
superconductivity seen in short superconducting
nanowires10–16 when the conductivity and/or the critical cur-
rent of the nanowire increases in weak magnetic fields. In
our opinion the decrease of the charge imbalance length LQ
	LE in weak magnetic fields �which also could influence the
phase slip process10,18,33� is irrelevant to this effect at least
for part of these experiments12,15,16 because the critical cur-
rent density was large �it was comparable with the depairing
current density� and it has a stronger effect on LQ �see for
example Ref. 34� than relatively weak magnetic fields used
in these works.
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