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We study the different dynamical regimes of a vortex lattice driven by ac forces in the presence of random
pinning via numerical simulations. The behavior of the different observables is characterized as a function of
the applied force amplitude for different frequencies. We discuss the inconveniences of using the mean velocity
to identify the depinning transition and we show that instead, the mean quadratic displacement of the lattice is
the relevant magnitude to characterize different ac regimes. We discuss how the results depend on the initial
configuration and we identify hysteretic effects which are absent in the dc driven systems.
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I. INTRODUCTION

A remarkable diversity of physical systems belong to the
category of driven elastic manifolds moving over random
landscapes. Extensively studied examples are abundant in
the literature: moving vortex lattices in type II
superconductors,1–12 sliding colloidal particles13,14 or charge
density wave systems,15 magnetic bubble arrays,16 driven
Wigner crystals,17,18 and stripe forming systems.19 Among
the topics that have recently received much attention is the
nature of the depinning mechanisms that occur as the exter-
nal dc driving force is increased beyond the critical force FC

dc,
and its relation with proliferation of topological defects in
the form of bounded or unbounded disclinations. The depen-
dence of the dynamics with initial conditions has been ex-
amined in detail and it was determined that for dc drives,
memory of initial conditions is lost at depinning.20 A dynami-
cal depinning transition has been identified at a given force
FP

dc. For larger forces topological defects heal and smectic
linear flow is observed.4,8

It should be noted, however, that most of the research
thrust has been specially focused on dc drives. In experi-
ments, an ac field is often applied to order the vortex lattice
�VL�; the most accepted picture is that the ac field assists the
system in an equilibration process, from a disordered meta-
stable configuration to the equilibrium Bragg glass phase,
free of dislocations.21 However, a large amount of results, in
both experiments22,23 and simulations,13,24–27 show that, in
some cases, an ac drive can disorder the VL, and that oscil-
latory dynamics plays an essential role.

The oscillatory dynamics of the VL is in itself a broad
field that is not completely understood. The main porpoise of
this work is to provide a more comprehensive description,
using numerical simulations, of ac driven vortex lattices over
a random distribution of pinning sites. We explore the effect
of the applied force amplitude for different frequencies, start-
ing from different initial configurations. The VL mean veloc-
ity, which can be dephased from the excitation, is no longer
an adequate observable to detect depinning and we show that
instead, the mean quadratic displacement of the lattice is the
relevant magnitude to identify depinning and dynamical ac
regimes. The depinning transition becomes a crossover as is
described below. The pinned linear Campbell regime, char-

acterized by a linear, frequency independent response where
losses are negligible,28 is also identified and simulations are
compared with analytical calculations.

The paper is organized as follows. In Sec. II, we describe
in detail the numerical simulations; starting with the model
�Sec. II A�, following with the numerical procedures �Sec.
II B�, and giving the definition of the observables �Sec. II C�.
In Sec. III, we present and discuss the results, and in Sec. IV,
we highlight the main conclusions.

II. NUMERICAL SIMULATIONS

A. Model

In our simulations, we consider Nv rigid vortices with
coordinates ri in a two-dimensional rectangle of size Lx
�Ly that evolve according to the dynamics

Fi − �vi = 0, �1�

where vi its velocity and � the Bardeen-Stephen viscosity
coefficient and Fi is given by the sum of the vortex-vortex
interaction, the pinning attraction, and the Lorentz force

Fi = Fi
vv + Fi

vp + Fi
L. �2�

The vortex-vortex interaction per unit length is given by

Fi
vv = �

j�i

Nv

Fvv�ri − r j� , �3�

where

Fvv�ri − r j� =
�0

2

8�2�3 fvvK1� �ri − r j�
�

�r̂ij . �4�

Here, �0 is the quantum of magnetic flux, � is the London
penetration length, and K1 is the modified Bessel function.
The parameter fvv is dimensionless and can be related to the
stiffness of the vortex lattice �see Ref. 24�. The Np pinning
centers are supposed to be located at random positions R j,
and their interaction with vortices is modeled by

Fvp�ri� = �
j=1

Np

= Fvp�ri − R j� , �5�
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Fvp�ri − R j� = − Fj
pe−��ri − Rj�/rp�2

�ri − R j� , �6�

here, Fj
p �chosen from a Gaussian distribution with mean

value Fp=0.2 and a standard deviation of 0.1Fp� and rp tune
the strength and range of the interaction.

The Lorentz force per unit length is given by FL=�0Jext
�z where Jext is the external driving current density and z is
the versor perpendicular to the plane.

Following Ref. 24, we measure lengths in units of �,

forces �per unit length� in units of f0=
�0

2

8�2�3 , time in units of
t0=�� / f0, and frequency in units of �0=1 / t0. In our simu-
lation, we will consider Nv=1600, Lx=40�, Ly =�3Lx /2, Np
=25Nv, and rp=0.2�.

Concerning the numerical details, the equations of motion
are integrated using a standard Euler algorithm with step h
=0.04t0, and a hard cutoff �=4� in calculating the vortex-
vortex force. When calculating physical observables we av-
erage over four realizations of disorder.

B. Procedures

The ac drive is simulated with an external square ac force
of the form

FL
ac = � fL if nT � t � nT +

T

2

− fL if nT +
T

2
� t � �n + 1�T .	 �7�

We study vortex lattice evolution as we vary the force in
a slow ramping of fL starting from different initial condi-
tions. In each case, we leave the system evolving from the
initial configuration with zero external force for 5 cycles.
This free evolution creates or annihilates a low density of
defects and becomes our metastable initial state. A numerical
realization will be obtained by ramping from fL to fL+	fL,
applying Na cycles this new force, and then allowing the
system to relax for Nw cycles at zero force, before reassum-
ing the ramping. Measuring is performed during the last
cycle, just before switching off the applied force �i.e., during
cycle Na�.

C. Observables

It is by now well known that the mobility of the VL is
affected by the topology of the VL configuration. A common
observable used to characterize the VL configuration is the
density of lattice defects, nd, �i.e., vortices with five or seven
neighbors in the Delaunay triangulation�.

The mobility itself is characterized by the vortex velocity.
The instantaneous mean vortex velocity in the direction of
the applied force at time t is

v�t� =
1

Nv
�

i

Nv

vi�t� . �8�

In the dc case, the v vs FL curves can be directly related
with experimental current-voltage characteristics �V-I
curves�. In the ac case the relationship between velocity and

force and the experimental V-I curve is more subtle, as the
phase between the applied force and the velocity plays an
essential role.

We then define the half cycle mean velocity in the nth
cycle as

vn =
2

T



nT

nT+T/2

v�t�dt . �9�

Notice that the half cycle velocity takes into account this
phase factor. We estimate the mean phase factor 
n by ap-
plying a sinusoidal FL�t� and calculating the phase between
FL and the first harmonic of the mean velocity v�t� in the nth
cycle.

Moreover, a quantity of interest is the average quadratic
displacement defined as

��X2��t2,t1� =
1

Nv
�
i=1

Nv


xi�t2� − xi�t1��2. �10�

In the ac case, we can take t2= t1+ pT, the mean quadratic
displacement in the force direction after performing p oscil-
lations. This quantity, as we will show below, is very useful
for describing ac drives.

III. RESULTS AND DISCUSSION

Throughout the work we have explored the behavior of
the system as a function of the ac amplitude. Recent numeri-
cal studies on a similar system �colloids under the influence
of an external ac drive and quenched disorder�13 have found
a crossover from a low drive-highly disordered phase to a
high-drive–low-disordered phase. In all cases considered in
Ref. 13 the initial configuration was highly disordered. Our
results confirm the existence of the high-drive–low-
disordered phase but we will show that when more general
initial conditions are considered then richer, low drive phases
emerge.

Results starting from an ordered configuration are sum-
marized in Fig. 1 and Fig. 2. In all the cases Na=6 cycles
have been applied with each fL force. We have checked our
results for larger values of Na �up to Na=60� and we have not
found any qualitative difference. The observables vn 
Eq.
�9�� and nd have been calculated in the nth cycle before
switching off fL. In Fig. 1, we show the behavior of the
defect density nd 
Fig. 1�a�� and the characteristic vn− fL
curve 
Fig. 1�b�� for a particular choice of vortex-vortex in-
teraction �fvv=0.8f0�, at various frequencies �. In the dc
limit �shown in red full circles� we clearly identify three
different regimes, a pinned lattice for fL�Fc

dc, a disordered
flow �plastic� region for Fc

dc� fL�Fp
dc and a flowing �smec-

tic� linear regime for fL�Fp
dc consistent with previous

work.20 While the existence of Fp
ac can be inferred form these

ac curves, as the value for which all curves that present plas-
tic motion merge, the distinction between the pinned and
plastic regimes is less apparent. This is so, because even a
weak driving force produces oscillations of vortices around
their pinning centers with finite mean velocity. This is a
strong argument to abandon the mean velocity as the ad-
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equate observable to indicate depinning. The inset of Fig.
1�b� shows an enlarged area for small driving forces: at very
small ac amplitudes a linear Campbell regime holds but the
response becomes nonlinear at amplitudes well bellow Fc

dc.
The definition of a critical force in the ac response is there-
fore not so obvious, and we will discuss this point in detail
later.

In the ac curves, we distinguish two frequency regimes: at
low frequencies ��
0.02�0 in our simulation�, restoring
and pinning forces prevail over losses, whereas at high-
frequencies viscous drag dominates. The low-frequency re-
gime is characterized by a highly nonlinear response at in-
termediate ac amplitudes, associated with a pronounced peak
in nd. This feature smears at higher frequencies, the density
of topological defects decreases, and the nonlinearity is less
apparent, going to a linear “ohmic” regime �blue down tri-
angles� at very high-frequency ���0.2�0� where dissipative
forces govern. Memory and history effects occur when pin-
ning and elastic forces compete and both prevail over vis-
cous forces. Therefore, in the following analysis we will fo-
cus in the low-frequency regime.

In Fig. 2, we plot together various observables as a func-
tion of the AC amplitude for a fixed frequency �
=0.0188�0, in a procedure analogous to that explained in the
description of Fig. 1. Figure 2�a� displays the modulus of the
half cycle mean velocity vn �left axis� and the estimated

phase factor 
n �right axis�. In Fig. 2�b� the density of de-
fects nd �left axis� and the mean quadratic displacement
��X2� after 5 cycles �right axis� are shown. The dashed hori-
zontal line in Fig. 2�b� indicates de density of defects ndr that
are spontaneously created �without any applied force�, and
correspond to the initial more ordered configuration. A still
more ordered configuration is unstable.

We identify various regimes. At very low-ac amplitudes
�fL�Fl� a linear vn�fL� holds. The velocity is mainly out of
phase. The VL configuration remains unchanged, because
vortices are trapped and can only perform small harmonic
oscillations around their initial positions. This motion is re-
versible, and therefore ��X2�=0. In the other limit, at very
high-ac amplitudes �fL�Fp�, there is a dynamic reordering
and the pinning potential is completely smeared. There is a
linear in phase Ohmic response.

In the intermediate range Fl� fL�Fp, the response is
nonlinear. A very rich behavior with different nonlinear re-
gimes may be observed. In the first nonlinear region, at small
amplitudes �Fl� fL�Fc1�, the velocity is small, and there is
not an appreciable displacement in the direction of the force
�i.e., ��X2��0�; plastic random displacement produces a
huge number of dislocations. However, most of the vortices

FIG. 1. �Color online� �a� Number of topological defects nd and
�b� half-cycle mean velocity vn �see text� as a function of the am-
plitude of the applied Lorentz force fL for different frequencies �.
All the curves are calculated slowly ramping fL, from an ordered
VL configuration. Inset: zoom of vn�fL� curves at low amplitudes:
vn�0 at finite frequency.

FIG. 2. �a� �left� vn phase factor �a� �right� 
, �b� �left� nd and
mean quadratic displacement �b� �right� ��X2� as a function of fL at
�=0.0188�0. Vertical dashed lines indicate the different ac regions
discussed in the text. The depinning of the VL occurs in a crossover
region between Fc1 and Fc2, where ��X2� grows. Inset: comparison
between nd before �black full circles� and after �gray full circles� Nw

cycles without applied force �see text�. Beyond the depinning re-
gion the moving lattice configurations are unstable and relax.
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remain trapped around the pinning sites. Depinning occurs in
a crossover region, between Fc1 and Fc2. We identify the
beginning of the depinning region at the force Fc1, where
vortices move in average distances larger than the pinning
radius rp. In this region, the irreversible displacement grows
with fL and is reflected in the growth of ��X2� that reaches its
maximum at the second force Fc2; as this happens, the den-
sity of defects attains its maximum and the slope of vn�fL�
grows. Above Fc2, in the upper nonlinear region �Fc2� fL
�Fp�, the mean phase factor drastically decreases �i.e., dis-
sipation becomes relevant�, while the motion becomes more
reversible and the VL more ordered. This is accompanied by
a smooth decrease in the vn�fL� slope that approaches the
final linear relationship. Another interesting point to remark
is that VL configurations that have similar density of defects
at both sides of the depinning transition are qualitatively dif-
ferent. This difference can be detected, observing the relax-
ation of the VL configurations after removing the applied
force. In the inset of Fig. 2�b�, we compare the density of
defects nd before switching off the applied force �black full
circles� with the same observable, Nw cycles after removing
the applied force �gray full circles�. While for forces lower
than Fc2, the vortices move around pinning sites in robust
metastable configurations, beyond the depinning transition
the moving lattice configurations are unstable and relax to-
ward a state with more defects.

We now turn to analyze the various ac regimes starting
from different initial conditions. In Fig. 3 the density of de-
fects nd 
Fig. 3�a�� and the mean quadratic displacement
��X2� 
Fig. 3�b�� as a function of the ac force are shown for
different initial conditions and ac histories. The results de-
scribed in the previous paragraph �starting from an ordered
VL and increasing the ac force� are plotted in red crosses.
Analogous results obtained with a similar ac protocol but
starting from the more disordered metastable configuration
are plotted in blue dots, and results with an initial interme-
diate nd are plotted in green triangles. As in the dc case
studied in Ref. 20, the different nd curves merge for fL larger
than a threshold value. For the dc case, this threshold value
was identified with Ic

dc, the critical current at depinning. As
we mentioned before, the identification of the critical current
Ic

ac is less obvious in the ac case, and we notice that the nd�fL�
curves merge around Fc2. In magenta squares, we show the
behavior of nd and ��X2� for decreasing �open squares� and a
subsequent increasing �full squares� external driving. We ob-
serve the presence of hysteresis in the region between Fc1
and Fp. Consistently, for increasing forces, both the density
of defects and the average quadratic displacement result
smaller than for increasing forces. Below Fc1 pinning forces
dominate, and above Fp they are completely smeared. In the
intermediate region, the strong competition gives rise to hys-
teresis. This hysteretic effect beyond the critical force has not
been observed in the dc case20 and it seems to be a new
genuine effect of the ac case.

As another striking result, the behavior of ��X2� vs FL is
independent of the initial condition for the whole driving
force range. The reorganization of vortex defects by ac
drives in initially different configurations, and for different
ac protocols, surprisingly does not involve different qua-
dratic displacements. This observable is univocally related

with the applied force and seems to be the best one to char-
acterize the ac regimes.

Finally, we discuss in more detail the linear regime ob-
tained at very small ac driving forces. In the harmonic ap-
proximation we can write the mean restoring force 
averag-
ing Fi

vv+Fi
vp in Eq. �2�� as Frest=−�x, where x denotes the

average displacement of vortices from their equilibrium po-
sition and � is the Labusch parameter.28 Within this approxi-
mation, Eq. �1� can be written as

�ẋ + �x = FL
ac. �11�

If we consider a semicycle for which FL
ac is positive, the

solution of Eq. �11� is

x�t� = fL/� + 
x0�tn� − fL/��e−�/��t−tn�, �12�

where nT� t�nt+ T
2 .

This equation provides a recurrence relation for x0�tn� that
can be solved explicitly. In the limit n→� �the stationary
regime� this gives

FIG. 3. �Color online� �a� nd as a function of fL starting from
different initial configurations. Arrows indicate the direction of
change of fL. Above Fc2 all the nd�fL� curves taken with increasing
fL merge. Hysteresis is observed �full and empty magenta squares�.
�b� ��X2��fL� curves corresponding to the same processes described
in �a�. This observable is independent of the initial condition for the
whole driving force range. Hysteresis is observed �full and empty
magenta squares�.
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x0�tn� = −
fL

�
tanh��T

4�
� �13�

and the average velocity over half-cycle as

vn =
2�fL

��
tanh� ��

2��
� . �14�

On the other hand, numerically we have performed differ-
ent calculations of the half cycle mean velocity in the nth
cycle vn 
according to Eq. �9�� as a function of � for differ-
ent values of fL, so we can average over fL and study the
behavior of vn / fL. In addition, as we did before, we have
performed averages over different realizations of pinning
centers. This fact implies that indeed � is a random variable
that as a first approximation can be assumed to be Gaussian
distributed and characterized by its mean value �̄ and stan-
dard deviation ��.

In Fig. 4, we show the results of the simulation, where we
have used seven values of fL from 0.00025f0 to 0.004f0 and
four realizations over disorder. Our fit gives �̄=0.11 and
��=0.05.

A critical frequency may be estimated as �c� �̄
�

=0.11�0.05. We are able now to justify the two frequency
regimes introduced at the beginning of this section.

IV. CONCLUSIONS

We have presented a comprehensive description of the
dynamics of ac driven vortex lattices over a random distri-
bution of pinning sites, focusing the study in the low fre-
quency regime, ���c, where pinning and elastic forces pre-
vail over viscous forces. This critical frequency �c has been
estimated by fitting results of numerical simulations at
low-ac amplitudes with that predicted by an analytical
model.

One of the most important results is the behavior of the
mean quadratic displacement ��X2��fL�; strikingly it is inde-
pendent of the initial condition for the whole driving force
range. This observable is univocally related with the applied
force, and seems to be the best one to characterize the ac
regimes. This should be contrasted with the mobility that can
be large even in pinned ac driven lattices.

As expected, a linear Campbell regime holds at very
low-ac amplitudes �fL�Fl� whereas the response is Ohmic
at very high-ac amplitudes �fL�Fp� where there is a dy-
namic reordering and the pinning potential is completely
smeared. In both linear responses the motion is reversible
and ��X2�=0. In all the intermediate range Fl� fL�Fp, the
response is nonlinear and a very rich behavior with different
nonlinear regimes may be observed.

The second important issue of this work is that depinning
occurs in a crossover region �Fc1� fL�Fc2� where ��X2�
grows with fL and vortices move in average distances much
larger than the pinning radius. In the first nonlinear region,
below the depinning transition �Fl� fL�Fc1� there is not an
appreciable displacement in the direction of the force �i.e.,
��X2��0�; plastic random displacement produces a huge
number of dislocations but most of the vortices remain
trapped around the pinning sites. The density of defects nd is
strongly dependent on the initial configuration.

Beyond the depinning region the memory of the initial
configuration is lost. Dynamics becomes more and more re-
versible as ��X2� decreases. Dissipation becomes relevant
and the VL reorders. The moving vortex lattice configura-
tions become unstable and relax after switching off the ap-
plied force. However, there is a large region �Fc2� fL�Fp�
where plastic motions are still present, as can be inferred
from ��X2��0 and the nonlinear response. Below the plastic
threshold Fp, an hysteresis in the applied force, absent in dc
driven lattices, is observed, showing once again the rich par-
ticularities of oscillatory dynamics.

Most of the papers dealing with molecular dynamics
simulations that have inspired this work, are straightfor-
wardly related to dc transport experiments. Applied force—
velocity in calculations matches applied current-voltage in dc
experiments. In our simulation we control explicitly the ap-
plied force and we calculate observables as velocity. An in-
teresting question is how these results could be interpreted in
terms of ac experiments in which an external oscillating
magnetic field is the control parameter like in rf surface im-
pedance measurements, or in ac susceptibility measurements.
The relationship is not straightforward because the ac field
and the Lorentz force are not trivially related and, besides,
the ac penetration length has to be taken into account.29–31

This will be the issue of a coming work.
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