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We present an intermediate coupling scenario together with a model analytic solution where the non-Fermi-
liquid behavior in the underdoped cuprates emerges through the mechanism of Fermi surface �FS� reconstruc-
tion. Even though the fluctuation spectrum remains nearly isotropic, FS reconstruction driven by a density
wave order breaks the lattice symmetry and induces a strong momentum dependence in the self-energy. As the
doping is reduced to half-filling, we find that quasiparticle �QP� dispersion becomes essentially unrenormalized
but in sharp contrast the QP spectral weight renormalizes to nearly zero. This opposite doping evolution of the
renormalization factors for QP dispersion and spectral weight conspires in such a way that the specific heat
remains nearly Fermi-liquid-like at all dopings in accord with experiments.
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I. INTRODUCTION

Understanding how “non-Fermi-liquid” behavior arises
near the half-filled insulating state is one of the key questions
for unraveling the physics of not only the cuprates but that of
correlated electron systems more generally. Here we show
how some aspects of the electronic spectrum which are dif-
ficult to understand in a conventional Fermi-liquid theory
can be explained naturally in a model of an antiferromag-
netic Fermi liquid. Specifically, it has been reported that the
renormalization of the electronic dispersion decreases with
underdoping as half-filling is approached,1 i.e., the quasipar-
ticles �QPs� seem to “undress” in the underdoped regime. In
sharp contrast, the spectral weight of the QPs fades away on
approaching the insulator and renormalizes to zero at
half-filling,2,3 indicating that these QPs are very fragile or
“gossamer-like.”4 Within Fermi-liquid theory the QP disper-
sion and spectral weight should be renormalized by the same
factor, unless the self-energy has a strong momentum depen-
dence. However, fluctuations in the cuprates seem to be rela-
tively isotropic,5,6 which would imply then that the renormal-
ization factor Zd for dispersion is roughly equal to the
renormalization factor Z� for the spectral weight. This is
clearly violated near the Mott insulating limit, where
Zd→1 while Z�→0. Added to these puzzling findings is the
fact that the electronic specific heat continues to behave
more or less in a Fermi-liquid manner over the entire doping
range from the overdoped metal to the insulator.3,7–9 These
results clearly demonstrate that a non-Fermi-liquid or
“strange metal” superconductor emerges from the Fermi-
liquid background as doping is reduced. Notably, there is
considerable controversy over what constitutes non-Fermi-
liquid behavior and many proposals have been made to un-
derstand its possible origin, ranging from preformed d-wave
pairs10 to fluctuating spin-density waves,11 from the
Hubbard12,13 and t-J �Ref. 14� models to the anti-de Sitter/
conformal field theory �AdS-CFT� correspondence.15

Insight into the origin of non-Fermi-liquid behavior
comes from recent angle-resolved photoemission
�ARPES�,16 Hall effect,17 and quantum-oscillation18–20 ex-
periments, which reveal the presence of Fermi Surface �FS�

reconstruction as a robust feature of both electron- and hole-
doped cuprates, suggesting that the ground state involves
some superlattice order. In this paper, we investigate a model
of the underdoped cuprates with a density wave ordered
ground state and find that when the FS breaks into pockets,
the self-energy develops a strong momentum dependence.
Analytic forms for various renormalization factors are pre-
sented to delineate how the non-Fermi-liquid physics arising
from FS reconstructions can be understood at a quantitative
level. Our study thus provides a tangible model for reconcil-
ing the seemingly contradictory doping evolutions of the QP
dispersion, the QP spectral weight and the specific heat in the
cuprates.

The possibility of FS reconstruction in the cuprates has
been proposed many times since it was found that the Hall
density scales with doping17—i.e., it is proportional to the
small pocket area rather than the large FS. We model this FS
reconstruction by assuming a spin-density-wave �SDW� or-
der which results in a nearly antiferromagnetic-Fermi-liquid
�NAFL� phase.21 In addition to SDW order, we have ana-
lyzed other candidates for the competing order including
charge, flux, or d-density waves22 and find that the
pseudogap symmetry which is the essential ingredient for the
origin of non-Fermi-liquid physics is insensitive to the par-
ticular nature of the competing order state. We calculate the
self-energy due to spin and charge fluctuations within a
QP-GW formalism described in Appendix A. The model is
known to properly describe the high-energy “waterfall” fea-
tures in ARPES �Refs. 5, 23, and 24� as well as the doping
evolution of the optical spectra and the finite QP lifetime.25

Within the QP-GW model the self-energy splits the spectrum
into coherent in-gap states and an incoherent residue of the
undoped upper and lower Hubbard bands. With underdoping,
the in-gap states develop an SDW gap and split into upper
and lower magnetic bands �U/LMBs�,22 and the resulting
“four-band” features are consistent with quantum Monte
Carlo �QMC� calculations26 �Appendix A�. The involvement
of a quantum critical point �QCP� in the optimal doping re-
gime where the SDW order disappears is strongly suggestive
of an intermediate strength for correlations in the cuprates.25

Accordingly, there have been several recent attempts to de-
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velop an intermediate coupling model for the cuprates start-
ing from either the weak-coupling limit, as in the present
calculation, or the strong-coupling limit.27 Therefore, we
compare our results with experiments as well as with the
variational cluster calculations of Paramekanti, Randeria,
and Trevedi �PRT�,27 which approach the problem from the
resonant valence bond �RVB� limit.

This paper is organized as follows. In Secs. II A and II B,
we investigate the doping evolution of the spectral weight
and that of dispersion renormalization, respectively. The
specific-heat results are presented in Sec. III. The discussion
and conclusions are given in Secs. IV and V, respectively. A
summary of the underlying QP-GW model is provided in
Appendix A. Various renormalization factors invoked are
summarized in Appendix B for the reader’s convenience. Ap-
pendices C and D address details of analytic forms for the
renormalization factors and those of our specific-heat evalu-
ation.

II. NEARLY ANTIFERROMAGNETIC-FERMI-LIQUID
RENORMALIZATION FACTORS

A. Momentum density and spectral weight renormalization

We evaluate the exact values of the renormalization fac-
tors from FS discontinuities of spectral function moments
Ml�k� of various order l

Ml�k� = �
−�

�

d��lA�k,��f��� . �1�

These moments provide important information about the
spectral weight distribution in energy and momentum space
as a function of doping.27 The spectral density A�k ,�� in-
volves both the coherent QP and the incoherent part. Due to
the Fermi function f���, the moments Ml display singulari-
ties at the Fermi momentum kF which are characteristic of
coherent gapless quasiparticle excitations. We consider first
the zeroth-order moment which is simply the momentum
density n�k�.28–30 The interacting FS is determined from the
jump in n�k� at kF of the quasiparticles. The magnitude of
this jump defines the spectral weight renormalization Z�. The
incoherent part in the spectral weight substantially modifies
the shape of n�k�.

Figure 1 shows maps of n�k� throughout the first Brillouin
zone �BZ� as a function of doping for Nd1-xCexCuO4
�NCCO� and La1-xSrxCuO4 �LSCO�. In the present NAFL
case the combination of self-energy and SDW coherence fac-
tors leads to characteristic structures in n�k� at all dopings
including half-filling. At half-filling n�k� shows a maximum
at the � point and away from that it decreases gradually and
smoothly, from inside to outside the local-density-
approximation- �LDA-� like FS �magenta solid line in Figs.
1�a� and 1�d��. As we dope the system with electrons, the
spectral weight increases at the � point and in addition,
�� ,0� and its equivalent points largely gain spectral weight
due to the development of electron pockets in NCCO �Fig.
1�b��. With further increase in doping, the FS undergoes two
topological transitions31,32 as also reflected in the momentum
density calculations here. The first topological transition in

n�k� occurs when the LMB approaches the Fermi level �EF�
and forms holelike pockets at ��� /2, �� /2�. For x=0.15,
the hole pockets are fully formed and they as well as the
electron pockets increase in size with further doping. At x
=0.18 the electron and hole pockets merge at the hot-spot,
the SDW gap collapses, and the full metal-like n�k� appears
�second topological transition�. For hole doping, the FS to-
pological transition is complimentary to the electron doped
one and here the hole pocket appears first as shown in Fig.
1�e� and above the QCP, the electronlike full FS forms in
Fig. 1�f�.

A more quantitative account of the effect of self-energy
corrections on the residual coherent QP spectral weight is
provided in Fig. 2�a�, which shows n�k� along high-
symmetry lines for NCCO as well as LSCO. Some important
effects of correlations on the insulating state should be noted
here. At x=0, n�k=���0.9 and n�k= �� ,����0.1, implying
that the self-energy redistributes the spectral weight from the
filled states to the unfilled regions even in the insulating
phase. PRT �with a different parameter set t=300 meV,
t�=−t /4, and U=12t� find a similar result n�k=���0.85.27

At half-filling n�k� is a smoothly varying function through-
out the BZ due to the absence of gapless quasiparticle for
both NCCO �green line� and LSCO �not shown�. As we in-
crease electron doping, the spectral weight at � ��� ,���
gradually increases �decreases� whereas the spectral weight
increases rapidly at �� ,0� due to the development of electron
pockets. The discontinuities in n�k� first arise at the electron
pockets of the FS for electron doped case. In the underdoped
region, n�k� shows additional singularities along �→��� ,0�
and �� /2,� /2�→ �� ,�� due to the presence of shadow
bands as marked by gold arrows. Since the shadow bands are
usually weak in the cuprates,33–37 experimental data are
available predominantly along the
arcs—that is, along the antinodal direction for NCCO and
nodal direction for LSCO. These are compared with our
theory in Fig. 2�b�, effects of the ARPES matrix element
notwithstanding.38

We define a coherent spectral weight renormalization fac-
tor from the discontinuities in n�k�

FIG. 1. �Color online� Momentum density, n�k� as calculated
using Eq. �1�, is shown for various dopings for NCCO in �a�–�c�
and for LSCO in �d�–�f�.
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Z� = �n�kF� �2�

plotted as a function of doping for NCCO in Fig. 2�b�.27 For
the main band in NCCO along the antinodal direction, the
UMB crosses the Fermi level at all finite dopings �electron
pocket� and Z� decreases smoothly with underdoping but
vanishes discontinuously at x=0. Shown also in Fig. 2�b� is
the conventional paramagnetic Green’s function renormaliza-
tion factor

Z�
0 = �1 −

������
��

�
�=0

−1

. �3�

It can be seen that the doping dependence in Z�
0 is very weak

and strikingly opposite to Z�. Thus the strong doping depen-
dence of Z� is governed by the SDW gap collapse. In Ap-
pendix C we derive an approximate analytical form for the
SDW corrected renormalization factor Z�

SDW �at �=0� in
terms of the SDW coherence factors �see Eq. �C6��

Z�
SDW =

Z�
0

2 	1 � �1 + 
 2�

	kF
− 	kF+Q

�2�−1/2� . �4�

Note however that kF is the true Fermi momentum in the
SDW state, not the LDA one. We see in Fig. 2�b� that this
simple analytic form captures the essential doping depen-
dence of the full Z�. As doping increases, the weight of the
shadow bands �above the magnetic Brillouin zone� decreases
�open symbols in Fig. 2�b�� with the corresponding spectral
weight shifting to the main bands. Along the nodal direction,
Z� remains zero up to optimal doping, and then shows a
jump to a slowly increasing value as the LMB crosses the
Fermi level. These results are in excellent agreement with
experiment.16

A similar doping dependence of Z� is observed in LSCO
along the nodal direction, including the jump at x=0 and the
spectral weight transfer from the shadow band to the main
band33 in Fig. 2�b�. This is in qualitative agreement with the
calculation of PRT �Ref. 27� �triangles in Fig. 2�b�� and with
ARPES measurements on LSCO �Ref. 3� �open circles�

above the optimal-doping region. However, in the very un-
derdoped region, the ARPES data seem to extrapolate
smoothly to zero at half-filling �dashed line�, which may be
related to nanoscale phase separations believed to be signifi-
cant in LSCO.

Note that the analytic renormalization factor Z�
SDW is de-

fined in the SDW phase but is treated as a renormalization of
the paramagnetic phase dispersion. This subtle point is an
attempt to treat the pseudogap physics and is discussed in
more detail in Sec. IV below.

B. Fermi velocity and dispersion renormalization

We turn next to the first-order spectral moment M1�k�.
One can measure the dispersion renormalization from the
size of the slope discontinuity, which can be written as �Eq.
�C7��

��dM1�k�/dk�kF
= Z�vF, �5�

where vF is the Fermi velocity.27 Knowing Z� from Figs.
2�b� and 2�c�, we can extract vF as a function of doping, as
seen in Fig. 3�a�. The results are obtained for both LSCO and
NCCO and compared with ARPES data on LSCO �Ref. 3�
and with PRT’s variational cluster calculations27 �hole dop-
ing� as well as with LDA and mean-field theory for LSCO.
Mean-field results for NCCO have an equivalent doping de-
pendence and thus are not shown here. Notably, in spite of
the substantial decrease in Z�, the QP velocity vF does not
diminish on entering into the pseudogap region. Although in
the SDW mean field case vF decreases smoothly with under-
doping as the gap grows, when a self-energy is introduced,
the reduction in the coherent spectral weight �Z�� with un-
derdoping compensates for this, leading to a net enhance-
ment of vF. The results are consistent with PRT and ARPES.
Similar results are also obtained in a self-consistent Born
approximation with antiferromagnetic pseudogap in the t-J
model.40
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FIG. 2. �Color online� �a� n�k� for NCCO and LSCO at several representative dopings with dashed lines showing the discontinuous jump
at kF �highlighted in inset�. Gold arrows mark features from the shadow bands which cross EF. �b� Z� at EF are shown along the antinodal
�red� and nodal �blue� direction for NCCO. Filled �open� symbols give the main �shadow� bands, compared with their corresponding
analytical approximation Z�

SDW plotted by solid �dashed� line of same color. ARPES result �green� is extracted from Ref. 16. �c� Same as �b�
but for LSCO along the nodal direction. These results are compared with PRT’s calculations for hole doping �Ref. 27� and ARPES results
�Ref. 3� for LSCO along the nodal direction. All the experimental data and PRT data in �b� and �c� are normalized to highlight their doping
evolution. Brown dashed line shows that if there is nanoscale phase separation in LSCO then Z� would scale linearly with doping in the
extreme underdoped region.
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We define a dispersion renormalization factor in terms of
the conventional band velocity with respect to its bare �LDA�
counterpart �vF

0� as

Zd = vF/vF
0 �6�

plotted in Figs. 3�b� and 3�c�. In the paramagnetic case, dis-
persion renormalization is defined as

Zd
0 = Z�

0 ZkF

0 = Z�
0 �1 + ���/vF

0 � k� . �7�

This implies that in a conventional picture the deviation in
behavior of Zd

0 from spectral weight renormalization Z�
0

comes solely from the k dependence of the self-energy. Since
this self-energy is approximately k independent, one finds
Zd

0�Z�
0 . In sharp contrast, the calculated Zd �Fig. 3�b�� shows

a strikingly opposite doping dependence to Z�. This can be
understood to be the result of an SDW gap, which introduces
a new k dependence in the dispersion renormalization as
given by �Eq. �C2��

Zd
SDW = Z�

0 ZkF

SDW = Z�
0
1 +

�2

	kF
	kF+Q

� . �8�

Figures 3�b� and 3�c� compare Zd and Zd
SDW for NCCO and

LSCO, respectively. Thus the doping dependence of Zd im-
plies that as we go toward the Mott insulator, the dispersion
tends toward the LDA bands, consistent with LSCO results
�blue open circles�.1 The opposite doping dependences of Zd
and Z� can be readily understood by comparing the corre-
sponding analytical formulas Zd

SDW �Eq. �8�� and Z�
SDW �Eq.

�4��. Zd
SDW�Z�

SDW� varies with SDW gap as ��1 /��, increas-
ing �decreasing� with underdoping. This in turn moves the
in-gap states further away from the Fermi level �hence de-
creasing Z�� and thus shifting the band toward the LDA
values �increasing Zd�.41

III. SPECIFIC HEAT

A striking application of the renormalization effects can
be seen in the doping evolution of the specific heat. A gen-
eral expression for the specific heat cV in the SDW state
including the self-energy correction is given in Appendix D.

We find that the Sommerfeld coefficient 
 can be well de-
scribed in terms of the density of state �DOS� �N�0�� in the
SDW state as42


 = cV�T�/T �
2�2kB

2

3
N�0�/Z�

0 , �9�

where N0�0� is the mean-field DOS with SDW gap but with-
out self-energy corrections.

Figure 4 compares experimental values of 
 as a function
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FIG. 3. �Color online� �a� Fermi velocity vF along the antinodal direction in NCCO and nodal direction in LSCO is compared with
ARPES data on LSCO �Refs. 3 and 39� and with PRT’s calculation �Ref. 27�. The blue dashed �solid� line gives the corresponding LDA
�MFT� results for LSCO. �b� Dispersion renormalization Zd for NCCO along antinodal direction, compared with an approximate analytical
formula for the dispersion renormalization Zd

SDW �solid line�. �c� Same as �b� but for LSCO along the nodal direction. The results are
compared with experimental data �Ref. 1�.
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FIG. 4. �Color online� �a� Specific-heat coefficient 
�x� for dif-
ferent theoretical calculations �various lines�, and the experimental
results on NCCO �red squares� �Ref. 7� and PLCCO �red circles�
�Ref. 8�. �b� Same as �a� but for LSCO �red squares �Ref. 3� and
triangles �Ref. 9��. Results are compared with ns �filled green
squares �Ref. 3� and open green squares �Ref. 39�� and � �blue�
�Ref. 43�, all normalized at the VHS. The red dashed line shows
that in underdoped LSCO 
 scales linearly with doping. Theoretical

 has been scaled by a factor of 1.1, consistent with a weak
electron-phonon renormalization.
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of doping in LSCO �Refs. 3 and 9� and electron-doped
NCCO �Ref. 7� and Pr1−xLaCexCuO4 �PLCCO� �Ref. 8� with
several calculations including bare LDA, mean-field theory
�MFT�, results with SDW gap, and with self-energy correc-
tion for both NCCO and LSCO. The striking differences be-
tween NCCO and LSCO away from half-filling are due to
the presence of the van-Hove singularity �VHS� near EF in
the latter case. N�0� in LDA thus decreases �from a finite
value at x=0� with increasing electron doping, whereas for
LSCO N�0� has a peak at the doping corresponding to the
VHS xVHS0.20.1 SDW order opens a gap, reducing N�0�,
and introduces steps associated with the collapse of the SDW
gap. Thus, for electron doping N�0� is nearly flat for x
�0.11, reflecting the quasi-two dimensionality of the elec-
tron pocket �constant DOS� in cuprates. The step at x
0.11 signals the appearance of the hole pocket. Similarly
in LSCO the appearance of the electron pocket near �� ,0� at
x�0.17 within our model greatly enhances the VHS fea-
tures. Finally, adding self-energy corrections �in the form of
1 /Z�

0 � preserves the general shape of the SDW 
 while shift-
ing its magnitude back toward the LDA values. It is interest-
ing to relate the doping dependence of 
�0� and Z� in Fig.
2�b�. Note that Z� is evaluated at a particular Fermi momen-
tum whereas 
�0� is computed after summing over Z� at all
kF. As Z� exhibits complimentary doping dependencies for
main and shadow bands so the total remains fairly constant.
These results are in striking contrast to the strong coupling
limit where 
 should diverge with the effective mass as x
→0.44

The agreement with experiment is quite good in LSCO
for x0.10, including the strong VHS feature. Interestingly,
the superfluid density ns and the paramagnetic susceptibility
data, which are proportional to the total FS areas, show a
similar doping dependence to 
. However, below
x=0.10 
→0 as x→0, an effect not captured by our calcu-
lations. Such an effect could be due to a Coulomb gap9

and/or nanoscale phase separation. The linear dashed line in
Fig. 3�b� illustrates the corrected form expected in the latter
case. Note that nanoscale phase separation would produce
the dashed line seen in Fig. 2�c� as well as explain the
anomalous doping dependence of the chemical potential.45

Hence the enhanced gossamer features seen in LSCO may be
related to nanoscale phase separation.

IV. DISCUSSION

The present calculations are most appropriate for electron
doping, where only the �� ,�� commensurate SDW order is
observed, and the model is in very good agreement with
experiment. Remarkably, the same model when applied to
hole-doped cuprates describes many aspects of the two-gap
scenario,22,46 despite the fact that it does not capture the in-
commensurate magnetization. The non-Fermi-liquid behav-
ior presented here is not sensitive to the specifics of the com-
peting order but only to the resulting superlattice q vector.
We have analyzed other candidates for the competing order
including charge, flux, or d-density waves,22 and find that the
results are insensitive to the nature of the competing order
state. Thus, Eqs. �4� and �8� continue to hold for any

Q= �� ,�� order, as long as the appropriate gap � is used.
In the presence of long-range magnetic order, the Green’s

function develops a second pole, and should properly be
treated as a tensor. However, the pseudogap phase is more
likely to be associated with only short-range order, in which
case the second pole does not cross the real axis.47 The ana-
lytic approximations of Eqs. �4� and �8� include the
pseudogap effect by treating the renormalization factors as
acting on the paramagnetic dispersion 	k with information on
proximity to long-range magnetic order encoded into Z�

SDW

and Zd
SDW.

This approach is similar to the phenomenological model
introduced by Yang et al.48 to describe RVB physics. Indeed,
their phenomenological self-energy is quite similar to the
form expected for a NAFL, except for the pole-zero struc-
ture. The mean-field Green’s function G�k , � � of a state with
density-wave order at Q has a zero �self-energy pole� at �k+q,
wherease YRZ’s Green’s function has a zero tied to the mag-
netic zone boundary, which splits the pockets expected for
AF order into two half-pockets, leading to quantum oscilla-
tions of half the area. Such an enhancement of the zone
boundary scattering seems more closely related to Van Hove
singularity physics than to Mott physics. At any rate, the
quantum oscillations observed in NCCO are more consistent
with the present model.

V. CONCLUSION

In conclusion, we have shown that a number of salient
features of the non-Fermi-liquid state of the underdoped cu-
prates can be understood within the framework of a compet-
ing density wave order, which breaks the particle-hole sym-
metry, and drives reconstruction of the FS. We provide a
transparent and analytic basis for describing how the non-
Fermi-liquid effects play out in renormalizing spectral
weight via Z� and electronic dispersion via Zd, and how they
conspire to yield a specific heat in the cuprates which is
essentially conventional in nature at all dopings. Our frame-
work would provide a straightforward basis for understand-
ing how the broken-symmetry order leads to non-Fermi-
liquid effects, not only in the cuprates, but also in
heavy-fermions,49 Fe-based superconductors,50 and other
strongly correlated materials.
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APPENDIX A: DETAILS OF QUASIPARTICLE-GW
(QP-GW) MODEL

In the QP-GW formalism the bare dispersion is taken as
the LDA dispersion �	k=�k−EF�, modeled via a tight-
binding �TB� fit.51–55 We calculate the self-energy in a GW-
like formalism using a simplified �one parameter� scheme
where the input and final self-energies are self-consistent in
the coherent part only �QP-GW model�.
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In the following, we use a “tilde” over a quantity to sym-
bolize that it is a 2�2 matrix. The self-energy in the under-
doped region is written in canonical form using the Nambu
formalism as

�̃t�k,�,i�n� = �̃�k,�,i�n� + ��k,�,i�n��1˜. �A1�

The dressed Green’s function is then

G̃−1�k,�,i�n� = i�n1̃ − H̃LDA − �̃t�k,�,i�n� �A2�

where H̃LDA is the bare Hamiltonian defined in the magnetic
zone as diag�	k ,	k+Q�, and the �̃i are Pauli matrices. At each
step, we adjust the chemical potential EF to fix the doping.
Real-frequency Green’s functions are extracted from the
Matsubara results by analytic continuation i�n→�+ i�.

Here, �̃�k ,� , i�n� is a 2�2 matrix in the SDW state,56

whose diagonal part renormalizes H̃LDA, while the off-
diagonal term gives a �small� anomalous frequency depen-
dence to the gap function ��k ,� , i�n�=��. �=US is the
magnetic gap parameter and S is the magnetization at the
commensurate vector Q= �� ,�� for Hubbard U, which is
calculated using a mean-field approximation.22 The doping
dependence of the on-site Hubbard U is obtained due to
charge screening from U= �V�q� / �1+V�q���q���, where V�q�
is the long-range Coulomb interaction,57 and ��q� is the
charge susceptibility in the �-gapped state defined below.
The obtained values of screened U are given in Ref. 25 and
plotted in Fig. 5�b�.

We calculate the self-energy due to the spin as well as the
charge response within a GW framework as

�̃�k,�,i�n� =
1

2
U2Z �

q,��

�
�����

−�

� d�p

2�

G̃�k + q,��,i�n + �p���k,q,i�n,�p�Im��̃RPA
��� �q,�p�� ,

�A3�

where the prime over the momentum summation indicates
that the summation is restricted within the magnetic Bril-
louin zone. ���� is the spin degree of freedom which takes
the value of 2 for transverse spin ��=−��� and 1 for longi-
tudinal and charge fluctuation ��=��� channels. The dressed
susceptibility in the above equation is given in terms of the

2�2 random-phase approximation susceptibility as56

�̃RPA
c/L �q,i�n� =

�̃0
���q,i�n�

1̃ � U�̃0
���q,i�n�

.

�̃RPA
T �q,i�n� =

�̃0
��̄�q,i�n�

1̃ − U�̃0
��̄�q,i�n�

. �A4�

Here the superscripts L ,c and T stand for longitudinal charge
and transverse RPA spin susceptibilities, respectively. In the
bare susceptibilities, the superscript refers to the combined
charge plus longitudinal spin susceptibility tensor, whereas
���̄� �with �̄=−�� gives the transverse susceptibility tensor,
and the �̃0

��/��̄�q , i�n� are bare susceptibilities, defined be-
low.

A self-consistent “dressed” GW calculation would include
� on the right-hand side �RHS� of Eq. �A3� in both G and �0.
This generally leads to problems unless a vertex correction �
is included. Improved results are often found by using a
“bare” G0 and �0—bare in the sense of not including �. This
latter G0W0 scheme also fails in the present calculation by
producing too large a renormalization of the band dispersion.
This is because the imaginary part of the bare susceptibility
has the form �0����− �	k+q−	k�� so that near the Fermi
surface, �0� should scale in frequency with the dressed qua-
siparticle dispersion. Since G0W0 uses the bare dispersions,
peaks in �0�, which control the renormalization, lie at too
high an energy.

We therefore introduce a modified, or QP-GW
approximation5 for the RHS of Eq. �A3�, as follows. In Eq.
�A3�, we dress both G0 and �0 with an “input” self-energy
chosen as

�̃�i�n� = �1 − 1/Z�i�n1̃ . �A5�

Thus, the input � contains a single parameter Z, which gives
an overall renormalization of the input dispersions �RHS of
Eq. �A3��. With this approximation, the bare susceptibilities
become

�̃0
��/��̄�q,i�n� = − Z2�

k

�
�
�,��

S̃�,��
��/��̄ f�ZEk

�� − f�ZEk+q
�� �

i�n + ZEk
� − ZEk+q

��
.

�A6�

The prime over the summation has the same meaning as in
Eq. �A3�. In Eq. �A6�, the � summation is over the two
magnetic bands UMB ��=+� and LMB ��=−�

Ek
� = �	k

+ � E0k� �A7�

with 	k
�= �	k�	k+Q� /2 and E0k=��	k

−�2+�2 �Ref. 41�,
f�E�=1 / �1+exp�E /kBT�� is the Fermi function at tempera-
ture T, and kB is the Boltzmann constant. The coherence

factors S̃�,��
��/��̄ give the amplitude of the scattering of the

quasiparticles with the charge and magnon modes of the sys-
tem, respectively, with components

S̃�,��
��/��̄�11� = ��k�k+q � ����k�k+q�2,
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U
(e
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(b)
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0.0 0.1 0.2
0.6

0.7

x
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Z

FIG. 5. �Color online� �a� Average renormalization factor Z de-
creases linearly with doping, very much like Z�

0 in Figs. 2�b� and
2�c�. �b� Our computed doping dependence of selfconsistent values
of U and ZU is compared with earlier mean-field results �Refs. 31
and 58�.

DAS, MARKIEWICZ, AND BANSIL PHYSICAL REVIEW B 81, 184515 �2010�

184515-6



S̃�,��
��/��̄�12� = − ���k�k � ����k+q�k+q� . �A8�

Here

�k��k� =�1

2

1 �

	k
−

E0k
� , �A9�

respectively, are the weights associated with the U/LMBs.
The other coherence factors in Eq. �A8� can be derived using
the translational symmetry with respect to q.

A limitation of the present scheme is also apparent from
Eq. �A3�. This self-energy is a good approximation for the
coherent, dressed bands, but does not extend to the incoher-
ent part of the spectrum, thereby underestimating the inco-
herent spectral weight. We have empirically found that this
can be partly remedied by incorporating a vertex function �.
Consistent with the QP approximation, the vertex correction
to the self-energy is obtained through Ward’s identity as

��k,q,i�n,�p� = 1 − ����/����=�0
= 1/Z . �A10�

Interestingly, the simple form of the vertex correction has
significant impact on the spectral weight transfer as illus-
trated in Fig. 6�b�. �=1 /Z eventually reduces the renormal-
ization of the bare susceptibility in Eq. �A3� and hence the
spectral weight is spread out more toward higher energies,
enhancing the incoherent spectral weight.

Next we discuss our self-consistent scheme and explain
how the parameter Z is chosen. We choose Z to match the
average renormalization in the low-energy �coherent� part of
the spectrum. Specifically, if �� is the real part of the diag-
onal self-energy, then we adjust Z self-consistently until it
satisfies Z= �1−��� /����=�o

−1 , where �o is an average quasi-
particle excitation energy, which is related to the poles in G.
This gives a good self-consistent result for the coherent spec-
tral weight in the low-energy region �see Fig. 6�a�� whereas
the incoherent parts in the higher-energy regions are not self-
consistent. Thus our scheme is in the spirit of Landau’s qua-
siparticles, except that Landau assumed that all of the spec-
tral weight goes into the QP band while we have only a
fraction Z.

When this is done, we find that U is effectively further
renormalized by the doping dependent Z �Fig. 5�a�� so that
the product U�0 is approximately independent of Z. The re-
sulting ZU closely resembles our earlier mean-field calcula-
tions as shown in Fig. 5�b�.

Lastly, we find that the momentum dependence of the
fluctuation self-energy � is relatively weak.5,6 To emphasize
this point, we expanded the momentum dependence of the
self energy in a form similar to the tight-binding model

���,k� = �0��� + �1����cx + cy� + �2���cxcy

+ �3����c2x + c2y� , �A11�

where c��x/y�=cos��k�x/y�a�. We calculate the self-energy at
four high-symmetry points k= �0,0�, �� ,0�, �� ,�� and
�� /2,� /2� to obtain the above coefficients as shown in Fig.
7. Clearly, only the k-independent part �red line� has a strong
contribution. Therefore, we have simplified the self-energy
calculation by approximating it with a k-independent average
value taken as the value at k= �� /2,� /2�. Since we are ne-
glecting the k dependence of the self-energy, �11=�22 and
�12=�21.

Figure 8�a� shows that in the QP-GW scheme the spectral
weight splits up into four bandlike features. The two bands
closer to the Fermi level are the UMB and LMB, associated
with the development of the SDW. The residual incoherent
spectral dispersions at higher energies are the UHB and
LHB. Similar four band features are found in the variational
cluster calculations shown in Fig. 8�b�.26 The corresponding
DOS shows four peaks associated with these four bands,
Figs. 8�c�–8�f�. These four band features separated by SDW
gap or “waterfall” effects show semiquantitative agreement
with QMC results.6,59 With doping, the two magnetic bands
merge in a QCP near optimal doping while the two Hubbard
bands occur at the top and bottom of the LDA bands and
hence the associated Hubbard band splitting is comparable to
the LDA bandwidth at all dopings.

APPENDIX B: SUMMARY OF RENORMALIZATION
FACTORS

We summarize the various renormalization factors that
arise in this study for convenient reference.

Z� = �n�kF� = total spectral weight renormalization,

�B1�

FIG. 6. �Color online� �a� Spectral intensity as a function of �
along the high-symmetry lines for underdoping �at temperature T
=0�. Blue to red color map gives the minimum to maximum inten-
sity. The yellow dashed line gives the underlying LDA dispersion
where the gold lines represent the renormalized magnetic bands ��0

dressed�. �b� The QP-GW DOS �blue lines� is compared with
�0-dressed DOS �red line� calculated at T=0. The green lines show
the DOS without the vertex correction.
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FIG. 7. �Color online� Real and imaginary part of the self-
energy as expanded in the tight-binding form of Eq. �A11�.
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Z�
0 = �1 − ���/����=0

−1 = self energy contribution

to spectral weight renormalization, �B2�

Z�
SDW =

Z�
0

2 	1 � �1 + 
 2�

	kF
− 	kF+Q

�2�−1/2�
= analytical formula for SDW spectral

weight renormalization, �B3�

Zd = vF/vF
0 = velocity renormalization, �B4�

Zd
0 = Z�

0 Zk
0 = Z�

0 �1 + ���/vF
0 � k�

= conventional dispersion renormalization, �B5�

Zd
SDW = Z�

0 �1 + �2/	kF
	kF+Q� = analytical formula for SDW

dispersion renormalization, �B6�


 = cV/T = specific-heat coefficient. �B7�

APPENDIX C: ANALYTICAL FORM OF VARIOUS
RENORMALIZATION FACTORS

Near the Fermi level, the dressed Green’s functions from
Eq. �A2� can be approximated as

G11�k,�� = Z�
0 � − 	̄k+Q

�� − 	̄k��� − 	̄k+Q� + ��̄�2
=

Z�
0

� − Zd
SDW�k�	k

,

�C1�

where 	̄k=Z�
0 	k, �̄=Z�

0 �, and 	k is the bare �LDA�
dispersion calculated at the same doping. In Eq. �C1�,
Z�

0 = �1−��11� ��� /���−1 �Eq. �3�� is the part of the spectral
weight renormalization due to the self-energy, where we
have neglected the contribution of �12. Even though we as-
sume a k-independent self-energy and thus Zk

0 =1 from Eq.
�C1�, the SDW gap introduces a k-dependent dispersion
renormalization �defined here at �=0� given by

Zd
SDW�k� = Z�

0
1 +
�2

	k	k+Q
� . �C2�

Note that 	k, 	k+Q, and � are all bare values in Eq. �C2� as
the same renormalization factor Z�

0 gets cancelled out in the
last term. Furthermore, we can split the spectral function
A�k ,��=−Im G�k ,�� /� into a coherent part �at Fermi level�
and an incoherent part where the former can be represented
by a delta function as

A11�k,�� = Z�
0 ��k

2��� − Ēk
+� + �k

2��� − Ēk
−���=0

+ Aincoh�k,� � 0� , �C3�

where Ēk
�=Z�

0 Ek
�. Therefore, the coherent part is governed

by the SDW coherence factors �k and �k for the filled state
with a renormalization by Z�

0 . The zeroth and first-order mo-
ment of the spectral weight �Eq. �1�� then can be approxi-
mated respectively as27

n�k� = �
−�

0

A11�k,��d� � Z�
0 ��k

2��− Ēk
+� + �k

2��− Ēk
−�� ,

�C4�

M1�k� = �
−�

0

A11�k,���d�

� Z�
0 �k − kF���k

2vF
+��− Ēk

+� + �k
2vF

−��− Ēk
−�� .

�C5�

In the second equation above, we have expanded the renor-

malized band near the Fermi level as Ēk
��vF

��k−kF�, where
vF is the corresponding Fermi velocity. The singularity in
n�k� becomes

Z� = �n�kF� = Z�
0 �kF

2 � Z�
+ for UMB

=Z�
0 �kF

2 � Z�
− for LMB.

�C6�

Note that in the present case, the weight for UMB �LMB�
appears along the antinodal �nodal� direction when the band
crosses the Fermi level. Inserting the form of � ,� from Eq.
�A9�, we get Eq. �4�. Similarly, inserting this Z� in Eq. �C5�,
we can measure the singular jump in M1�k� as

FIG. 8. �Color online� �a� The spectral intensity of NCCO at
x=0, plotted �in logarithmic scale� along the high-symmetry lines,
is compared with variational calculations �Ref. 26� in �b�. ��c�–�f��
The computed DOS at various dopings are compared with the cor-
responding QMC results �blue lines� for x=0.0 �Ref. 59� and for
x=0.05–0.20 �Ref. 6�.

DAS, MARKIEWICZ, AND BANSIL PHYSICAL REVIEW B 81, 184515 �2010�

184515-8



��dM1�k�/dk� = Z�
�vF

�. �C7�

Thus Z� and vF acquire a k dependence through the SDW
coherence factor.

APPENDIX D: SPECIFIC-HEAT CALCULATION

Following the derivation by Abrikosov et al.,42 we calcu-
late the entropy in the SDW state for a strongly correlated
system at finite temperature �in the low-temperature limit� as

S�T� = −
2�kB

2

2�i
�

−�

�

d���−
� f���

��
�

��
k,�

Tr�ln G̃R
−1�k,�,�� − ln G̃A

−1�k,�,��� . �D1�

Here the 2�2 retarded and advanced �dressed� Green’s
functions GR /GA depend on the temperature through the
SDW order parameter only, which has a very weak depen-
dence in the low-temperature region. We can rewrite Eq.
�D1� in terms of a dimensionless parameter y=�� following
Ref. 60 and then taking the temperature derivative we get the
expression for the specific heat as9,61–66

cV�T� = −
kB�2

4�
�

−�

�

dyy2 sech2�y/2�

� �
k,�

Tr�Im
G̃R�k,�,��
�

��
G̃R

−1�k,�,����
�=y/�

.

�D2�

cV�T� behaves linearly with T in the low-temperature region
while the slope �
� undergoes an abrupt change with a kink
in the waterfall region. Since the high energy kink energies
for cuprates are around 0.3–0.6 eV, the kink should appear in
cV only at a very high temperature, Tk103 K. Similarly,
the low energy kink around 50-70 meV will show up in the

temperature range of 500-800 K in cV. Thus, in our calcula-
tion of 
 �Fig. 5�, we have used the full expression for cV
above but evaluated it in the �=0 limit.

In the T=0 ��→0� limit, Eq. �D2� can be simplified as
sech�y�=��y−���. In this limit, the imaginary part of the
self-energy is zero and thus the last quantity in Eq. �D2� is
calculated by noting that the � derivative of the real part of
the self-energy is: diagonal term=1−1 /Z�

0 and off-diagonal
term= ���12� /����=0. This simplifies Eq. �D2� as

cV �
2

3
�2kB

2T�
k
	 1

Z�
0 �A11�k,0� + A22�k,0��

+
��12

��
�A12�k,0� + A21�k,0��� , �D3�

where A11 is given in Eq. �C3� and A22=A11�k→k+Q�, i.e.,
A22 is similar to A11, only the weights ��k

2 and �k
2� are inter-

changed. We have used Eq. �D3� in the calculation of Fig. 5.
The constraint �k

2 +�k
2 =1 removes these SDW coherence

factors from the equation. Neglecting the off-diagonal term
proportional to the small quantity ��12 /��, the specific-heat
expression becomes

cV �
2

3
�2kB

2T�
k

���− Z�
0 Ek

+� + ��− Z�
0 Ek

−�� + ¯

�
2

3
�2kB

2T�N+�0� + N−�0��/Z�
0 . �D4�

Here, N��0�=�k��−Ek
�� is the total density of states for the

�U/L�MBs at the Fermi level in the SDW state but without
renormalization �mean-field theory�. For both NCCO and
LSCO, Eq. �D4� is an excellent approximation to the exact
expression of Eq. �D3�. It is interesting to observe that in the
final expression for cV �Eq. �D4��, the self-energy correction
enters only through the renormalized DOS. Thus, in the
QP-GW model, cV has the same form as in conventional
Fermi-liquid theory.
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