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Quantum state of hydrogen in LaNis
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The quantum state of the hydrogen atom that is trapped at the most stable octahedral interstitial site in the
LaNis crystal is determined. A three-dimensional potential-energy surface for the hydrogen atom around the 3f
site is obtained by applying first-principles electronic-structure calculations. The time-independent Schrodinger
equation for the hydrogen atom under the potential obtained is solved. The hydrogen wave function distributes
over the neighboring sites, 6i-3f-6i, that have been proposed by various workers so far. The energy spectra of
the hydrogen atom well explain those of inelastic neutron scattering.
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I. INTRODUCTION

LaNis and its related alloys have attracted considerable
interest for hydrogen storage materials because of their rapid
hydrogen absorption and desorption rate and higher capacity
of hydrogen per volume than liquid hydrogen.'? Due to the
small mass of the hydrogen atom, the typical zero-point en-
ergy in metals can become larger than the thermal energy,
and the spatial distribution of zero-point oscillation exceeds
the thermal distribution. Therefore, the quantum-mechanical
feature of the hydrogen atom is not negligible and plays an
important role even at room temperature. The purpose of this
study is to clarify the role of the quantum-mechanical fea-
tures of the hydrogen atom in LaNis and its effect on neutron
scattering.

When the hydrogen atom is absorbed in the metal, it oc-
cupies an interstitial site and causes lattice distortion, which
in turn decreases the total energy of the system. In this case,
the translational symmetry of the host crystal is broken and
the hydrogen is not in the Bloch state. The energy supple-
ment is needed to move such hydrogen atoms to the other
sites even in the case of quantum tunneling. Then, the hydro-
gen exists in a so-called self-trapped state,> which is a stable
state; hence, the hydrogen cannot move to other sites if the
coupling between the phonon and the hydrogen local oscil-
lation is negligible. For this hydrogen, typical excitation en-
ergies are considerably larger than the phonon energy due to
the light mass of hydrogen. Therefore, the hydrogen behaves
as a decoupled oscillator from lattice phonon.

LaNis has a hexagonal lattice structure (CaCus structure,
space group P6/mmm), which is characterized by primitive
vectors a, b, and ¢ with |a|=|b|,a L ¢, and b | ¢, as shown in
Fig. 1(a). In LaNis, there are many hydrogen sites, which
exhibit considerably high capacity of hydrogen. According to
the neutron-diffraction experiments that are based on the Ri-
etveld refinement, the most stable site of hydrogen in the
solid solution phase is the La,Niy octahedral interstitial
site.*~7 Most of the first-principles calculations®~!! also sup-
port the stability of the octahedral site, while Nakamura et
al."? proposed La,Ni, tetrahedral site. However, determining
the exact hydrogen position in the octahedral site is a diffi-
cult task.

The 3f site, which is given by (0.5, 0, 0) in a fractional
coordinate with @, b, and ¢, was suggested by Fischer et al.?
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12n site, which is given by (0.455, 0, 0.11), was suggested
by Soubeyroux et al.’ and 6i site, which is given by (0.5, 0,
0.09), was suggested by Kisi et al.” These sites are located on
a plane spanned by vectors @ and ¢, as shown in Fig. 1(b).
According to the two-dimensional potential surface on the
plane calculated by Tezuka et al.,!" the hydrogen should be
extended around two 67 due to quantum fluctuation because
the height of the potential barrier between neighboring i-i
sites is too small to confine hydrogen in a single site.
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FIG. 1. (Color online) (a) Crystal structure of LaNis. Two Ni
atoms are added outside of the unit cell to show the calculation
region (box of red dashed lines). The most stable hydrogen site, the
La,Ni, octahedral interstitial site, is located in the box. (b) The
octahedral interstitial site in a plane spanned by vectors @ and c.
Various hydrogen sites, 3f, 12n, and 6i, proposed in Refs. 4-7 are
presented by the different colors.
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In this study, the three-dimensional potential-energy sur-
face for the self-trapped hydrogen is calculated by applying
first-principles electronic-structure calculations. By using
this potential, the wave-function and energy eigenvalues of a
single hydrogen atom are calculated. The quantum-
mechanical feature which will be observed on neutron-
scattering experiments is predicted. In this paper, we shall
focus on the hydrogen in the solid solution phase, LaNisH,,
(n<<1). This paper is organized as follows: the details of
calculations are provided in Sec. II. The results of potential-
energy surface, energy eigenvalues and wave functions of
hydrogen atom, and pair-distribution functions are presented
in Sec. III. A short summary is provided in Sec. IV.

II. COMPUTATIONAL DETAILS

In this study, the first-principles calculations based on the
density-functional theory (DFT) for electronic structures
were used to calculate the potential energy of the hydrogen
atom. We employed the quantum materials simulator (QMAS)
code,'3 which uses the projector augmented wave method.'#
Perdew-Burke-Ernzerhof (PBE) version general gradient
approximation'® was chosen as the exchange-correlation
term. We introduced one hydrogen atom inside the La,Niy
octahedral interstitial site in 1 X 1 X 2 supercell of LaNis and
performed the geometrical optimization (for atom positions
and lattice constants) with imposing the hexagonal lattice
structure. The cut-off energy for the plane-wave basis and
the number of k points in the Brillouin zone were chosen to
be 680 eV (50 Ry) and 288 (6 X 6 X 8), respectively. For this
supercell, we obtained the lattice constant as a=5.057 A and
c=7.941 A. The most stable position of hydrogen was ob-
tained in the octahedral 6 site, which is given by (0.5, 0,
0.0265) in the fractional coordinate. Note that the fractional
coordinate in the ¢ direction is given by c of the supercell.
From hereafter, fractional coordinates with ¢ are used.

According to the adiabatic approximation in the
electronic-structure calculations, the electronic state can fol-
low the change in the nuclear position instantaneously. This
approximation is based on the fact that the considerable dif-
ference in the time scale between the electronics state and the
nuclear state comes from considerable difference in the mass
between them. The nuclei are assumed as charged point par-
ticles and the individual electron’s position is eliminated
from the nuclear dynamics. We shall use the corresponding
approximation for the hydrogen and the heavy-nuclear (La
and Ni) states, i.e., the hydrogen atom can instantaneously
adjust to the change in the position of the heavy nucleus. As
mentioned previously, hydrogen causes lattice distortion and
exists in the stable self-trapped state. Thus, the hydrogen
atom is confined and moves rapidly in the distorted and rigid
lattice. In order to handle the hydrogen quantum state, the
hydrogen potential energy was calculated from the total elec-
tronic energy. It was obtained by placing a hydrogen atom on
a regular grid point in the vicinity of the 6i site without the
further optimization of the La and Ni positions, which are
fixed at the geometry optimized structure with the hydrogen
atom introduced at the 6i site.

Let Ry be a classical position of a hydrogen atom and
Epa i, u(Ry) be the total energy of the La,NijoH with hy-
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drogen located at Ry. A systematic DFT calculation for vari-
ous hydrogen atom positions was performed to obtain
ELazNiIOH(RH) as described in the above section. In this study,
we shall measure the potential energy from that at the poten-
tial bottom, i.e., the total energy obtained after the geometry
optimization. Therefore, the potential for self-trapped hydro-
gen becomes

V(Ry) = Epani u(Ry) — ELazNilOH(R(I){) , (1

where R% is the hydrogen position at the potential minimum.

Let X, Y, and Z axes be along a, a/6+b/3, and ¢, respec-
tively. Then, the hydrogen coordinate can be written in the
orthogonal coordinates, X, Y, and Z, of these vectors as fol-
lows:

a b
RH=Xa+Y(g+§>+Zc. (2)

The origin is chosen at the 3f site. We calculated the three-
dimensional potential surface in -0.2=X=0.2, -0.6=Y
=0.6, and —-0.1=Z=0.1. The calculated points are in the
intervals 0.05 (0.253 A) for X, 0.2 (0.292 A) for Y, and
0.025 (0.198 A) for Z. The region in which the potential-
energy calculation was performed is indicated by the box
shown as dashed (red) lines in Fig. 1(a).

By using this three-dimensional potential surface, we con-
structed the Hamiltonian matrix by discretized representa-
tion. In such a representation, the potential part is given by a
diagonal matrix, while the kinetic-energy part is not. To con-
struct the kinetic-energy matrix, we used the appropriate
complete orthonormal basis set. In this study, we chose the
basis set as the plane-wave solutions in the orthorhombic cell
under the periodic boundary conditions and the wave func-
tion of the three-dimensional infinite height well potential. In
this representation, the Hamiltonian can be written in the real
symmetric matrix and the wave functions are given by real
functions. Then, the time-independent Schrodinger equation
of the hydrogen atom was given by the eigenvalue problem
of the Hamiltonian matrix and was solved numerically.

In this calculation, we confirmed that the dependence of
the energy eigenvalues on the choice of the basis set was
sufficiently small (in the order of 0.1 meV) for several lower
states. This indicates that the wave function does not reach
the boundary and the hydrogen is confined in the calculated
region for the quantum treatment. Furthermore, we con-
firmed that the change in energy eigenvalue for the several
lower states are also small with the increase in the grid num-
ber of the interpolation for the potential energy. This means
that the grid size is sufficiently small.

II1. RESULTS AND DISCUSSION
A. Wave function of hydrogen and energy eigenvalue

Figures 2(a) and 2(b) show the calculated potential-energy
profiles at Y=0 and X=0, respectively, for the self-trapped
hydrogen. If we treat the hydrogen as a point particle, the
hydrogen site becomes 6i, which is given by (0.5, 0, 0.0265)
in the fractional coordinate with a, b, and ¢. The deviation of
the H position from the La plane (0.21 A) is much smaller
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FIG. 2. (Color online) Calculated potential-energy profiles (a) on the X-Z surface at Y=0, (b) on the Y-Z surface at X=0, and (c) in the
Z direction on X=0 and Y=0. The hydrogen atom is classically self-trapped in the upper 6i site. The potential in the Y direction is narrower
than the widths in others. We used the fractional coordinate defined by Eq. (2).

than that obtained by inserting a hydrogen atom in a primi-
tive LaNis cell (0.34 A without cell optimization and
0.37 A with cell optimization).!" In our calculation, the de-
gree of freedom in the relaxation of the Ni position located in
the plane spanned by a and ¢ becomes larger with the in-
crease in the calculation cell size. Another local minimum
can be found at around (0.5,0,-0.03) in the fractional coor-
dinate with @, b, and c. Figure 2(c) shows the potential en-
ergy on the line of X=0 and Y=0 including two 6i sites with
a small barrier in between. The barrier height from the hy-
drogen trapped 6i site is 0.01 eV and is considerably smaller
than the typical zero-point energy of hydrogen as we shall
see below.

The potential valley in the Y direction is narrow and that
in the Z direction is relatively wide as we can see in Figs.
2(a) and 2(b). The width at V(Ry;)=0.1 eV is 0.5 A in the X
direction, 0.3 A in the Y direction, and 0.8 A in the Z di-
rection. The nearest atom from the center of the octahedral,
3f, is Ni at (2/3, 1/3, 0) in the fractional coordinate with a, b,
and c. This atomic configuration leads to the narrow poten-
tial in the Y direction. Thus, the potential is a tilted double
well with strong anisotropy.

Figure 3 shows the calculated wave function of the (a)
hydrogen atom and (b) deuterium atom. The calculated po-
tential has parity in the X and Y directions, i.e.,

V(-X.,Y,Z)=V(X,- Y,Z) = V(X,Y,Z). 3)

Therefore, the wave functions are the eigenstate of parity in
the X and Y directions. Even in the ground state, the wave
function is not localized in a single 6/ site and spreads over
the adjacent 6i sites. The oscillation modes in the Z direction
are more easily excited when compared with the other direc-
tions because the potential valley in the Z direction is wider
than the potential valleys in other directions. Due to the nar-
row potential in the Y direction, the energy eigenvalue of the
oscillation mode in the Y direction is higher than that in other
directions.

The obtained energy eigenvalues are summarized in Table
I. The corresponding zero-point energy is 0.144 eV for H and
0.088 eV for D. Due to the strong anisotropy, the energy

difference between the first excited state and the ground state
is smaller than the zero-point energy. An activation energy
from the 6/ site to the LaNij tetrahedral 120 site is 0.3-0.4
eV.1:17 Thus, it is not sufficient for the decrease in the acti-
vation energy when compared to the thermal energy at room
temperature. For the hydrogen-diffusion process, quantum-
mechanical effects such as tunneling should play an impor-
tant role at low temperature.

(a) Hydrogen (b) Deuterium

4/&/"/\‘
n=3
n=2
n=1
n=0
V4
Yy
"Tf' X E,=0.144 eV E,=0.088 eV

FIG. 3. (Color online) Isovalue surface of the calculated wave
function for (a) hydrogen atom and (b) deuterium atom from the
ground state (n=0, bottom panel) to the third excited state (n=3,
top panel). The different color represents the different sign in the
wave function.
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TABLE 1. Calculated energy eigenvalues of hydrogen and deu-
terium atoms at the nth state (in eV).

n H D

0 0.144 0.088
1 0.196 0.120
2 0.252 0.174
3 0.279 0.177

The zero-point energy can be also estimated in the har-
monic approximation. To obtain the frequency of the oscil-
lation, we calculated the potential energy on the lines parallel
to the axes including the potential minimum with finer grid
(0.01 for X, 0.02 for Y, and 0.005 for Z). Then, we fitted the
potential surface to the three-dimensional parabolic curve as
follows:

M Y ol (4)

i=X,Y.Z

V(R 1—1) =

0| =

where M is the mass of hydrogen or deuterium, g; is dis-
placement from the potential minimum in the i direction, and
w; is the angular frequency. The zero-point energy is given
by

h
E0=5(wx+ wy + wy), (5)

and the results for hydrogen and deuterium are summarized
in Table II. The zero-point energies calculated in the har-
monic approximation are larger than those calculated by
solving the Schordinger equation. Although the potential sur-
face is parabolic around the vicinity of the potential mini-
mum, the hydrogen atom extends to the region where the
parabolic approximation is not valid. Furthermore, for the
Z-direction excited states, the energy interval between the
next higher state becomes larger when the excited state be-
comes higher. These results indicate that simple harmonic
approximation is not applicable for this system.

B. Hydrogen energy spectrum

The energy spectrum of the hydrogen atom has been mea-
sured with inelastic neutron-scattering experiment.'®!8 In
this experiment, hydrogen rather than deuterium was used
because the incoherent-scattering cross-section of hydrogen

TABLE II. Calculated zero-point energy in each direction and
the total zero-point energy within harmonic approximation around
the potential minimum (in eV).

H D
hwy/2 0.050 0.035
hwy/2 0.088 0.062
iyl 2 0.045 0.032
E, 0.183 0.130
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TABLE III. Some level intervals of hydrogen in the low-level
region (in meV). The second column shows the direction of Q in
which the peak will be observed by the inelastic neutron scattering.

AE Direction of Q
0—1 52 Olle
0—2 108 Olc
0—3 135 QOlc
1—-2 56
1—3 83 Olic

is larger than that of deuterium. The calculated level intervals
AE for hydrogen in the lower levels are given in Table IIL
Let ,(R) and (R) be the initial state and the final state of
the hydrogen wave function on the scattering event, respec-
tively. Because the interaction between a neutron and a
nucleus is described by a delta function, the transition prob-
ability between these states by inelastic neutron scattering is
proportional to the following quantity under the lowest Born
approximation:?

2

=AQ), (6)

’ J AR (R) §(R)e'C*

where 7Q=7(k;~k;) is the momentum transferred from a
neutron by scattering with the initial-state wave vector k; and
the final one k.

Figure 4 shows the calculated A(Q) for several Q direc-
tions. A(Q) vanishes at Q=0 due to the absence of the effect
on the scattering and starts to increase with Q. In the experi-
ments, possible Q is in 2—=10 A~'. From this figure, excita-
tion 0—2 (108 meV) should be observed for @ 1 ¢ and 0
—1 (52 meV), 0—3 (135 meV), and 1—3 (83 meV) for
Qllc. In Fig. 4(b), we cannot find practical transition for
Qlla+2b because of the absence of the y-direction mode in
the lower states. Even in this case, however, Qll2a+b and
a+b contribution is found because there are rotationally
equivalent octahedral sites by 60° and 120°.

These calculated A(Q) values are strongly dependent on
Q. Therefore, the analysis of Q dependence of the spectra
can provide further information for determining the hydro-
gen oscillation mode. For example, A(Q) for 0— 3 transition
is considerably smaller than that for 0—1 in the region Q
<5 Al for QOllc. If we choose around Q=2 Al 0—3
excitation is suppressed and only 0 — 1 excitation should be
found in the spectra.

Schonfeld et al.'® performed inelastic neutron scattering
in a single crystal a-La%NisH, , at 296 K. In their experi-
ments, corresponding Q range is 5-10 A~'. At this tempera-
ture, the occupation of the first-excited state is estimated as
11% and excitation from n=1 should be observed when the
transition probability is considerably larger than that from
n=0. They observed the excitation energy at 98 and 118
meV for Q 1 ¢ and at 55 and 129 mV for Qllc. Their results
for Qllc (55 and 129 meV) can be understood as the transi-
tion 0—1 (52 meV) and 0—3 (135 meV) obtained by the
calculation. The transition 1—3 (83 meV) is suppressed due
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FIG. 4. (Color online) Calculated A(Q) as a function of Q for three directions. (a) Qlla, (b) Qlla+2b, and (c) Qllc.

to the low occupation of n=1 state and the small scattering
probability in the practical Q range. One of two measured
peaks for @ 1 ¢ (98 and 118 meV) is corresponding to exci-
tation 0—2 (108 meV) by the calculation. By considering
the symmetry of the wave function, they interpreted that
these two observed peaks (98 and 118 meV) for Q L ¢ are
transition to the X- and Y-directional oscillation modes.
However, the energy eigenvalue of the Y-directional oscilla-
tion mode is larger than the third excitation state.

Although scattering on another sites (120, 6m, or 4h) may
contribute to the spectra as predicted by Hempelmann et al.'®
from inelastic  neutron-scattering measurement for
a-LaNisH( 5 at 423 K; they observed peaks at 573,
1204, 165*+5 meV, etc., these assignments are still un-
certain due to the occupation problem at hydrogen sites.
First-principles calculations so far by different authors give
the different stability for each site.®-!> Even though these
points have remained unresolved, our results well explain the
experimental spectra.

C. Pair-distribution function

As mentioned previously, the neutron-diffraction experi-
ment with the Rietveld refinement concludes that the most
stable hydrogen position in the solid solution phase is in the
La,Ni, octahedral site and determining the atomic position
has been difficult. In the Rietveld analysis, a Gaussian hy-
drogen wave function was assumed. For these experiments, a
deuterium atom is used instead of the hydrogen atom due to
the larger coherent scattering cross-section.

In total neutron-scattering experiments, one can measure a
pair-distribution function, which is defined as'”

An..

8ii(r) = 47Tr2ijr’

where An;(r) is the number of particles of type j between
distance r—Ar/2 and r+Ar/2 from the particles of i, and p;
is the average density of the particle of type j. Figure 5
shows the calculated pair-distribution function for (a) La-H
and La-D and for (b) Ni-H and Ni-D. In this calculation, the
wave function of the ground-state hydrogen or deuterium

atom was used. In this figure, the vertical (pink) lines repre-
sent the pair-distribution function for the fixed atomic con-
figuration and the dashed (blue) curve represents that using
the isotropic Gaussian function on a potential minimum (6i)
with the width 0.2 A of which the width is estimated from
the zero-point energy. Thus, the dashed (blue) curve can be
understood as the pair-distribution function after the Rietveld
refinement of the hydrogen position. For both H and D, a
small difference is observed in the pair-distribution function
from that of the Gaussian case. If we use the anisotropic
Gaussian function in the analysis, this difference may be-
come smaller than that for the isotropic Gaussian case. Fur-
thermore, because of the practical resolution of r in the total
neutron-scattering experiment and the thermal oscillation of
the host lattice, such a small difference may not be measur-
able.

Figure 6 shows the wave-function profiles of the ground-
state hydrogen shown in Fig. 3 on the Y=0 plane for (a)

8 ‘
 (a)La-H i
6 i |
g " | Hydrogen a
I<'v 4 Deuterium - |
04) | Gaussian — — - 2 i
L J x
0 ‘ P
° ‘ 2
(b) Ni-H Hydrogen
ar Deuterium -
= Gaussian — — -
.
E 8 Y
S 2 [}
tr Xi] N i\
0 ] ‘
0 1 2 3 4 5

FIG. 5. (Color online) Calculated pair-distribution functions for
(a) La-H(D) and for (b) Ni-H(D). The dashed blue curve represents
the pair-distribution function when the isotropic Gaussian function
is located on the potential minimum (6i) instead of the wave
function.
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FIG. 6. (Color online) The wave-function profiles of the ground-
state hydrogen on the Y=0 plane, (a) for hydrogen and (b) for
deuterium.

hydrogen and for (b) deuterium. In this figure, the hydrogen
sites obtained by neutron diffraction (3f, 6i, and 12n) are
shown in the circles. The wave functions extend these hydro-
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gen sites, suggesting that further refinement of the hydrogen
position is difficult, in principle. Such wide distribution of
the hydrogen atom may cause experimental ambiguity in de-
termining the detailed hydrogen position. Therefore, the
quantum effect of the hydrogen atom is important for under-
standing the neutron-scattering measurements.

IV. SUMMARY

In this study, the three-dimensional potential-energy sur-
face for a self-trapped hydrogen in the 6i site of LaNis was
obtained by applying first-principles calculations. By using
this potential surface, the energy eigenvalues and the wave
functions of the self-trapped hydrogen atom in this potential
were calculated. The obtained level interval in energy of hy-
drogen well explain those of inelastic neutron scattering. The
directional dependence of the transition between the states is
also consistent with the experimental observation. The hy-
drogen atom is not localized in a single 6i site; the hydrogen
atom is self-trapped in 6i and spreads over several sites (3f,
6i, and 12n) in the La,Ni, octahedral interstitial site.
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