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Using first-principles density-functional calculations, we present a formalism for a reciprocal-space study of
the electronic structure of random ternary alloys. The formalism is based on the augmented-space recursion
introduced earlier by us in conjunction with the tight-binding linearized muffin-tin orbital method. Emphasis
shall be given to the configurationally averaged Bloch spectral function, which will be a key quantity of our
formalism and the reflection of its nature on the density of states will be discussed. We showcase the feasibility
of our formalism by applying to two different alloy systems namely: face-centered-cubic based Cu1−x−yNixZny

alloy and the series of disordered ternary Invar alloys, Fe1−x−yNixXy �X=Co,Pd,Pt�. The effects of short-range
ordering and the magnetic properties of these alloys will be discussed in some detail and it will be shown that
our predicted magnetic moment agrees well with earlier results.
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I. INTRODUCTION

From semiconductor alloys used in devices to brasses and
stainless steels, most commercial alloys of practical interest
are multicomponent and multiphase systems. There have
been extensive studies of the electronic structure of disor-
dered binary alloys. However, studies of disordered ternary
and quaternary alloy systems are relatively rare. Although
binary alloys provide a first step in the understanding of
disordered multicomponent alloy systems, a direct electronic
structure calculation of the higher order alloy systems would
go a long way to demonstrate the real predictive power of a
theory leading to the possibility of alloy design. For a first-
principles calculation, in addition to accurate description of
the electronic structure part, disordered alloys also demand a
reasonable scheme for performing configuration averaging.
Over the past three decades, effective-medium theories have
proven to be of great use in the study of substitutionally
disordered crystals. For homogeneous disorder,
configuration-averaged physical quantities are translationally
invariant quantities and as such they permit the arsenal of
techniques familiar in the analysis of ordered systems like
lattice Fourier transforms to be applied without taking re-
course to the use of computationally expensive supercells.

One well-known means of determining the effective me-
dium is provided by the coherent-potential approximation
�CPA�,1 which represents the state-of-the-art method for de-
scribing the configuration-averaged electronic structure of
disordered systems.2,3 The CPA chooses any single site and
replaces its environment by a nonrandom, lattice translation-
ally invariant effective medium, which is self-consistently
obtained by ensuring that there is no extra scattering on the
average due to the configuration fluctuations at that chosen
site. The approximation, therefore, cannot properly incorpo-
rate effects due to correlated scattering arising out of more
than one site. In spite of its success, the CPA, being a single-
site approximation, has its own limitation. In particular, it
does not work well in the impurity bands for split-band al-

loys where there is considerable signature of statistical clus-
tering of the impurity atom in the host background. This was
investigated by Hüfner et al.4 in the Ni minority bands of
Cu-rich NiCu and Pd minority bands of Ag-rich AgPd alloys.
As a single-site approximation it is inherently incapable of
dealing with short-range-order �SRO� effects. Nor can it de-
scribe fluctuations in the crystal potential arising from the
disorder in the environment of each site. These statistical
fluctuations are responsible for band tailing and sharp
clusters-related structure in the density of states �DOS�,
which in turn yields k-dependent momentum-state lifetimes.
In addition CPA cannot take into account the effects of off-
diagonal disorder arising out of local lattice distortions due
to size mismatch of alloying components.

As far as the generalizations of the CPA are concerned,
only a few maintain the proper analytic properties and local
symmetries of the approximated averaged quantities. Among
the successful generalizations we can count the special qua-
sirandom structures proposed by Zunger,5 the reciprocal-
space renormalization based nonlocal CPA �NL-CPA�,6 the
traveling-cluster approximation,7 the itinerant coherent-
potential approximation,8 and the augmented-space recursion
�ASR�.9 The last three are based on the augmented-space
formalism proposed by one of us.10 Over the years, the ASR
coupled with the tight-binding linearized muffin-tin orbital
�TB-LMTO� method11 has been utilized to provide a system-
atic way of taking all these important effects into
account.12–14 A more extensive comparison between these
different techniques has been given by Tarafder et al.15 and
the readers are referred to this paper for an in-depth compari-
son. We shall show in this paper that the ASR gives a fully
k-dependent self-energy unlike the CPA. In particular, it
should be mentioned that, it has been shown by Rowlands et
al.16 that the NL-CPA also yields a fully k-dependent self-
energy. Short-ranged ordering effects within this technique
have been introduced earlier.17 It is an alternative method in
which generalization to ternary alloys will also be interest-
ing. A majority of the applications of the ASR have been
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restricted to binary-alloy systems alone. A generalization to
ternary alloy systems will be an interesting and useful exten-
sion. We ourselves have tentatively begun such a formulation
in real space earlier.18–20 The difficulty and errors that arise
in taking a finite real-space cluster for recursion will be over-
come in this work by reformulating the theory in reciprocal
space. We have to remember, though, that this formulation
will hold only if the disorder is homogeneous.

It is the purpose of this paper to present a generalized
augmented-space recursion formalism in the reciprocal-space
representation for the electronic structure calculation of dis-
ordered ternary alloys. Such a formalism will be useful be-
cause there are many physical properties which require the
configuration average of quantities expressed in terms of
reciprocal-space �k-space� representations. For example,
Bloch spectral functions will be needed if one wants to make
a direct comparison with angle-resolved photoemission ex-
perimental data or complex band structures, momentum den-
sities, and fuzzy Fermi-surface topology which are probed by
Compton scattering and positron-annihilation experiments.
Calculation of response functions also require configuration-
averaged k-space Green’s functions ��G�k ,z���. The method
discussed here is a nontrivial generalization of the earlier
technique for binary alloys.21

In order to validate our formalism, we have chosen two
different class of ternary face-centered-cubic based alloys:
Cu1−x−yNixZny alloy and a set of Invar magnetic ternary al-
loys Fe1−x−yNixXy �X=Co,Pd,Pt�.

The first example of alloys also known as German silver
or New silver is of technological interest, which according to
the generally accepted interpretation of a large body of ex-
perimental investigations22 undergoes two phase transitions
during thermal treatment: �a� at about 774 K from the disor-
dered face-centered-cubic solid solution Cu50Ni25Zn25 to an
intermediate L12 phase with local atomic ordering �as de-
duced from the anomalous x-ray scattering experiments� and
�b� at about 600 K to the ordered Heusler-type Cu2NiZn
alloy phase. For completeness and comparison sake we shall
discuss the results based on all these three phases.

The second class of ternary alloys Fe1−x−yNixXy are mag-
netic Invar systems, which show differing magnetic proper-
ties depending on the type of doping element X. The purpose
of choosing this set of systems is to make a systematic study
of the varying electronic structure properties as a result of
different ternary addition from 3d, 4d, and 5d series to bi-
nary Invar Fe65Ni35 alloys. In fact we have chosen Co�3d�,
Pd�4d�, and Pt�5d� to be the third component to be added.

The rest of the paper is structured as follows. In Sec. II,
we shall describe the augmented-space formalism for the
electronic structure of disordered ternary alloys within the
framework of TB-LMTO basis. A generalized formulation to
study the effects of short-range ordering will be derived in
Sec. III. Section IV is devoted for computational details. The
results on Bloch spectral function, density of states, and
magnetic properties for the two class of alloy systems
Cu1−x−yNixZny and Fe1−x−yNixXy �X=Co,Pd,Pt� will be dis-
cussed in Sec. V. Concluding remarks will be given in the
final section.

II. FORMALISM

Since a central part of our technique require the use of the
recursion method,23 it is essential first to choose a basis in
which the Hamiltonian representation is sparse. The TB-
LMTO is an ideal basis for the purpose. In the most localized
� representation the second-order TB-LMTO Hamiltonian24

is sparse and can be expressed as

H�2� = H�1� − h o h , �1�

where

H�1� = �
RL

CRLPRL + �
RL,R�L�

�RL
1/2SRL,R�L��R�L�

1/2 TRL,R�L� �2�

and

h = H�1� − �
RL

E�RLPRL,

o = �
RL

oRLPRL. �3�

Here R and R� label the unit cells �atomic spheres� on the
underlying lattice. L= ��mms� is the composite angular mo-
mentum index. The quantities XRL, where X=C, �1/2, E�, and
o are the potential parameters which describe the scattering
properties of the atomic potentials at R. For multicomponent
alloys, the potential parameters can take on values depending
on what kind of atom occupies a particular lattice site. S is
the structure matrix which characterizes the full lattice ge-
ometry. P and T are the projection and transfer operators in
the Hilbert space spanned by the TB-LMTO basis �	RL�
.
Since augmented-space formalism for disordered alloys has
been described in many earlier papers,25 we shall introduce
here only those salient points which will be of direct rel-
evance to our generalization to ternary alloys in k space.

A substitutional disordered alloy can be described by a set
of discrete random occupation variables �nR
 associated with
each lattice site R. Any physical observable is a function
f��nR
� of these random variables. These random variables nR
for a ternary alloy can take the values 1, 0, and −1 depending
on whether the site labeled by R is occupied by an A, B, or C
type of atoms. For homogeneous, uncorrelated disorder the
probabilities for taking these values are proportional to their
concentrations: xA, xB, and xC. We can decompose the joint
probability distribution of these variables as P��nR
�
=�pR�nR�. For ternary alloys each occupation variable nR
can have three possible states, which span a configuration
space �R. The configuration space of the whole set of vari-
ables is then �=�R

��R. Formally this configuration space is
isomorphic to the configuration space of a lattice of spin 1
objects.

The augmented-space theorem,25 taking cue from mea-
surement theory, now associates with each random variable
nR a self-adjoint operator NR��R, such that its eigenvalues
are the values randomly taken by nR and its projected spec-
tral density is the probability density of that variable,
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p�nR� = −
1

�
lim
�→0

Im��0
R	��nR + i��I − NR�−1	�0

R� , �4�

where 	�0
R�=�xA	1�+�xB	0�+�xC	1̄�

We can find a representation of NR as follows:

p�nR� = xA��nR − 1� + xB��nR� + xC��nR + 1� =

−
1

�
lim
�→0

Im xA

nR
+ − 1

+
xB

nR
+ +

xC

nR
+ + 1

� ,

nR
+ = nR + i� . �5�

The augmented-space method also tells us, given the
probability density, how to find a suitable representation of
NR. The first step is to find a convergent continued fraction
expansion p�NR�,

p�nR� = −
1

�
lim
�→0

Im
1

nR
+ − 	1 −

�1
2

nR
+ − 	2 −

�2
2

nR
+ − 	3

,

where the coefficients are

	1 = �xA − xC�, �0
2 = 0,

	2 = N1
2��xA − xC��xB

2 − 4xAxC��, �1
2 =

1

N1
2 ,

	3 = − N1
2xB�xA − xC� ,

�2
2 = xB + N1

2xB�xA − xC�2�1 − N1
2xB� , �6�

where

1

N1
2 = �xA + xC� − �xA − xC�2.

The corresponding representation of the self-adjoint op-
erator NR is a 3
3 matrix,

Nij
R = �	1 �1 0

�1 	2 �2

0 �2 	3
� �7�

and the operator is

NR = 	1PR
0 + 	2PR

1 + 	3PR
2 + �1TR

01 + �2TR
12. �8�

The eigenvalues of this matrix are −1, 0, and 1 and the

corresponding eigenkets are 	1̄�, 	0�, and 	1�. The basis in
which this tridiagonal representation is expressed is 	�0

R�,
	�1

R�, and 	�2
R�. The last two are the two mutually orthogonal

kets to 	�0
R� defined as

	�1
R� = N1��xA�1 − xA + xC�	1� − �xB�xA − xC�	0�

− �xC�1 + xA − xC�	1̄�� ,

=h1	1� + h2	0� + h3	1̄� ,

and

	�2
R� = N2��xA�1 + a − �xA − xC�xBN1

2
	1� + a�xB	0� + �xC�1

+ a + �xA − xC�xBN1
2
	1̄�� ,

=g1	1� + g2	0� + g3	1̄� ,

with

a = �xA − xC�2�xBN1
2 − 1� −

1

N1
2 ,

1

N2
2 = xB��xA + xC� − �xA − xC�2xBN1

2� .

We should note that unlike the corresponding operator for
binary randomness, NR is not idempotent, i.e., �NR�2=MR

�NR,

Mij
R = �U1 V12 V13

V12 U2 V23

V13 V23 U3
� �9�

with

U1 = 	1
2 + �1

2, U2 = 	2
2 + �1

2 + �2
2,

U3 = 	3
2 + �2

2, V12 = �	1 + 	2��1,

V13 = �1�2, V23 = �	3 + 	2��2. �10�

The augmented-space theorem25 states that the configura-
tion average of a function f��nR ,nR

2
� is a matrix element of

the operator f̃��ÑR ,M̃R
� in configuration space � obtained
by replacing each random variable in f��nR ,nR

2
� by its cor-

responding operators �ÑR ,M̃R
. The matrix element is taken
between the reference states,

��f��nR,nR
2
��� = ��0	 f̃��ÑR,M̃R
�	�0� ,

ÑR = NR � I � I ¯ . �11�

Each site has three possible configurations states labeled
by �0, �1, and �2. The sequence of sites �C1
 and �C2
 having
the configuration states �1 and �2, respectively, is called the
cardinality sequence. This cardinality sequence uniquely and
completely describes a configuration state of the whole sys-
tem. Thus a general configuration state is labeled by its car-
dinality sequence,

	�C1
,�C2
� = �
�Ri�C1


�

	�1
Ri� � �

�Rj�C2


�

	�2
Rj� � �

R��C1
��C2

	�0

R� .

The null sequence �0”
�0”
 is a state all of whose sites are in
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a configuration state �0. The reference state 	�0���R
� 	 ��0

R
 is
labeled by the null sequence since none of its sites have
configuration states �1 or �2 Thus the configuration states
	�C1
 , �C2
� span the full configuration space �=�R

��R.
Any random local potential parameter XR can now be ex-

pressed in terms of nR as

XR =
1

2
nR�1 + nR�XA + �1 − nR��1 + nR�XB +

1

2
nR�nR − 1�XC,

�12�

where XA, XB, and XC are the values taken by XR correspond-
ing to the random variable nR having the value 1, 0, and −1,
respectively. According to augmented-space theorem, the op-

erator representation X̃R of XR is obtained by replacing all nR
by the corresponding operator NR and all nR

2 by MR giving
the following expression:

X̃R =
1

2
�NR + MR�XA + �Ĩ − MR�XB +

1

2
�MR − NR�XC = X1I

+ X2PR
0 + X3PR

1 + X4PR
2 + X5TR

01 + X6TR
12 + X7TR

02, �13�

where

X1 = XB,

X2 =
1

2
�	1�XA − XC� + �XA − 2XB + XC�U1� ,

X3 =
1

2
�	2�XA − XC� + �XA − 2XB + XC�U2� ,

X4 =
1

2
�	3�XA − XC� + �XA − 2XB + XC�U3� ,

X5 =
1

2
��1�XA − XC� + �XA − 2XB + XC�V12� ,

X6 =
1

2
��XA − 2XB + XC�V13� ,

X7 =
1

2
��2�XA − XC� + �XA − 2XB + XC�V23� .

The configuration-space operators in the above equations are

PR
� = 	��

R����
R	, �=0,1 ,2, and TR

���= 	��
R�����

R 	+ 	���
R ����

R	 � ,��
=0,1 ,2.

Equation �13� gives us a prescription of how to set up the
augmented-space operators corresponding to the random lo-

cal potential parameters Ẽ�RL, C̃RL, �̃RL
1/2, and õRL. The

second-order Hamiltonian given by Eq. �1� for a disordered
alloy looks like

Ĥ�2� = Ĥ�1� − ĥ ô ĥ �14�

with

Ĥ�1� = �
R

C̃
= R � PR + �

R,R�

�̃
= R

1/2S= R,R��̃= R�
1/2

� TRR�,

ĥ = H̃�1� − �
R

Ẽ
= �R � PR,

ô = �
R

õ
=R � PR, �15�

where the matrix operators are matrices in angular momen-
tum space labeled by L, which is the composite index

�lmms�. C̃RL, Ẽ�RL, õRL, and �̃RL
1/2 are operators in configura-

tion space of nR and have the same form as X̃R described
above. The Hamiltonian is a function of a whole set of ran-
dom variables �nR ,nR

2
, one pair for each site. After replacing
all the random variables by their corresponding operator rep-

resentations, Ĥ�2�, Ĥ�1�, ĥ, and ô are now the operators in an
enlarged Hilbert space called the augmented space which is a
direct product of the real space �spanned by the TB-LMTO
basis� and the configuration space, i.e., �=H � �. Usually
the structure matrix SRL,R�L� is not random.

When disorder is homogeneous, the augmented-space
Hamiltonian is lattice translationally symmetric. We can
jthen define a configuration-averaged Green’s function in
reciprocal-space representation. This can now be expressed
within the augmented-space formalism as

��G�k,z��� = �k,L � �0”
�0”
	�zĨ − H̃�2��−1	k,L � �0”
�0”
� ,

where z=E+ i� ��→0+�.
In general a basis in the k space has the following form:

	k,L � �C1
�C2
� =
1

�N
�
R

e−ik·R	R,L � �C1
�C2
� , �16�

where �C1
�C2
 is the cardinality sequence. One can write
this in short-hand notation as 		�C1
�C2
�	, where � stands for
�1 /�N��R	e−ik·R	R, L� . The Bloch spectral function is then
defined as

A�k,E� = −
1

�
lim
�→0

Im�G�k,E + i���

= −
1

�
lim
�→0

Im��0”
�0”
		��E + i��Î − Ĥ�2��−1		�0”
�0”
� .

�17�

The density of states is then obtained by integrating the
Bloch spectral function over the Brillouin zone �BZ�,

n�E� =
1

BZ
�

BZ

dkA�k,E� .

We may now combine the above with the recursion
method of Haydock et al.23 To do this we need to know how
the transfer operators in the augmented Hamiltonian acts on
an augmented-space basis. This is shown in the Appendix.
Carrying out recursion we obtain the configuration-averaged
Green’s function as a continued fraction using a similar tech-
nique as implemented before9 for real-space based formal-
ism,
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��G�k,z��� = ��0”
		�zÎ − Ĥ�2��−1		�0”
�

=
1

z − a1 −
b1

2

z − a2 −
b2

2

�z − aN − T�z�

.

This can also be written in the form 1 / �E−E0�k�−��E ,k��
�for z→ �E+ i0+��. It can be easily shown that a1=E0�k�, the
energy dispersion in the absence of disorder. The self-energy
��E ,k� may also be read out directly from the continued
fraction. The only approximation involved has to do with the
termination of this continued fraction. The coefficients
�an ,bn� are calculated exactly up to a finite number of steps
�N� and the asymptotic part is replaced by a terminator T�z�.
Haydock23 has shown that if one carry out recursion exactly
up to n steps, the resulting continued fraction maintains the
first 2n moments of the exact result. Several terminators are
available in the literature and we have chosen to use that of
Beer and Pettifor.26 Additionally such an approximation
maintains the Herglotz analytic properties of the
configuration-averaged Green’s function.

We carried out tests for the convergence of energy mo-
ments of spectral function with the number of recursion steps
before terminating the continued fraction, as suggested by
Haydock.27 Our results have been quoted for 12 recursion
steps, leading to 24 moments being accurate.

III. SHORT-RANGED ORDER

As mentioned earlier, the ASR can take into account the
effects of configuration fluctuations of not only a single site
but also its immediate environment. Significant benefits from
the use of ASR may be found when SRO effects are in-
cluded. In this section we shall generalize the ideas of the
previous section to include SRO effects in ternary alloys.

When SRO is present the occupation variables �nR
 are
correlated. Mookerjee and Prasad28 have proposed a formu-
lation based on the augmented-space technique which takes
into account correlated disorder in binary alloys. We shall
now propose a generalization to ternary alloys. If we choose
any site R0 and suppose that nR0

is correlated with the neigh-
boring �nRk


 k=1,2 , . . . , p, then the joint probability distribu-
tion of all the variables can be expanded as

P�nR0
,nR1

, . . . ,nRp
,nRp+1

, . . .�

= p�nR0
��

k=1

p

p�nRk
	nR0

, . . . ,nRk−1
��

k�p

�

p�nRk
� .

Note that if the SRO is itself homogeneous, it is immate-
rial which site we choose as R0. The representation of the
operator associated with the random variable nR0

correspond-
ing to the probability density p�nR0

� is given by Eq. �8�.
Let us now come to the variables nRk

, k=1,2 , . . . , p which
are correlated with nR0

but not to one another. We now have
to deal with the conditional probability densities depending
on the value taken by the variable nR0

. For each such value

taken by nR0
, we associate the corresponding conditional

probability density p�nRk
	nR0

= j�, where j=0, 1, or 2. Since
the conditional probability densities are also positive definite
and assumed to have finite moments to all orders, we may
associate with them operators NRk

�j� such that

p�nRk
	nR0

= j� = ¯ −
1

�
lim
�→0

Im��0
Rk	��nRk

+ i��I − NRk

�j��−1	�0
Rk� .

The operator we wish to associate with the variable nRk
should be that NRk

�j� which corresponds to the particular con-
figuration j which nR0

takes. A natural generalization then
takes the form

ÑRk
= �

j

PR0

�j�
� NRk

�j�
� I � I � ¯ ¯ , �18�

where PR0

�j� are the projection operators which project onto the
eigenstates 	j� of NR0

.
The operators associated with all further sites Rp+1 are the

same as Eq. �8�, as they are uncorrelated with R0. The basic
augmented-space theorem still holds good rigorously, but

ÑRk
, instead of being of the form given by Eq. �11�, now has

the form given by Eq. �18�.
The SRO in ternary alloy is described by three distinct

Warren-Cowley parameters 	AB, 	BC, and 	AC which de-
scribe pair correlations between occupations of the three dis-
tinct pairs of components. If P��� is the probability of the
central site R0 being occupied by a � type atom and the site
Rk being occupied by an �� type atom, then by definition

PAB = xB�1 − 	AB� PAC = xC�1 − 	AC�

PAA = 1 − �PAB + PAC� = �xA + xB	AB + xC	AC� , �19�

where xA+xB+xC=1.
The conditional probability densities p�nRk

	nR0
= j� �j

=1,0 ,−1� associated with the sites belonging to the first-
nearest-neighbor �NN� shell can be expressed in terms of the
Warren-Cowley SRO parameters as

p�nRk
	nR0

= j� = XA
�j���nRk

− 1� + XB
�j���nRk

� + XC
�j���nR2

+ 1�

where

XA
�1� = xA + �xB	AB + xC	AC� ,

XB
�1� = xB�1 − 	AB�, XC

�1� = xC�1 − 	AC� ,

XA
�0� = xA�1 − 	AB� ,

XB
�0� = xB + �xA	AB + xC	BC�, XC

�0� = xC�1 − 	BC� ,

XA
�1̄� = xA�1 − 	AC� ,

XB
�1̄� = xB�1 − 	BC�, XC

�1̄� = xC + �xA	AC + xB	BC� .

In absence of SRO, i.e., 	AB=	BC=	AC=0, the condi-
tional probabilities of second variable nRk

becomes identical
to the unrestricted probability density of the variable nR0

.
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Since we have chosen to include conditional probabilities
which incorporate pairwise correlations alone, these are the
only correlation coefficients in the model. Three site correla-
tions would have required further such parameters: 	�A,BC�,
	�B,AC�, 	�C,AB�, and 	�ABC�. These we have ignored in our
present model.

The representation of the conditional operators are

NRk

�j� = a1
�j�PRk

0 + a2
�j�PRk

1 + a3
�j�PRk

2 + b1
�j�TRk

01 + b2
�j�TRk

12, �20�

where

a1
�j� = �XA

�j� − XC
�j�� ,

b1
�j�2

= �XA
�j� + XC

�j�� − �XA
�j� − XC

�j��2,

a2
�j� =

a1
�j�XB

�j�

b1
�j�2 − a1

�j�,

b2
�j�2

= XB
�j� + a2

�j�a3
�j�; a3

�j� = − a2
�j� − a1

�j�. �21�

In Eq. �18� we also require representations of the projec-
tion operators PR0

�j�. Since all our representations so far were
in the basis in which NR0

were tridiagonal, it is in this basis
that the representations have to be made. The representations
have been derived in detail in a previous paper �Ref. 20� and
the readers are referred to that paper for mathematical de-
tails. The representations are of the form

PR0

�1� = � xA �xAxB
�xAxC

�xAxB xB �xBxC

�xAxC
�xBxC xC

� ,

PR0

�0� = � h1
2 h1h2 h1h3

h1h2 h2
2 h2h3

h1h3 h2h3 h3
2 � ,

and

PR0

�1̄� = � g1
2 g1g2 g1g3

g1g2 g2
2 g2g3

g1g3 g2g3 g3
2 � . �22�

We may now explicitly obtain the expressions for the op-

erators ÑRk
. The explicit expression is given in the Appendix

of Ref. 20. It will be useful to examine the expression in that
reference in some detail. We note from Eq. �8� that when

SRO is absent the augmented-space operator ÑR creates, an-
nihilates, or counts configuration fluctuations only at the site

R. However, the generalized operator ÑRk
not only creates,

annihilates, or counts configuration fluctuations at the site Rk
but also at the correlated site R0. In addition it also creates,
annihilates, or counts configuration fluctuations simulta-
neously at both the sites Rk and R0. In this sense, SRO intro-
duces two site off-diagonal disorder. Single-site mean-field
approaches like the CPA cannot take care of such correlated
disorder without further approximations. In such situations it
would be profitable to use the ASR.

IV. COMPUTATIONAL DETAILS

Before we go onto the actual realistic calculation, it is
important to mention at this point that unlike CPA which
yields a k-independent self-energy, the ASR method yields a
self-energy which does depend on k starting from the fourth
level of recursion coefficients. This has been shown analyti-
cally by us in an earlier communication21 for a single s-band
nearest-neighbor model. Another advantage of k-space recur-
sion �over the real-space one� is the possibility of working in
an enormously reduced space �compared to the Hilbert space
required in the real-space recursion method�. It can be shown
explicitly21 that the operation of the effective Hamiltonian

Ĥ�2� can entirely be done in the configuration space and the
calculation does not require us to involve the real space H at
all. This is an enormous simplification over the standard
augmented-space recursion described earlier.12 Earlier we
had to resort to symmetry reduction in this enormous space
in order to make the recursion tractable. Here the rank of
only the configuration space is much smaller and we may
further reduce it by using the local symmetries of the con-
figuration space, as described in an earlier paper.29

The total-energy calculations were done using the TB-
LMTO-ASR method for disordered ternary alloys in
reciprocal-space representation. For our calculation, “clus-
ters” of sizes 1 200 000 states in the enlarged augmented
space were generated by repeatedly applying the augmented
Hamiltonian on the starting state 		�0�	. Ten steps of recursion
were carried out attached with a terminator by Beer and
Pettifor26 to construct the configuration-averaged Bloch
spectral function. In order to calculate the charge densities
and the density of states, a Brillouin zone integration was
performed using the generalized tetrahedron method30 devel-
oped by us for disordered systems with 280 k points in the
irreducible wedge of the BZ. The calculations were scalar
relativistic with the inclusion of Darwin and the mass-
velocity correction terms. The exchange-correlation func-
tional used is that of von Barth and Hedin.31 In all the cal-
culations, the lattice relaxation effects were included
following the treatment suggested by Kudrnovský et al.32

The idea is to choose the atomic sphere approximated radii
of various atoms in the system in such a way that the spheres
are charge neutral on average. We have utilized this proce-
dure throughout our calculation to correctly take into account
the charge-transfer effect which is one of the most important
factors in any electronic structure calculation. Total energy,
local and average magnetic moment, and total and atom-
projected charge and spin densities are all usual products of
the calculations. The equilibrium lattice constant used for the
calculation of all the three phases of Cu-Ni-Zn system is a
=6.63 a.u. However the same for magnetic Invar alloys Fe-
Ni-Co, Fe-Ni-Pd, and Fe-Ni-Pt are a=6.69 a.u., a
=6.81 a.u., and a=6.75 a.u., respectively. These equilib-
rium lattice parameters were obtained by minimizing the to-
tal DFT energies with respect to the lattice parameters. These
structural parameters compare quite well with those of the
existing theoretical and experimental findings.22,33

As already mentioned in Sec. I, for the alloy Cu2NiZn,
three different structural phases are formed during the ther-
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mal processing: an ordered Heusler-type Cu2NiZn alloy
phase, an intermediate phase with partial atomic ordering in
a L12-type structure �Cu1−xNix�3Zn, and a completely disor-
dered face-centered-cubic solid solution, Cu1−x−yNixZny. The
structures of these three phases are shown in Fig. 1. For the
ordered Cu2NiZn, the sublattice of cube corner sites �shown
by light blue �gray� spheres� is occupied by Zn atoms, the
second sublattice of bottom face centers �shown by pink
�white� spheres� is occupied by Ni atoms and the remaining
sublattice of vertical face centers �shown by dark blue �dark�
spheres� is occupied by Cu atoms. In second phase with par-
tial ordering, the cube corners are still occupied by Zn atoms
but the remaining sublattices �shown by cyan �dark gray�
spheres� are occupied randomly by Cu and Ni atoms with
probabilities 2

3 and 1
3 , respectively. This is a pseudobinary

alloy and has been studied by the ASR by us earlier.34 Finally
in the completely disordered face-centered-cubic phase all
sites are occupied randomly by Cu, Ni, and Zn atoms with
probabilities 0.5, 0.25, and 0.25, respectively. This is shown
in the right-most panel in Fig. 1. The two experimental
phase-transition temperatures are T1=623 K and T2
=774 K. We have also studied the magnetic Invar systems
Fe1−x−yNixXy �X=Co,Pd,Pt� only in the completely disor-
dered face-centered-cubic solid solution phase shown by the
extreme right structure in Fig. 1.

The basic philosophy behind the configuration averaging
procedure in augmented real-space based formalism is to
expand the Hilbert space spanned by the TB-LMTO basis
�labeled by lattice positions� to include a configuration space
which takes into account the statistical fluctuations of the
configurations of the system about the “average” configura-
tion. Hence for a system with N sites and m possible realiza-
tions of the random variables associated with each site, the
augmented space involves NmN basis functions. The standard
method for implementing this on a computer would require
handling an impossibly large �NmN�
 �NmN� matrices.
Working with this large �even though sparse� Hamiltonian

becomes a difficult task for realistic alloy systems with s-p-d
orbitals.

In order to make recursion tractable computationally, we
have taken recourse to several techniques which shrink the
rank of the Hilbert space on which recursion takes place.
Three such techniques have been used by us.

First is recursion in the k space itself, which replaces the
familiar real-space version. As mentioned before, one re-
quires to deal only with the configuration space �rather than
the outer product of real Hilbert space H and the configura-
tion space ��. The size of the configuration space is much
smaller than the full augmented space �. Instead of handling
the enormously large matrix of rank �NmN�
 �NmN� �for a
real-space recursion�, one need to deal with a matrix of rank
�mN�
 �mN� only for a k-space recursion. In addition, the
approximation involved in truncating the full lattice to a
large cluster is also avoided.

Second, there are conceptual advantages in the
augmented-space formalism. The continued fraction with ter-
minator ensures that the Herglotz analytic properties are au-
tomatically preserved. Translational and local lattice symme-
tries are automatically built into the augmented-space
Hamiltonian.

Finally, we have used memory reduction and time saving
for augmented-space recursion by the multispin coding tech-
nique. One can utilize the bit manipulation techniques and
predefined logical functions in the computer to store the ba-
sis vectors of configuration space in bits. To make use of the
bit manipulation technique for ternary alloys we proceed as
follows. We allocate two bits to describe the configuration
states of each site. The bit combination �00� or the integer 0
is assigned to the reference state 	�0

R�, �01� or the integer 1 is
assigned to the configuration state 	�1

R�, and �10� or the inte-
ger 2 is assigned to the configuration state 	�2

R�. The refer-
ence state is �00� while the two excitations generated by the
Hamiltonian are �01� and �10�. In an M-bit machine, each
M-bit word can represent up to �M −1� terms as a sequence
of 0s and 1s. To store a configuration of a ternary alloy with
N lattice points we need 2�N−1� / �M −1�+1 words, each of
which represents an integer �since we need two bits to define
the configuration of a given lattice point�.

V. RESULTS AND DISCUSSION

A. Cu2NiZn alloy

Since the Bloch spectral densities in disordered alloys re-
flect the nature of energy bands in the ordered compounds,
we shall first show the band structure of the ordered Heusler-
type Cu2NiZn system along the X-�-R line in the simple-
cubic Brillouin zone. This is shown in Fig. 2. The parent
CuZn is an archetypal split-band system, i.e., the energies of
the Cu and Zn d bands are very different. However, although
CuNi is also a split-band system with much smaller splitting
as compared to CuZn, its electronic structure is sufficiently
different from that of CuZn. Hence it will be interesting to
investigate the characteristics of the ternary alloy when the
two parent binary systems are alloyed. The split-band behav-
ior is clearly visible from the band structure specially for Cu
and Zn atoms. The narrow flat bands around �−0.66 Ry

ZnNiCu Zn (Cu,Ni) (Cu, Ni, Zn)

Ordered Heusler−type Partially ordered L12 Disordered fcc

T<T T < T < T T > T1 1 2 2

FIG. 1. �Color online� Three possible structural phases of
Cu2NiZn system during thermal processing. The structure in the
extreme left is an ordered Heusler type which exists below T1

=623 K. The middle structure is a partially ordered L12 type where
the cube corners are selectively occupied by Zn atoms however the
face centers are substitutionally occupied by Cu and Ni atoms. This
phase is also an example of pseudobinary alloys which exists be-
tween the temperature range T1=623 K and T2=774 K. The struc-
ture in the extreme right is the disordered face-centered-cubic solid
solution phase where all the sites are randomly occupied by Cu, Ni,
and Zn atoms with probabilities 0.5, 0.25, and 0.25, respectively.
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reflect the Zn d bands. The Cu d-band complex lies well
above the Zn d bands in the energy range �−0.38,
−0.25� Ry. The Ni-related d bands are located around �
−0.15 Ry just above the Cu bands.

We shall now show the Bloch spectral densities for the
fully disordered alloys. The spectral density for an ordered
compound is given by a bunch of �-function peaks at ener-
gies En�k�, where n is the band index. In random alloys these
peaks are shifted and broadened by disorder. In Fig. 3 we
have shown the spectral densities calculated both from our
TB-LMTO-ASR and also using Korringa-Kohn-Rostocker
�KKR� CPA.35 We have plotted the Bloch spectral functions
for completely disordered Cu50Ni25Zn25 alloy along the line
X-� �lower panel� and �-L �upper panel�. The various curves
in each of the panels indicate the spectral functions at various

	k	 values starting from the edge 	kx	 to center 	k�	 �lower
panel� and then from center 	k�	 to the edge 	kL	 �upper
panel� of the Brillouin zone. The y axis is in an arbitrary
scale. In order to facilitate vision, different curves for differ-
ent 	k	 values are shifted along the x axis.

The first observation is that for homogeneously disor-
dered systems, there is little benefit in going to the ASR from
CPA. The main difference is in the k dependence of disorder-
induced spectral broadening leading to lifetime effects. This
we had seen earlier in binary alloys as well.36

The split bands can clearly be observed, with low-energy
peaks originating from the Zn sites and the high-energy fea-
tures corresponding to a combined contribution from Cu and
Ni sites. As we go along the X-� line the doubly peaked
structure in the energy regime E� �−0.7,−0.57� Ry due to
the Zn atom broaden out to a single peaked structure with a
weak shoulder on the left. Such a broadening is due to the
influence of disorder. On the contrary, the complex of Cu and
Ni d bands �structure at the higher energy E� �−0.4,
−0.05� Ry� along the same line are comparatively more
strongly influenced by the disorder especially in its upper
part slightly below the Fermi level EF�−0.1 Ry. Along the
line �-L, the Zn d-band structure also gets broadened but in
this case it is much more asymmetric as we move toward L.
In fact we can see broad featureless bumps which do not
move with the k vector indicating a strong influence of dis-
order. The structure of the combined contribution of �Cu,Ni�
bands are again strongly influenced by disorder as is re-
flected from the large broadening in this energy regime.

The total and the partial density of states �TDOS and
PDOS� for the three structural phases of Cu-Ni-Zn system

-0.9

-0.7

-0.5

-0.3

-0.1

0.1
E

n
er

g
y

(R
y)

X Γ R

FIG. 2. Band structure of the ordered Heusler-type Cu2NiZn
�L10 structure� alloy along the line X-�-R. Fermi level EF is indi-
cated by the horizontal dashed line.
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FIG. 3. �Left panels� Bloch spectral densities calculated from
TBLMTO-ASR for completely disordered Cu50Ni25Zn25 alloy
along the line X-�-L. The lower panel runs from the symmetry
points X to � and the upper panel from � to L. In each of the two
panels, the various curves indicate the spectral functions for various
	k	 values starting from the edge 	kx	 to center 	k�	 �lower panel�
and from center 	k�	 to edge 	kL	 �upper panel� of the Brillouin
zone. The y axis is in an arbitrary scale with heights scaled to the
maximum height. Different curves for different 	k	 values are
shifted along the x axis in order to facilitate vision. �Right panels�
The same results calculated from KKR-CPA.
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FIG. 4. �Color online� Partial and total density of states for three
structural phases of Cu-Ni-Zn system. The lower, bottom, and upper
panels on the left show the atom-projected DOS for ordered
Heusler-type structure, partially ordered �Cu1−xNix�3Zn �x=1 /3� al-
loy and completely disordered Cu50Ni25Zn25 alloy, respectively. The
three panels on the right however show the total DOS for the same
three phases. In all the three panels on the left, the solid �black�,
dashed �red�, and dotted �blue� lines indicate the partial DOS for
Zn, Cu, and Ni atoms, respectively. The Fermi levels are indicated
by dashed vertical lines.
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are presented in Fig. 4. The three panels in the left show the
PDOS for the completely ordered Heusler-type structure
�lower panel�, partially ordered �Cu1−xNix�3Zn �x=1 /3� alloy
�middle panel�, and completely disordered Cu50Ni25Zn25 al-
loy �upper panel�. The three panels on the right show the
TDOS for the same three structures. In all the three panels on
the left, the Zn, Cu, and Ni PDOS are shown by solid
�black�, dashed �red�, and dotted �blue� lines, respectively.
Fermi levels are indicated by the long-dashed vertical lines.
The first thing to notice is the direct reflection of the basic
features of band structure in the PDOS of the ordered phase
�lower panel�. As before, the Cu and Ni PDOS are less
widely separated in energy as compared to that between Zn
and Cu. We notice that the Zn d PDOS, which is well sepa-
rated from the contributions of Cu and Ni, hardly hybridizes
with them. However the Cu and Ni PDOS show sufficient
hybridization. More specifically a narrow well-separated
Zn d PDOS �solid line� can be seen to be centered around
E�−0.66 Ry. Most of the Cu d PDOS �dashed line� lie in
the energy range �−0.43,−0.24� Ry, however a non-
negligible contribution of the same is also found in the en-
ergy region of the Ni d states, i.e., �−0.23,−0.12� Ry. Simi-
larly, the Ni d PDOS contributes non-negligibly in the
energy region of the Cu d PDOS. These contributions, in
both the cases, are mediated indirectly via coupling among
the simple-cubic sublattices.

If we now look at the PDOS and TDOS for the partially
ordered phase shown in the middle panel of Fig. 4, we notice
significant dramatic changes specially in the Cu and Ni char-
acter. First of all the PDOS on Ni atoms is significantly
broadened in comparison to the ordered alloy case. This
broadening is mediated by the disorder on the sublattice
�face centers� which is occupied randomly by Cu and Ni in
proportion 2:1. This broadening is less pronounced for Cu
atoms compared to that of Ni because of the NN pair geom-
etry on the underlying sublattice. Another thing to notice in
the middle panel is the disappearance of the pseudogap
which separated Cu and Ni subbands in the ordered Cu2NiZn
alloy. Interestingly, the PDOS in the energy region of Cu and
Ni states resembles closely that of the completely disordered
face-centered-cubic phase of the same composition binary
alloy37 �i.e., Cu67Ni33�. On the contrary, the local DOS on the
Zn atoms on the ordered sublattice �cube corner� is only
weakly influenced by randomness via coupling with the dis-
ordered sublattices because of the large separation of the Zn
energy bands from that of the Cu and Ni d bands.

The results for the completely disordered phase
Cu50Ni25Zn25 are shown in the top panel of Fig. 4. We see an
additional smearing of total DOS features in the energy
range of Cu and Ni states. In fact the broadening in the local
DOS on Ni atom is quite dramatic with a weak shoulder on
the higher energy side. The most remarkable effect however
is the broadening of the Zn d bands, which is of course a
consequence of the disorder via coupling with the Cu and Ni
atoms. It would be interesting to compare our results with the
KKR-CPA results of Althoff et al.38 Comparison is between
our DOS and the DOS shown in their Fig. 6. There is close
resemblance between the results: with well-separated Zn and
Cu d peaks and the Ni shoulder at higher energies. This con-
firms our earlier statement that there is not much benefit in

going from the CPA to ASR in homogeneously disordered
alloys.

We next carry out calculations in the presence of SRO.
Single site mean-field theories are unable to deal with SRO.
Here the benefit of going to ASR from CPA will be more
evident. We have described SRO in terms of Warren-Cowley
parameters defined in Eq. �19�. The interpretation of these
parameters in some specific cases is described in the Table I.
In two earlier papers Althoff et al.38,39 used the KKR-CPA to
describe the emergence of SRO in disordered Cu50Ni25Zn25
by explicitly obtaining the Warren-Cowley parameters from
the joint spectral densities of the homogeneously disordered
alloy. The aim here is to use the ASR to obtain the densities
of states of the alloy in presence of SRO. Here the Warren-
Cowley parameters enter the problem as parameters. The
SRO parameters are chosen in several extremal cases of al-
loying and segregation so that the maximum effect of their
variation is reflected in the results.

The top panel of Fig. 5 shows the spectral functions at the
symmetry points kX , k�, and kL for Cu50Ni25Zn25 at the SRO
parameters listed in Table I. We should first note again the
Zn-like bands sit in the range −0.8 to −0.6 Ry, the Cu-like
bands around −0.4 to −0.3 Ry, and Ni-like bands around
−0.2 Ry. The widths of the spectral-function structures are
related to disorder-induced finite lifetimes of Bloch-type
states. These widths and the relative weights are sensitively
dependent on SRO. The disorder-induced widths are related
to the disorder-induced self-energies. As we have seen earlier
that SRO introduces off-diagonal disorder with correlated
configuration fluctuations at a site and its nearest neighbors.
This leads to a strong k dependence of the self-energy and
hence the widths. The CPA gives k-independent self-energies
and cannot reproduce these results.

The bottom panel of Fig. 5 shows the densities of states
with specific values of the Warren-Cowley parameters listed
in Table I. It is clear from the various panels that SRO has
considerable effect on the DOSs, particularly on the Cu-Ni
part of the DOS. In order to understand the effect of SRO on
these DOS structures we choose three of the types of SRO
presented in Fig. 5: �a� Cu and Ni alloyed and Zn segregated
�0-1-1�, �b� Cu and Ni and Cu and Zn alloyed but pairwise
segregated �0-0-1�, and �c� Cu, Ni, and Zn all segregated
�1-1-1�. In order to understand the effect of SRO on the DOS
structures we present in Fig. 6 ordered calculations showing

TABLE I. Specific choice of Warren-Cowley parameters for the
ternary alloy ABC and their interpretation.

	AB 	AC 	BC Type of correlation

0 0 0 No SRO

0 1 1 AB alloyed, C segregated

0 0 1 AB, AC alloyed but pairwise segregated

1 0 1 AC alloyed, B segregated

0 1 0 AB, BC alloyed but pairwise segregated

1 1 0 BC alloyed, A segregated

1 0 0 AC, BC alloyed but pairwise segregated

1 1 1 A ,B ,C all segregated
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overlapping DOS of �left� Zn and CuNi, �middle� CuNi and
CuZn, and �right� Cu, Ni, and Zn. We first note that the Zn
structure is well separated in energy from the Cu and Ni
structures. SRO has very little effect on the virtual bound
state like structure of Zn. To discuss the Cu-Ni structures we
should first remember that when disorder is introduced the
resulting self-energy will smoothen the DOS of its fine struc-

ture. The cases �0-1-1� and �1-1-1� are rather similar as the
CuNi DOS and overlapping Cu and Ni DOS both give rise to
two peaks roughly around −0.3 and −0.2 Ry with the former
having slightly greater weight as compared to the latter. For
the case �0-0-1� the Cu related structures arising from the
DOS for CuNi and CuZn do not overlap exactly and intro-
duce a higher weight toward −0.4 Ry. This similarity be-
tween the CuNi structures for �0-1-1� and �1-1-1� and differ-
ence with �0-0-1� is clearly evident in Fig. 5 bottom panel
reinforce each other giving rise to a. The CPA would not be
able to reproduce these effects.

B. FeNiX [X=Co,Pd,Pt] alloys

The main motivation behind the application of our for-
malism in this section is to explore the effects of gradual
addition of a third component from 3d, 4d, and 5d series to
Fe65Ni35 Invar alloy. We have chosen the Co�3d�, Pd�4d�,
and Pt�5d� to be the third component. For all the cases, the
concentration of Fe has been fixed to be at 65%. Another
reason for choosing these set of alloy systems is to check the
predictive power of our formalism for magnetic alloys. All of
these alloy systems behave magnetically �nonmagnetically�
depending on a range of lattice constant above �below� a
critical value. In other words these alloys undergo a phase
transition from ferromagnetic to paramagnetic under pres-
sure. The transition can also occur due to the gradual in-
crease in Fe percentage beyond 75%. Our aim in this section
however is to explore the electronic structure of these alloy
systems within the magnetic regime.

In order to give an idea about the feature of Bloch spectral
densities in these classes of magnetic Invar alloy systems, we
have chosen Fe65Ni20Co15 alloy as a representative candidate
the spectral densities for which are shown in Fig. 7. The left
panel shows the spectral function for spin up and the right
panel for spin down. Other details for both the panels are
similar to Fig. 3. The first thing to notice in this figure is the
larger broadening of the spectral densities for spin down as
compared to that for spin up. In addition, the peak intensities
on the higher energy scale are comparatively more Lorenzian
broadened. Unlike the Cu-Ni-Zn case, where the individual
atom contributions were energetically well separated from
each other and hence was easy to identify in terms of band
structure �or Bloch spectral functions�, the contribution of
each individual atoms in FeNiCo case is spread out over the
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entire energy range �−0.6,0.1� Ry. In other words there is a
tendency of strong hybridization between the neighboring
atoms, which gives rise to mixed character in the Lorenzian
shaped spectral densities specially in the higher energy re-

gime �−0.3,−0.1� Ry. In contrast to the spin-up case, it is
comparatively easier to locate the individual atom contribu-
tion in the spin-down case. This will become more clear if
we look at the density of states for Fe65Ni20Co15 alloy in the
extreme left column of Fig. 8. It is clear from the top left
panel of this figure that for spin-down case, the Fe peaks are
mostly shifted toward the higher energy range, Ni contribu-
tion dies down quickly in the higher energy side however the
Co contribution is spread out throughout the energy window.
So it is more likely that the higher energy peaks �in Fig. 7� in
the spectral density for the spin-down case is coming from a
combined contribution of the Fe and Co atoms. There might
be a weak contribution from Ni atom due to hybridization.
The sharp peaks in the spectral densities at low energy are a
combined contribution from all the three constituent atoms.

The upper panel of Fig. 8 shows the component-
projected-spin-resolved DOS for disordered Fe65Ni20Co15
�left�, Fe65Ni20Pd15 �middle�, and Fe65Ni20Pt15 �right� alloys,
respectively. The lower panel on the other hand shows the
total spin-resolved DOS for the same three alloy systems.
One can notice from the upper panel that for Pd and Pt sub-
stituted alloys, the peaks related to Pd or Pt are below the Fe
and Ni peaks. From the top left panel of Fig. 8, it is clear that
the local DOS for majority spins are almost identical for Fe,
Ni, and Co while the minority-spin DOS are shifted relative
to one another. Among the three constituents, Fe shows the
highest exchange splitting between the majority and minority
DOS, however Ni shows the lowest. This is manifested in the
values of magnetic moments. The component-projected and
the average magnetic moments �in Bohr magnetons/atom�
for the three alloy systems are given in Table II. One can
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easily notice that the Fe moment is slightly higher in Pd-
substituted alloy while the Ni moments remain almost the
same in all the alloys. It is quite interesting to note that Pd
and Pt, in spite of being nonmagnetic in the pure state, ac-
quire magnetic moments in the alloy due to the presence of
magnetic neighbors Fe and Ni around them. On the other
hand Co which is ferromagnetic in the pure state, experi-
ences a diminished magnetism in the alloy. These magnetic
properties are in agreement with the results of previous stud-
ies on such alloys.33

VI. CONCLUSION

The aim of this work was to present a generalized ASR
method in the reciprocal-space representation to study the
electronic structure of disordered ternary alloys. The formal-
ism allows the calculation of Bloch spectral function at any
point in the reciprocal space within the TBLMTO-ASR
framework. The efficacy of the formalism was illustrated by
examining the electronic structure of the face-centered-cubic
based German silver Cu50Ni25Zn25 and the magnetic Invar
Fe65Ni20X15 �X=Co,Pd,Pt� solid solution. The sensitivity of
the electronic structure of Cu2NiZn to local atomic ordering
present in the various structural phases is demonstrated care-
fully. The effects of short-range ordering in this alloy are
shown to be quite dramatic. The results for the FeNiX ternary
alloys show remarkable similarity with the binary alloys with
regard to the general Invar behavior. Our computed magnetic
moments follow a general trend as compared to the earlier
theoretical findings.

The spectral function provides information on the elec-
tronic structure in addition to that contained in the density of
states while a knowledge based on the reciprocal-space dis-
tribution of the electronic states allows a direct contact to be
made with experimental measurements through techniques
such as positron annihilation, photoemission, etc. Being en-
couraged by the correct trend of results for two realistic ter-
nary alloy systems, these techniques will form the basis of
further studies into similar alloy systems with varying de-
grees of complexity and will serve an extensive comparison
with other theories and experiments.

ACKNOWLEDGMENTS

One of the authors A.A. would like to acknowledge finan-
cial support from the Department of Energy �Grant No.
DEFG02-03ER46026� during the time this work was done.

APPENDIX

We present here the effect of the augmented space transfer
operators on a general augmented-space “state,”

TR
01�	�C1
�C2
�� = �		�C1 + R
�C2
�	 if R�” �C1
�C2


		�C1 − R
�C2
�	 if R � �C1

0 if R � �C2
 ,

�
TR

02�	�C1
�C2
�� = �		�C1
�C2 + R
�	 if R�” �C1
�C2

0 if R � �C1


		�C1
�C2 − R
�	 if R � �C2
 ,
�

TR
12�	�C1
�C2
�� = � 0 if R�” �C1
�C2


		�C1 − R
�C2 + R
�	 if R � �C1

		�C1 + R
�C2 − R
�	 if R � �C2
 ,

�
TRR�		�C1
�C2
�	 = e−i�		�C1
 − �,�C2
 − ��	 ,

TRR�		�0”
�0”
�	 = e−i�		�0”
�0”
�	 .

where �=R−R�.
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