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The elastic properties of ferromagnetic Fe1−xMx �M =Al, Si, V, Cr, Mn, Co, Ni, and Rh; 0�x�0.1� random
alloys in the body-centered-cubic �bcc� crystallographic phase have been studied using the all-electron exact
muffin-tin orbitals method in combination with the coherent-potential approximation. The theoretical lattice
parameters and the single-crystal elastic constants agree well with the available experimental data. The most
significant alloying effects are found for Al, Si, and Ni additions. All elements enlarge the lattice parameter and
decrease the C11, C12, and C� elastic constants and the bulk modulus of bcc Fe. At the same time, C44 is found
to increase with Al, Si, V, Cr, or Mn and remain nearly constant with Co, Ni, and Rh. Accordingly, the elastic
anisotropy of bcc Fe increases with all alloying elements considered here. The calculated alloying effects on
the single-crystal elastic constants are shown to originate from volume effects in combination with the peculiar
electronic structure of bcc Fe.
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I. INTRODUCTION

The stress-strain relation is often used to describe proper-
ties of solid materials.1–6 Elastic and plastic regimes can be
distinguished using this relation. Within the elastic regime,
the stress-strain relation is determined by the single-crystal
and polycrystalline elastic parameters. The resistance of solid
material to permanent or plastic deformation, on the other
hand, is governed by dislocation motion and expressed via
the yield stress or mechanical hardness. Empirical correla-
tions exist between the elastic moduli and technologically
important properties such as strength, hardness, and wear.
One important example is the hardening mechanism in al-
loys, which arises from the disturbances in the lattice caused
by the solute atoms in the matrix. The solid-solution harden-
ing may be described by the classical Labusch-Nabarro
model.7–9 Different solute atoms produce different effects on
the volume and elastic constants of the host, which enables
the design of alloys with novel properties. Therefore, it is of
fundamental importance to describe and understand how the
elastic parameters of engineering materials are influenced by
the alloying elements.

Of particular interest in metallurgy is the effect of solute
atoms on the elastic properties of ferromagnetic �-Fe. Sig-
nificant efforts have been devoted to establish the elastic pa-
rameters of these alloys.3–6 The mechanism of substitutional
solid-solution strengthening in iron was investigated on sev-
eral single-crystal alloys.3 The effect of alloying elements on
the Young’s and shear modulus of iron was studied by Speich
and co-workers4 and Ghosh and Olson.6 Many of these mea-
surements, however, were performed on multiphase samples,
and thus the obtained elastic parameters correspond to a

mixed phase rather than to a well-defined crystal structure.
Nevertheless, today the available experimental data represent
the most consistent starting point in modeling the mechanical
properties of Fe-based alloys.

From theoretical side, most of the first-principles calcula-
tions focused on the chemical and magnetic properties,10–14

and only few studied the elastic properties of body-centered-
cubic �bcc� Fe-based alloys.15–17 Recently, using the all-
electron exact muffin-tin orbitals �EMTO� method18–20 in
combination with the coherent-potential approximation
�CPA�,21,22 Zhang et al.16 demonstrated the composition de-
pendence of the single crystal and polycrystalline elastic pa-
rameters of bcc Fe-Cr and Fe-Mg random alloys. It was
found that alloying produces rather trivial variations in
Fe-Mg but strongly nonlinear trends could be observed in
Fe-Cr. Here, we extend the above ab initio study to the case
of the ferromagnetic bcc Fe1−xAlx, Fe1−xSix, Fe1−xVx,
Fe1−xMnx, Fe1−xCox, Fe1−xNix, and Fe1−xRhx random alloys
with 0�x�0.1. These alloying elements were selected as
representative simple metal �Al�, insulator �Si�, nonmagnetic
�V and Rh�, and magnetic transition metals �Mn, Co, and
Ni�, many of them being known as useful alloying elements
in stainless steels. The present theoretical lattice parameters
and single-crystal elastic constants agree reasonably well
with the available experimental values. On the average, Al,
Si, and Ni turn out to have the largest alloying effects on
Cij�x�. We show that all additions enlarge the lattice param-
eter and consequently decrease the single-crystal elastic con-
stants C11, C12, and C� of bcc Fe. In spite of the increasing
volume with alloying addition, the cubic shear modulus
C44�x� exhibits slightly increasing trend with the concentra-
tion. This unusual alloying effect is due to the particular spin
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density of states �DOS� of bcc Fe. The majority T2g peak
near the Fermi level gives a large negative contribution to the
C44 of Fe. We demonstrate that all alloying additions which
significantly alter the majority T2g peak at the Fermi level
lead to increasing C44�x�.

At ambient conditions, the Fe-rich Fe-Al, Fe-Co, and
Fe-Rh alloys adopt the body-centered-cubic �bcc� phase of
�-Fe. The stability field of the � phase strongly depends on
the alloying element and temperature. Around 400 °C ap-
proximately 21 atomic percent �at. %� Al can be dissolved in
ferromagnetic �-Fe. The maximum solubility of Rh is
�19 at. % �at 600 °C� whereas Fe and Co form solid solu-
tion up to 77 at. % Co �at 100 °C�.23,24 According to the
x-ray diffraction and Mössbauer experiments,25–27 Fe-Si has
the bcc phase below 10 at. % Si. The ferromagnetic Fe-V
alloys also form a disordered bcc phase up to �25 at. % V
�around 300 °C�.23,24 Within the high-temperature paramag-
netic phase, both Fe-Cr and Fe-V alloys display complete
solubility within the bcc phase. The solubility limit of Mn in
ferromagnetic �-Fe is around 3 at. % �near room tempera-
ture� and that of Ni �5.5 at. % �around 400 °C�.23,24 De-
spite this low solubility of Mn and Ni in �-Fe, the present
theoretical study is performed for Fe-based alloys containing
up to 10 at. % alloying additions. By that we �a� try to mini-
mize the numerical noises at low concentrations and �b� in-
vestigate some possible anomalies in the vicinity of the solu-
bility limits within the two-phase region.

All binary systems considered in this study are treated as
substitutional disordered ferromagnetic alloys with bcc un-
derlying crystal structure. This approximation may be ques-
tioned at large concentrations, low temperatures and for alloy
components with large size difference. However, in alloys
with less than 10 at. % impurity atoms and near the room
temperature, the random solid-solution model is expected to
work reasonably well for the total energies.17,28,29 The local
lattice relaxations around large impurity atoms, on the other
hand, could strongly influence the energetics and thus the
computed physical parameters. This effect will be scrutinized
in details here.

The rest of the paper is divided in four main sections. The
theoretical tool is presented in Sec. II. Here we give a brief
overview of the EMTO electronic structure and total-energy
method and the most important details of the numerical cal-
culations. In order to establish the accuracy of our theoretical
approach for the elastic properties of disordered Fe-based
alloys, in Sec. III we compare some EMTO results to those
obtained using the projector augmented wave �PAW� method
as implemented in Vienna ab initio simulation package30–33

�the latter results will be referred to as VASP�. In this section,
we also discuss the accuracy of the single-site coherent-
potential approximation as implemented in the EMTO
method.20 The results obtained for the single-crystal elastic
properties, bulk moduli, and elastic anisotropies of Fe-based
alloys are presented and discussed in Sec. IV. Here, for com-
parison, we also quote our former results obtained for
Fe1−xCrx. The atomic-level mechanisms behind the calcu-
lated trends are discussed in Sec. V. Here, first we single out
the volume effect in the single-crystal elastic constants. Then
we investigate the electronic structure of ferromagnetic Fe
and Fe0.95M0.05 alloys �M =Al, Si, V, Cr, Mn, Co, Ni, and Rh�

in the ideal bcc structure and in a distorted structure used to
calculate the C44 elastic constant.

II. COMPUTATIONAL METHOD

A. Total-energy calculations

The present calculations are based on the density-
functional theory34 formulated within the Perdew-Burke-
Ernzerhof �PBE� generalized gradient approximation for the
exchange-correlation functional.35 The Kohn-Sham
equations36 are solved using the EMTO method.18,19 The
substitutional disorder is treated within CPA.19,21,22 From the
self-consistent charge density, the total energy is calculated
by the full charge-density technique.19,37

The EMTO method is an improved screened Korringa-
Kohn-Rostoker �KKR� method,18 where the one-electron po-
tential is represented by optimized overlapping muffin-tin
potential spheres. By using the overlapping spheres, one de-
scribes more accurately the exact crystal potential, compared
to the conventional muffin-tin or nonoverlapping approach.19

The present implementation is based on a scalar-relativistic
Green’s-function technique. Further information of the
EMTO method and its self-consistent implementation can be
found in Refs. 18, 19, 38, and 39. The EMTO approach
ensures the accuracy needed for the calculations of the an-
isotropic lattice distortions in random alloys. The method has
been applied successfully in the ab initio study of the ther-
mophysical properties of random Fe-based alloys,16,17,40–45

simple and transition-metal alloys,19,46–50 as well as complex
oxide solid solutions.51–54

B. Numerical details

The elastic properties of single crystals are described by
the elements Cij of the elasticity tensor. There are three in-
dependent elastic constants for a cubic lattice: C11, C12, and
C44, and they are connected to the tetragonal shear modulus
C�= �C11−C12� /2 and the bulk modulus B= �C11+2C12� /3.
Dynamical �mechanical� stability requires that C44�0, C�
�0, and B�0.55 The elastic anisotropy is commonly de-
scribed by the parameters introduced by Every56 and Zener.57

The Every parameter is defined as AE= �C11−C12
−2C44� / �C11−C44� and the Zener ratio as AZ=2C44 / �C11
−C12�. For an isotropic cubic crystal �i.e., C11−C12=2C44�,
we have AE=0 and AZ=1.

The cubic elastic constants of the ferromagnetic bcc
Fe1−xMx �M =Al, Si, V, Cr, Mn, Co, Ni, and Rh� random
alloys were calculated as a function of the chemical compo-
sition for 0�x�0.1. At each concentration x, the theoretical
equilibrium lattice parameter a�x� and bulk modulus B�x�
were derived from an exponential Morse-type function58 fit-
ted to the ab initio total energies calculated for seven differ-
ent atomic volumes. The two cubic shear moduli C��x� and
C44�x� were computed using the volume-conserving ortho-
rhombic and monoclinic deformations as described in Ref.
39.

For an Fe1−xMx solid solution, the size and bulk-modulus
misfit parameters are defined as
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�Y =
1

Y

dY

dx
, �1�

where Y stands for the Burgers vector b for the size misfit
��b� and for the bulk modulus B for the bulk-modulus misfit
��B�. Numerically, �b and �B were calculated from the
concentration-dependent lattice parameter a�x� and bulk
modulus B�x� by taking the average slopes up to 5 at. %
�x=0.05� impurity concentrations.

The one-electron equations were solved within the scalar-
relativistic and soft-core approximations. The Green’s func-
tion was calculated for 16 complex energy points distributed
exponentially on a semicircular contour. In the EMTO basis
set, we included s, p, d, and f orbitals �lmax=3�, and in the
one-center expansion of the full charge density lmax

h =8 was
used.39 All calculations were performed for ferromagnetic
bcc alloys. The total energy was evaluated by the shape func-
tion technique. To obtain the accuracy needed for the calcu-
lation of elastic constants, we used about 20 000–25 000
uniformly distributed k points in the irreducible wedge of the
monoclinic and orthorhombic Brillouin zones. For the den-
sity of states, approximately 60 000–80 000 k points were
used. The electrostatic correction to the single-site coherent-
potential approximation was described using the screened
impurity model59 with screening parameter of 0.6. For all
alloy components, the potential sphere radii were chosen to
be equal to the corresponding average atomic sphere radius.
All calculations were performed for static lattice �neglecting
the phonon contributions�.

III. ASSESSING THE ACCURACY OF THE
THEORETICAL TOOL

The most straightforward way to model a random alloy is
to carry out accurate calculations for large supercells �SCs�
with randomly distributed alloy components or for special
quasirandom structures.60,61 However, in alloys containing
only a few percent impurity atoms, the above approaches
become very expensive. The computational efforts may be
reduced by employing the coherent-potential
approximation,21,22,39 which is the most powerful approach
within the alloy theory. Unfortunately, due to its single-site
nature, the CPA cannot be combined with accurate tech-
niques such as the full-potential methods. Because of that,
most of the existing CPA methods are based on conventional
muffin-tin or atomic sphere approximations. The EMTO-
CPA method, on the other hand, is an improved muffin-tin
CPA approach, which goes beyond the standard muffin-tin
approximation by employing optimized overlapping muffin-
tin potentials. In this section, we assess the accuracy of the
EMTO-CPA approach by comparing the EMTO and VASP

results obtained for supercells �Sec. III A� and the CPA and
the supercells results �Sec. III B�.

A. EMTO versus VASP

In order to establish the accuracy of the EMTO method
for ferromagnetic Fe-based alloys, we carried out additional
total-energy calculations using the VASP,30–33 which is a com-
monly accepted accurate density-functional total-energy

method based on the projector-augmented wave
approach.62,63 For the present comparison, we decided to use
a 16-atom supercell formed by 2�2�2 bcc unit cells. In
these VASP calculations, the number of k points in the irre-
ducible wedge of the Brillouin zone was set to 120 and 450
eV energy cutoff for plane waves was used. These values
lead to convergence in the total energy within about 1 meV.

FIG. 1. �Color online� Comparison of the size misfit �upper
panel� and bulk-modulus misfit �middle panel� parameters, and
mixing enthalpies per atom �lower panel� of ferromagnetic bcc
Fe15M1 �M =Al, Si, V, Cr, Mn, Co, Ni, and Rh� alloys calculated
using the EMTO and VASP methods �EMTO-SC, solid circles� in
combination with the supercell technique. The effect of the local
lattice relaxation, as calculated using the VASP method, is also
shown �VASP-LLR, open circles�.
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For each Fe-M binary system, the SC consisted of 15 Fe
atoms and one impurity atom �M�. In order to be able to
make a direct comparison between the corresponding EMTO
and VASP results, we repeated all supercell calculations using
the EMTO method as well. These EMTO results are referred
to as the EMTO-SC values. First, both the VASP and the
EMTO-SC results were obtained for rigid �unrelaxed� super-
cells, neglecting the effect of the local lattice distortions
around the impurity atoms. For comparison, we consider the
size and bulk-modulus misfit parameters calculated by the
two methods. Since the supercells correspond to 6.25 at. %
doping, these SC misfit parameters were computed according
to

�Y =
1

Y0

YSC − Y0

0.0625
, �2�

where Y stands either for the lattice parameter �for �b� or the
bulk modulus �for �B�, and YSC and Y0 are the corresponding
values for the Fe15M1 supercell and for pure bcc Fe, respec-
tively.

In addition to the misfit parameters, we also compare the
EMTO and VASP mixing enthalpies per atom. As standard
states, we used the ferromagnetic bcc Fe in combination with
face-centered-cubic �fcc� Al, Si in diamond structure, bcc V,
antiferromagnetic Cr in CsCl structure, hypothetical ferro-
magnetic bcc Mn, ferromagnetic Co in hexagonal-close-
packed structure �with the experimental hexagonal lattice pa-
rameter of 1.62�, ferromagnetic fcc Ni, and fcc Rh.

Figure 1 displays the EMTO-SC misfit parameters and
mixing enthalpies as a function of the corresponding �unre-
laxed� VASP values. A perfect agreement between the two sets
of results would correspond to solid circles lying on the
dashed line with slope 1. In general, the agreement between
the two sets of theoretical data is good for all parameters.
The mean absolute deviations between the EMTO-SC and
VASP �b and �B values are 0.02 and 0.3, respectively. For the
size misfit, a somewhat larger difference is found for Fe-Mn.
This deviation may be ascribed to the magnetic transition
near the equilibrium volume. Namely, according to our cal-
culations, the magnetic coupling between Fe and Mn
changes from ferromagnetic to antiferromagnetic with in-
creasing volume, which makes the accurate determination of
the equilibrium properties rather difficult. At this point, we
should point out that a �0.02 difference between the
EMTO-SC and VASP �b values corresponds to less than
0.002 Å error in the EMTO equilibrium Wigner-Seitz ra-
dius. Except for Si, the EMTO-SC and VASP mixing enthal-
pies are also in line with each other. The �14 meV devia-
tion in the mixing enthalpy of Fe-Si most likely is due to the

EMTO error for the diamond structure, where so-called
empty spheres need to be included for acceptable potential
overlaps.39

Using the VASP technique, we also investigated the effect
of local lattice relaxation �LLR� around the impurities on the
misfit parameters and mixing enthalpy. The corresponding
VASP results are shown by open symbol in Fig. 1 �VASP-
LLR�. For �b and �B, there is an almost perfect agreement
between the unrelaxed �VASP� and relaxed �VASP-LLR� val-
ues, meaning that the misfit parameters are not significantly
affected by the LLR. The largest LLR effects on �b and �B
are seen for Al and Rh. In the case of the mixing enthalpy,
however, the LLR turns out to be more important. In particu-
lar, we find that the LLR changes the sign of the mixing
enthalpy of Fe-Rh.

The relatively small impact of the LLR can be understood
if we have a look to the effect of the LLR on the nearest-
neighbor distance around the impurity atoms ��d� and the
total energy ��E� �Table I�. For all binaries considered here,
�d is calculated to be below 1.4% of the nearest-neighbor
distance in pure bcc Fe is �2.452 Å�. The largest relaxation
effects are obtained for Al and Rh, which are due to the 12%
and 5% atomic radius difference between bcc Fe and fcc Al
and Rh. For the rest of the elements, both �d and �E are
very small.

Comparing the EMTO-SC and VASP-LLR values to the
VASP values from Fig. 1, we find that the EMTO-SC results
deviate more significantly from the VASP results than the ef-
fect of the LLR. Although both methods employed here suf-
fer from some intrinsic numerical errors, the present devia-
tions most likely are due to the muffin-tin and spherical cell
approximations used in the EMTO approach.18,19,39 There-
fore, we consider the 0.02 and 0.3 mean absolute deviations
between the EMTO-SC and VASP �b and �B values, respec-
tively, as the error bars associated with the present EMTO
calculations. All EMTO results for the elastic properties from
Sec. IV will be analyzed by taking into account these error
bars.

B. Coherent-potential approximation versus supercell
approach

We use the coherent-potential approximation to describe
the random solid-solution model of the Fe-M alloys. There
are several approximations involved in the CPA. It neglects
both the short-range order and the local lattice relaxation
effects. In addition, being a single-site approximation to the
impurity problem, the electrostatic interactions around the
impurity atoms are not accounted for either. Several correc-
tions have been worked out which improve the original CPA

TABLE I. The effect of the local lattice relaxation around the impurity atoms in the ferromagnetic bcc
Fe15M1 �M =Al, Si, V, Cr, Mn, Co, Ni, and Rh� alloys on the nearest-neighbor distance ��d� and the total
energy ��E, per impurity atom� as calculated using the VASP method.

Fe-Al Fe-Si Fe-V Fe-Cr Fe-Mn Fe-Co Fe-Ni Fe-Rh

�d �Å� +0.028 0.001 +0.002 −0.005 +0.002 −0.002 +0.007 +0.035

�E �eV� −0.051 0.000 0.000 −0.001 0.000 −0.001 −0.002 −0.093

ZHANG et al. PHYSICAL REVIEW B 81, 184105 �2010�

184105-4



and extend its application field. It is beyond the scope of the
present work to discuss these corrections or to make attempts
to justify one or the other.

Our aim is to describe the elastic properties of Fe-rich
alloys as a function of chemical composition. In order to
make sure that the employed CPA along with all inherent
approximations is able to describe properly the alloying ef-
fects on the elastic parameters, we carry out a test by con-
trasting the CPA approach with the formally exact �within the
numerical errors discussed above� SC approach. Namely, we
compare the volume and bulk-modulus misfit parameters for
the considered ferromagnetic bcc Fe-based alloys calculated
by CPA and SC techniques. In these CPA calculations, the
Fe-M system was described as a random bcc Fe0.9375M0.0625
alloy whereas in the SC calculations the 16-atom supercell
containing 15 Fe and one M was considered.

The results of the CPA versus SC test are shown in Fig. 2.
The almost perfect agreement between the two sets of size
misfit data �upper panel� is slightly destroyed for the bulk-
modulus misfit �middle panel�. However, even for �B, the
deviations are within the numerical accuracy of our tech-
nique. For Fe-Si, EMTO-CPA yields small positive �b
��0.028� whereas the EMTO-SC value is 0.009. On the
other hand, the EMTO-CPA result turns out to be rather close
to the corresponding VASP value of 0.021.

Although the general trend for the mixing enthalpies is
well captured by the single-site approximation, we can ob-
serve sizable differences in the case of V, Cr, Ni, and Rh
�Fig. 2, lower panel�. In this comparison, we should realize
however that the 16-atom supercell is a relatively low-order
approximation for the random system and thus one cannot
expect a perfect agreement between the two sets of data.
Furthermore, in the present CPA calculations, we used a
fixed screening parameter.59 For more accurate CPA mixing
enthalpies, one should determine the concentration- and
structure-dependent screening parameter using large super-
cells. This is an enormous task and points beyond the scope
of the paper. On the other hand, we recall that the elastic
properties of random alloys depend only weakly on the
screening parameter,39,48 and thus using a fixed screening
parameter is expected to introduce negligible errors in the
calculated Cij values.

The generally good agreement between EMTO-SC and
EMTO-CPA misfit parameters from Fig. 2 indicates that at
least up to 6.25 at. % impurity concentration the effect of
alloying on the bulk parameters is properly described by our
single-site EMTO-CPA approach. Hence, in Sec. IV, we
present and discuss theoretical results obtained exclusively
with the EMTO-CPA approach �for simplicity, these results
will be referred to as the EMTO values�.

IV. ELASTIC PROPERTIES OF FERROMAGNETIC
bcc Fe1−xMx (M=Al, Si, V, Cr, Mn, Co, Ni, and Rh)

RANDOM ALLOYS WITH 0�x�0.1

A. Lattice parameters

The calculated bcc lattice parameters a�x� of Fe1−xMx al-
loys are displayed in Fig. 3 and listed in Table II as a func-
tion of solute concentration x. In Fig. 3, we also included the

available experimental data25,64–73 and the theoretical results
for Fe-Si system obtained using an ab initio KKR-CPA
method.74

For most of the binary alloys from Fig. 3, the present
theoretical lattice parameters increase monotonously with the
solute concentration. However, the small positive slopes for
Fe-Mn and Fe-Cr at low-x values are gradually reduced turn-
ing negative at large x. For these two systems as well as for

FIG. 2. �Color online� Comparison of the size misfit �upper
panel� and bulk-modulus misfit �middle panel� parameters, and
mixing enthalpies �lower panel� of the ferromagnetic bcc
Fe0.9375M0.0625 �M =Al, Si, V, Cr, Mn, Co, Ni, and Rh� alloys cal-
culated using the supercell �EMTO-SC� and the CPA �EMTO-CPA�
approaches.
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Fe-Ni and to some extent also for Fe-Si, the EMTO a�x�
trends clearly deviate from the linear behavior. As expected,
the largest volume effects are obtained for Al and Rh doping
whereas Si addition leaves the lattice parameter of Fe almost
intact. A former theoretical study of the electronic and mag-
netic properties of disordered bcc Fe-Si alloys with less than
25 at. % Si, based on ab initio KKR-CPA approach,74,75 also
calculated weak composition dependence for the lattice pa-
rameter of Fe-Si. However, this KKR-CPA study predicted
slightly decreasing a�x� for Fe1−xSix with increasing x.74,75 In
contrast, here we find that both EMTO and VASP methods
yield small but positive slopes for a�x� with Si addition. We
point out that our finding for the lattice parameter of Fe-Si
alloys is consistent with the negative bulk-modulus misfit
obtained for Fe-Si �Figs. 1 and 2�, which is in line with the
experimental data.76

In general, the agreement in Fig. 3 between the present
theoretical results and the experimental data is satisfactory. It
is well known that the PBE density-functional
approximation35 underestimates the volume of pure Fe and
only part of this error is removed by the lattice vibration
�neglected in the present study�. Nevertheless, the observed
concentration dependences of the lattice parameters of Fe-M
alloys are well captured by the theory. In particular, the local
maximum for Fe-Cr is reproduced by the theory, although

with significantly larger positive slope at low-x values. The
theoretical local maximum for the lattice parameter of Fe-
Mn, on the other hand, is missing from the experimental
data. However, the calculated maximum as well as the nega-
tive a�x� slope for Fe-Mn is located well outside the stability
field of the bcc Fe-Mn alloys, indicating that the quoted ex-
perimental data refers to a mixed phase rather than to the
pure � phase.69

In Fig. 4, we compare the present theoretical misfit pa-
rameters for the lattice constants �size misfit� to the experi-
mental values from Ref. 6. The theoretical results from Fig. 4
were derived from the average slopes between 0 and 5 at. %
of the EMTO a�x� functions �Fig. 3�, as described in Sec.
II B. We find that the experimentally observed alloying ef-
fects on the lattice parameter of Fe-based alloys are well-
captured by the EMTO method combined with the CPA
technique.6 But we also notice that EMTO systematically
overestimates the relative changes in the lattice parameters.
The deviation ranges between �0.03 obtained for Fe-Mn and
�0.11 calculated for Fe-Rh. In the case of Fe-Si, the above
deviation is large enough to turn the experimental negative
size misfit to a small positive value.

It seems that the overestimation of the size misfit by the
theory has a rather universal character for the present Fe-
based alloys. The almost constant deviation between theoret-
ical and experimental �b as going from Al to Ni, and the fact
that no similar consistent deviations were obtained for the
Al-based alloys50,77 suggest that part of the discrepancies
from Fig. 4 should be due to the fundamental density-
functional error present in Fe and Fe-rich alloys. The PBE
functional is known to underestimate �overestimate� the
equilibrium volumes of V, Cr, and Fe �Si, Rh�, and predict
accurate volumes for Al, Co, and Ni.78–80 As an example, we
consider the case of Fe-Rh. Static �0 K� PBE calculations
underestimate the equilibrium Wigner-Seitz radius of bcc Fe
by �0.014 Å and overestimate that of fcc Rh by
�0.020 Å.78 This means that in Fe-Rh alloys, the PBE error
gives an additional positive slope of ��a /�x /a�PBE�0.03.
Similarly, we find that the PBE error increases the theoretical
size misfit of the Fe-Al, Fe-Si, Fe-Co, and Fe-Ni alloys. Al-
though, this error cannot completely explain the deviations
seen in Fig. 4, it clearly gives a positive contribution to the
theoretical size misfit parameters. The accuracy of PBE for
the solute atom in ferromagnetic bcc Fe matrix may be dif-
ferent from that for the pure metal. Nevertheless, for a more
accurate theoretical estimate of the size effects better density
functionals are required.

B. Single-crystal elastic constants

Next, we present our theoretical results for the single-
crystal elastic constants of ferromagnetic bcc Fe1−xMx �M
=Al, Si, V, Cr, Mn, Co, Ni, and Rh; 0�x�0.1� alloys. For
each solute concentration x, the single-crystal elastic con-
stants were calculated at the corresponding theoretical equi-
librium lattice parameter a�x� �Fig. 3�. Results for C11�x�,
C12�x�, C��x�, and C44�x� are plotted in Fig. 5 and listed in
Table II.

The accuracy of the theoretical Cij�x� values can be esti-
mated by comparing them with the experimental values

FIG. 3. �Color online� Theoretical �present results, solid circles
connected with lines� and experimental �Refs. 25 and 64–73, open
symbols� lattice parameters of ferromagnetic bcc Fe1−xMx �M =Al,
Si, V, Cr, Mn, Co, Ni, and Rh; 0�x�0.1� random alloys. For
comparison, the former theoretical results for Fe-Si �solid triangles�
are also shown �Ref. 74�.
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available for Fe-Al with 3.97 and 9.65 at. % Al �Ref. 81�
and for pure Fe.82 Theory turns out to be able to trace the
experimental concentration dependences of the elastic con-
stants upon Al addition to bcc Fe. In particular, the negative
trends for C11�x� and C12�x� and the weak positive trend of
C44�x� are accurately reproduced by the present theory. In
lack of other single-crystal experimental data, we turn to
discuss the trends from Fig. 5. Further comparison between
theory and experiment will be presented in the case of the
bulk modulus �Sec. IV C�.

For all binaries considered here, the theoretical elastic
constants C11�x�, C12�x�, and C��x� decrease with x for solute

concentrations below 5 at. %. When 5 at. % Al, Si, Mn, or
Ni is added to bcc Fe, the C11 elastic parameter of Fe is
reduced by 14.9%, 10.3%, 9.6%, and 14.3%, respectively.
The corresponding changes with V, Cr, and Co additions are
significantly smaller: −3.9%, −6.0%, and −4.6%, respec-
tively. Rhodium produces an intermediate effect on C11:
5 at. % Rh changes C11 of Fe by −7.8%. Notice that these
changes correspond to 5 at. % solute concentration, and
might differ from the average slopes below x=0.05. The
C11�x� curves for Fe-V, Fe-Cr, and Fe-Mn are nonmonoto-
nous, exhibiting local minima around 7.5 at. % V, 5 at. %
Cr, and 5 at. % Mn.

Similar to C11�x�, C12 of Fe0.95Al0.05, Fe0.95Si0.05,
Fe0.95Mn0.05, and Fe0.95Ni0.05 are smaller by about 15.5%,
11.5%, 15.2%, and 17.3%, respectively, than that of pure Fe.
The effects of V, Co, and Rh are −6.3%, −5.5%, and −4.5%.
However, C12 turns out to be more sensitive to Cr addition
than C11: 5 at. % Cr decreases C12 of bcc Fe by more than
10%. There are local minima also for C12�x�: at 7.5 at. % Si
and V, and at 5 at. % Cr and Mn.

Since all alloying additions decrease C11 and C12, the ab-
solute changes in C�= �C11−C12� /2 are expected to be small.
However, since for pure Fe C11�2.1C12, similar relative
changes in C11 and C12 �up to 5 at. % solute concentrations�
result in decreasing C� for all binaries considered. Indeed,
we find that C� drops by approximately 14.3%, 9.2%, 1.7%,
1.8%, 4.5%, 3.8%, 11.5%, and 10.9% when 5 at. % Al, Si,
V, Cr, Mn, Co, Ni, or Rh is added to bcc Fe. That is, all
additions lower the tetragonal shear constant of bcc Fe. The
C��x� curves for Fe-V and Fe-Mn show local minima near

TABLE II. Theoretical �EMTO� equilibrium lattice parameters a�x� �in Å� and single-crystal elastic constants Cij�x� �in GPa� calculated
for the ferromagnetic bcc Fe1−xMx �M =Al, Si, V, Cr, Mn, Co, Ni, and Rh; 0�x�0.1� random alloys. For pure Fe, the corresponding values
are a�0�=2.837 Å, C11�0�=297.83 GPa, C12�0�=141.89 GPa, C��0�=77.97 GPa, and C44�0�=106.73 GPa �Ref. 16�.

x a�x� C11�x� C12�x� C��x� C44�x� a�x� C11�x� C12�x� C��x� C44�x�

Fe-Al Fe-Si

0.025 2.844 270.71 128.03 71.34 108.77 2.840 277.10 130.25 73.43 110.61

0.05 2.851 253.56 119.87 66.84 111.34 2.841 267.12 125.54 70.79 115.15

0.075 2.857 240.98 114.34 63.32 114.76 2.842 262.15 124.60 68.78 119.94

0.1 2.863 233.46 111.98 60.74 118.67 2.842 260.07 126.96 66.55 124.03

Fe-V Fe-Cr

0.025 2.843 290.15 136.78 76.69 106.80 2.843 284.17 131.51 76.33 108.56

0.05 2.848 286.15 132.92 76.61 107.86 2.846 279.96 126.87 76.54 112.83

0.075 2.852 285.36 130.37 77.49 109.66 2.847 283.52 127.19 78.16 117.51

0.1 2.855 288.91 130.36 79.27 111.98 2.847 287.75 127.92 79.91 120.71

Fe-Mn Fe-Co

0.025 2.842 276.15 126.29 74.93 109.75 2.840 289.75 137.50 76.12 106.05

0.05 2.844 269.24 120.37 74.44 114.73 2.842 284.07 134.03 75.02 106.15

0.075 2.842 275.24 122.66 76.29 118.35 2.845 280.10 131.68 74.21 106.90

0.1 2.838 285.53 129.91 77.81 120.90 2.848 277.06 130.25 73.41 108.17

Fe-Ni Fe-Rh

0.025 2.843 275.89 127.06 74.42 105.17 2.853 284.66 138.47 73.10 104.64

0.05 2.850 255.29 117.29 69.00 104.59 2.868 274.50 135.51 69.50 104.36

0.075 2.856 240.47 110.09 65.19 105.69 2.882 266.87 133.37 66.75 104.95

0.1 2.859 231.78 107.46 62.16 108.17 2.897 259.60 130.55 64.52 106.02

FIG. 4. �Color online� Theoretical �present results, solid circles�
and experimental �Ref. 6, open symbols� relative changes in the
lattice parameter for Fe1−xMx �M =Al, Si, V, Cr, Mn, Co, Ni, and
Rh; 0�x�0.05� random binary alloys.
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5 at. % impurity concentration, and that of Fe-Cr has mini-
mum at 2.5 at. % Cr. It is notable that with 10 at. % V or Cr
�Mn� addition, the calculated C��0.1� exceeds �reaches� the
C� of pure Fe �77.97 GPa�.

Compared to the above complex concentration depen-
dences of C11�x�, C12�x�, and C��x�, the calculated C44�x�
curves show nearly linear and relatively weak variations with
composition �Fig. 5�. The relative changes in C44�x� upon
5 at. % solute addition are 4.3%, 7.9%, 1.1%, 5.7%, 7.5%,
−0.5%, −2.0%, and −2.2% for Al, Si, V, Cr, Mn, Co, Ni, and
Rh, respectively. The largest effect on C44�x� is produced by
10 at. % addition of Si �16.2%�, followed by Mn �13.3%�,
Cr �13.1%�, and Al �11.2%�. Cobalt, nickel, and rhodium
additions lead to weak local minima in C44�x� at 2.5 at. %

Co and Ni and 5 at. % Rh. It is interesting that C44�x� of
Fe-Co, Fe-Ni, and Fe-Rh remain close �within 1.3%� to that
of pure Fe even for 10 at. % doping. Furthermore, Al, Si, V,
Cr, and Mn increase the C44 cubic shear modulus of Fe. This
is rather surprising since all additions increase the equilib-
rium volume of bcc Fe �see Sec. V�.

In summary, at 5 at. % solute concentration, Al, Si, Mn,
and Ni are found to reduce strongly �between 9.6% and
17.3%� the C11 and C12 elastic constants of ferromagnetic
bcc Fe. On the other hand, the two cubic shear moduli show
different behavior upon alloying. Namely, C� is significantly
decreased �9.2–14.3 %� by Al, Si, Ni, and Rh whereas C44
increases �4.3–7.9 %� with Al, Si, Cr, and Mn. On the aver-
age, Al, Si, and Ni yield the largest alloying effects on the
single-crystal elastic constants of bcc Fe.

C. Bulk modulus

Our theoretical results for the bulk modulus B�x� of fer-
romagnetic bcc Fe1−xMx �M =Al, Si, V, Cr, Mn, Co, Ni, and
Rh; 0�x�0.1� alloys are presented in Table III and com-
pared to the available experimental data4,76,81 in Fig. 6. At
concentrations x�0.05, theory predicts a negative slope for
B�x� for all binaries considered here. This is consistent with
our finding from Fig. 4, namely, that all elements considered
here increase the equilibrium volume of ferromagnetic bcc
Fe. Aluminum and nickel additions are calculated to yield
the largest alloying effects in B�x� �see also Fig. 2�. The
theoretical bulk moduli of Al, Co, Ni, and Rh-doped Fe de-
crease monotonously with alloying, and local minima in B�x�
can be observed around 7.5 at. % Si, 7.5 at. % V, 5 at. %
Cr, and 5 at. % Mn.

No experimental bulk-moduli data are available for Fe-V
alloys. The experimental bulk moduli for Fe-Al with 3.97
and 9.65 at. % Al may be calculated from the measured
single-crystal elastic constants �Fig. 6�.81 Combining those
values with the room-temperature experimental bulk modu-
lus of pure Fe �167.9 GPa�,82 we find that Al decreases the
bulk modulus of Fe. This trend is well reproduced by the
present theoretical results. For Fe-Cr, the agreement between
theory and experiment4 is good, both of them showing mini-
mum around 5 at. % Cr. For Fe-Mn, the theoretical slope
resembles the average experimental slope below x=0.05. On
the other hand, the marked minimum in the theoretical B�x�
near 5 at. % Mn is completely absent from the measured
trend. The reason for this discrepancy could be the low solu-

FIG. 5. �Color online� Theoretical �present results, solid sym-
bols connected with lines� single-crystal elastic constants of ferro-
magnetic bcc Fe1−xMx �M =Al, Si, V, Cr, Mn, Co, Ni, and Rh; 0
�x�0.1� random alloys. For comparison, the experimental data
�open symbols� for Fe1−xAlx are also shown �x=0.0397, 0.0965
from Ref. 81 and x=0 from Ref. 82�.

TABLE III. Theoretical �EMTO� bulk modulus B�x� �in GPa� calculated for the ferromagnetic bcc
Fe1−xMx �M =Al, Si, V, Cr, Mn, Co, Ni, and Rh; 0�x�0.1� random alloys. For pure Fe, the corresponding
value is B�0�=193.87 GPa �Ref. 16�.

x

B�x�

Fe-Al Fe-Si Fe-V Fe-Cr Fe-Mn Fe-Co Fe-Ni Fe-Rh

0.025 175.59 179.20 187.90 182.35 176.24 188.25 176.67 187.20

0.05 164.43 172.73 184.00 177.88 169.99 184.04 163.29 181.84

0.075 156.55 170.45 182.03 179.30 173.52 181.15 153.55 177.87

0.1 152.47 171.33 183.21 181.24 181.78 179.19 148.90 173.57
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bility �up to 3 at. %� of Mn in �-Fe, which suggests that the
experimental points at 5 and 10 at. % Mn already belong to
the two-phase ��+	� region.4 The agreement for Fe-Rh is
also satisfactory. Some inconsistencies can be seen between
the theoretical and experimental data for Fe-Co and Fe-Ni.
For the prior, experiment gives constant or slightly increas-
ing slope at low concentrations,4 in contrast to the negative
theoretical slope. Similar difference can be observed for the
Fe-rich Fe-Ni alloys. It is tempting to lay the blame on the
large theoretical size misfit parameters �Fig. 4� for these dif-
ferences in the bulk modulus. However, in that situation for
all binaries, the theoretical dB�x� /dx value should be more
negative than the experimental counterpart, which is not the
case for Fe-Mn, Fe-Cr, and Fe-Rh.

For Fe-Si, previous theoretical results obtained for x be-
tween 0.05 and 0.1,74 predict slightly increasing bulk modu-
lus with Si content. The present theoretical B�x� for Fe-Si, on
the other hand, follows closely the available experimental
data for 6–11.7 at. % Si.76 Furthermore, combining the
room-temperature experimental bulk modulus of Fe with
those measured between 6 and 11.7 at. % Si,76 one obtains
that the bulk modulus of Fe-Si decreases with Si addition,
which confirms our theoretical finding.

D. Elastic anisotropy

The present Every �AE� and Zener �AZ� anisotropy param-
eters for ferromagnetic bcc Fe are −0.3 and 1.37, respec-
tively. These ratios are different from the experimental val-
ues at 4 K �−1.14 and 2.32, respectively82� predicting
significantly more isotropic lattice than the experiment.
Since C12 and C44 are rather well reproduced by the theory,16

the above discrepancy between theory and experiment may
be ascribed to the large theoretical C11 �and thus C��. We
note that the experimental C11 in combination with the the-
oretical C12 and C44, yields −1.0 and 2.37 for AE and AZ,
respectively. Zhang et al. �Ref. 16� argued that about 50% of
the error in the theoretical C11 is due to the underestimated
equilibrium volume and the rest has a complex electronic
structure and magnetic origin, which is not captured by the
common density-functional approximation.

Next we study the variation in the anisotropy ratios with
impurity concentration in bcc Fe1−xMx. As shown in Fig. 7,
except for the slight local extremes at 7.5 at. % Mn, the
individual AE �AZ� parameters decrease �increase� almost lin-
early with increasing x. That is, for all binaries considered
here, the calculated anisotropy increases or remains nearly
constant with alloying. Aluminum, silicon, and nickel in-
crease the anisotropy of bcc Fe the most. For instance,
10 at. % Al enhances AZ from 1.37 to 1.95 and decreases AE
from −0.3 to −1.0. High elastic anisotropy was also reported
in ordered �B2� Fe-Al alloys with 0.2–0.3 atomic fraction of

FIG. 6. �Color online� Theoretical �present results, solid circles
connected with lines� bulk moduli of ferromagnetic bcc Fe1−xMx

�M =Al, Si, V, Cr, Mn, Co, Ni, and Rh; 0�x�0.1� random alloys.
Former theoretical results for Fe-Si �Ref. 74� �solid squares� and the
available experimental data �Refs. 4 and 76� �open circles and tri-
angles� are shown for comparison. The estimated bulk moduli for
Fe-Al using the measured single-crystal elastic constants �Ref. 81
are also shown �open squares�.

FIG. 7. �Color online� Theoretical �present results� Every �AE,
red squares connected with lines� and Zener �AZ, blue circles con-
nected with lines� anisotropy parameters of ferromagnetic bcc
Fe1−xMx �M =Al, Si, V, Cr, Mn, Co, Ni, and Rh; 0�x�0.1� ran-
dom alloys. The isotropic values are shown by red dashed-dotted
�Every� and blue dashed �Zener� lines.
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Al.83 Chromium, manganese, and rhodium additions produce
intermediate variations in AE and AZ whereas vanadium and
cobalt leave the anisotropy parameters almost unchanged.

V. DISCUSSION

The calculated single-crystal elastic constants of Fe1−xMx
�M =Al, Si, V, Cr, Mn, Co, Ni, and Rh; 0�x�0.1� random
alloys follow a rather smooth composition dependence with
some shallow local extremes around x�0.05. Hence, param-
eterization of Cij�x� using simple functions �e.g., low-order
polynomials� is possible. After such parameterization is
made, our theoretical data from Fig. 5 �Table II� can be used
as a consistent database for modeling the mechanical prop-
erties of Fe-M alloys at low temperature. The primary
strength of such first-principles calculations, however, is to
reveal the electronic origin of the alloying effects. There are
several open questions regarding the calculated trends which
could be answered using our electronic-structure data. One
of the most surprising phenomena in Fig. 5 is the composi-
tion dependence of C44�x�. The pressure derivatives of the
elastic constants of Fe are all positive.84 Therefore, since all
alloying elements increase the lattice parameter of bcc Fe
�Fig. 3�, one would expect that they lower the single-crystal
elastic constants. This is clearly not the case for C44 upon Al,
Si, V, Cr, and Mn additions to Fe �Fig. 5�. Here we try to find
a possible reason behind this peculiar behavior. To this end,
first we single out the volume effect on �Cij /�x and then
investigate the effect of lattice distortion on the electronic
structure of Fe and Fe-M alloys.

A. Volume effect on �Cij(x) Õ�x

In Fig. 8, we compare the effect of volume expansion on
Cij���Cij /�x�V� with the calculated total alloying effect
��Cij /�x�. The volume effect was estimated from the vol-
ume dependence of Cij for bcc Fe �dCij /dV� and the volume
change caused by alloying �dV /dx�, viz.,

��Cij

�x
�

V
	

dCij

dV
�

dV

dx
. �3�

Here dCij /dV is the numerical derivative of Cij calculated for
pure bcc Fe for five different volumes around the theoretical
equilibrium volume, and dV /dx was obtained from the aver-
age slope of a�x� between 0�x�0.05 �Fig. 3�. The volume
effect is shown by empty symbol in Fig. 8. The total alloying
effects, �Cij /�x, were derived from the average slopes of
Cij�x� between 0�x�0.05 �Fig. 5� and they are shown by
solid symbol in Fig. 8.

It is found that for the tetragonal elastic constant C�, the
estimated ��C� /�x�V resembles rather well the total alloying
effects. Exceptions are Fe-Al and Fe-Si but even for these
two systems ��C� /�x�V can account for only about 40% and
30% of �C� /�x. The largest volume effects are obtained for
Al and Rh �Fig. 4�, which also give the largest �C� /�x
values. On the other hand, in the case of Fe-Al, Fe-Si, Fe-V,
Fe-Cr, and Fe-Mn, the volume effect ��C44 /�x�V has a sign
opposite to that obtained for �C44 /�x. Furthermore, for all
elements ��C44 /�x�V
�C44 /�x whereas for C�, there is no

clear trend in the sign of ��C� /�x�V−�C� /�x. It follows
that the composition dependence of C44�x� is governed by
electronic �magnetic� effects other than the simple alloying
induced volume change. These complex electronic mecha-
nisms seem to be strong enough to overwrite the volume
effects on C44�x�.

B. Electronic-structure effects on C44(x)

An elastic constant C is defined as the second-order de-
rivative of the total energy E���=E�0�+a�2+O��4� �where
O��4� stands for the neglected terms� calculated as a function
of the distortion parameter �. Since usually � is very small
�
0.05�, one can neglect the higher-order terms in � obtain-
ing C��E��� /�2, where �E���	E���−E�0� represents the
change in the total energy upon lattice distortion. Thus by
tracing the composition dependence of �E���, one can also
understand the behavior of C. The total-energy change, in
turn, may be expressed as the sum of the changes in the
kinetic, Hartree, and exchange-correlation energies. Accord-
ing to the force theorem,85,86 the leading term in the total-
energy difference �E is the band-energy part of the kinetic
energy �Eb. In our case, we have

�Eb��� 	 
�F

��N��,�� − N��,0��d� , �4�

where N�� ,�� is the density of states �DOS� for energy � and
lattice distortion �, and the integral includes all states below
the Fermi level �F. In solids with small or constant DOS
around �F, N�� ,�� shows weak � �i.e., lattice distortion� de-

FIG. 8. �Color online� Comparison between the volume expan-
sion effect ��Cij /�x�V �in GPa per atomic fraction, open circles�
and total alloying effect �Cij /�x �in GPa per atomic fraction, filled
circles� on C� �upper panel� and C44 �lower panel� elastic constants
of ferromagnetic bcc Fe0.95M0.05 �M =Al, Si, V, Cr, Mn, Co, Ni, and
Rh� random alloys.
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pendence and thus the band-energy contribution to �E���
�and thus to the elastic constant C� is negligible. However, in
metals with a large DOS peak at �F, the situation may be
quite different. Lattice distortion may significantly alter
N�� ,�� by splitting the DOS peak at �F. As a consequence,
the band energy lowers, which gives a negative contribution
to �E��� and to C. In such cases, the elastic constant corre-
sponding to the particular lattice distortion remains positive
only if the rest of �E��� �mainly the electrostatic term� is

large enough to cancel the negative �Eb���. Here we will
show that the above scenario occurs also in ferromagnetic
bcc Fe when a monoclinic C44 distortion is applied.

The density of states of Fe and Fe-based binary random
alloys were computed at their equilibrium volumes. Figure 9
displays the total �thick dotted lines� and the partial d �thick
solid lines� DOS of pure Fe: N�� ,0� is for the bcc lattice
�upper panel� and N�� ,�� is for a distorted lattice ��=0.05�
corresponding to the C44 elastic constant �lower panel�. Since
for Fe, the d band dominates the shape of the DOS, in the
following we focus only on the d DOS. In cubic environ-
ment, the d band is formed by the triple-degenerated T2g
band and by the double-degenerated Eg band. In Fig. 9, these
two subbands are shown by thin solid lines �T2g� and thin
dashed lines �Eg�. In Table IV, we list the present N��F ,��
values for the T2g and Eg bands, for both the majority �↑ �
and the minority �↓ � spin channels, and for �=0 and �
=0.05.

The majority channel �N↑�� ,0�� of bcc Fe �Fig. 9, upper
panel� is almost completely saturated and the minority chan-
nel �N↓�� ,0�� has filled bonding and empty antibonding
states. The Fermi level in the minority band is pinned to the
pseudogap separating the bonding and antibonding states
with rather small and smooth N↓�� ,0� around �F. Therefore,
no substantial changes are expected in N↓�� ,�� upon lattice
distortion. On the other hand, in the majority band, N↑�� ,0�
is large and has a pronounced shoulder at �F. Decomposing
N↑�� ,0� into T2g and Eg components, we find that the shoul-
der at �F has almost pure T2g character. Therefore, lattice
distortion should have a marked effect on this subband. In-
deed, �=0.05 C44 distortion �Fig. 9, lower panel� splits the
triple-degenerated T2g

↑ band in such a way that two out
of the three bands are shifted toward negative energies. This
shift is reflected in a large drop of the total T2g

↑ DOS at the
Fermi level, viz., �N↑��F ,��	N↑��F ,��−N↑��F ,0��
−1.4 states /Ry. For comparison, the same lattice distortion
for the minority T2g

↓ channel gives N↓��F ,��−N↓��F ,0�
�0.04 states /Ry. The distortion-induced shift moves the
weight of the majority T2g

↑ band toward lower energies re-
sulting in �Eb���
0. Note that in ferromagnetic bcc Fe,

FIG. 9. �Color online� Total �black thick dotted lines�, partial d
�red thick solid lines�, and partial T2g �color thin solid lines� and Eg

�color thin dashed lines� density of states of bcc Fe without lattice
distortion �upper panel� and with 5% distortion used to calculate the
C44 elastic constant �lower panel�. The figure illustrates how T2g

and Eg bands are split by lattice distortion. The energy scale is set
relative to the Fermi level.

TABLE IV. The partial T2g and Eg DOS �states/Ry� of ferromagnetic bcc Fe and Fe0.95M0.05 �M =Al, Si, V, Cr, Mn, Co, Ni, and Rh�
random alloys without and with 5% C44 distortion. Listed are also the C44 values �in GPa� for Fe0.95M0.05 relative to that of pure Fe. For
alloys, the average DOS values are shown.

System

No distortion 5% C44 distortion

�C44T2g
↑ T2g

↓ Eg
↑ Eg

↓ T2g
↑ T2g

↓ Eg
↑ Eg

↓

Pure Fe 8.268 2.853 1.448 0.302 6.839 2.890 1.403 0.382

Fe-Al 6.942 3.756 1.404 0.664 5.866 3.643 1.367 0.749 4.61

Fe-Si 6.654 3.600 1.328 0.658 5.657 3.502 1.299 0.732 8.42

Fe-V 6.225 2.859 1.378 0.314 5.221 2.917 1.334 0.402 1.13

Fe-Cr 5.718 2.940 1.416 0.384 4.949 3.074 1.415 0.490 6.10

Fe-Mn 6.282 3.138 2.116 0.552 5.674 3.225 2.173 0.617 8.00

Fe-Co 7.614 2.991 1.256 0.352 6.205 3.034 1.191 0.457 −0.58

Fe-Ni 6.993 3.879 1.638 0.628 5.817 3.795 1.582 0.736 −2.14

Fe-Rh 6.966 3.246 1.200 0.370 5.782 3.168 1.152 0.481 −2.37
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there must be large positive electrostatic �plus exchange-
correlation� contribution �not shown� which compensates the
above band-energy change and leads to positive �E��� and
positive C44 �106.73 GPa�. Based on the above mechanism,
we propose that those alloying additions which significantly
alter the majority T2g

↑ peak of bcc Fe also enhance the C44
elastic constant of Fe. However, this enhancement may to
some extent be cancelled by the negative volume effect.

From the present DOS results listed in Table IV, one finds
that all alloying additions considered here lower the size of
the total �average� T2g

↑ DOS at the Fermi level. Thus, we can
anticipate that these solute elements also have a correspond-
ing impact on the C44 elastic constant of bcc Fe. Aluminum,
silicon, vanadium, chromium, and manganese modify the
electronic structure in such a way that the change in the T2g

↑

DOS upon C44 lattice distortion becomes �N↑��F ,���
−1.0 states /Ry �compared to −1.4 states /Ry obtained for
pure Fe�. This means that the negative band-energy contri-
bution to �E��� and to C44 is reduced by these alloying
elements. That is, from electronic-structure considerations
Al, Si, V, Cr, and Mn are expected to increase C44. This is in
perfect agreement with Fig. 5 and Table II �see also the last
column in Table IV�. In particular, 5% Si, Cr, and Mn in-
crease �N↑��F ,�� to −0.99, −0.77, and −0.61 states /Ry and
increase C44 of bcc Fe by 8.4 GPa, 6.1 GPa, and 8.0 GPa,
respectively. The reason why Si yields the largest change on
C44 is that this element produces the smallest �negative� vol-
ume effect. Vanadium, on the other hand, has a large volume
term �Fig. 8�, which effectively reduces the electronic-
structure-driven enhancement of C44.

Cobalt leaves the total T2g
↑ DOS change almost intact,

giving �N↑��F ,���−1.4 states /Ry �Table IV�. The volume
effect of Co is also small �Fig. 8�, which explains the nearly
vanishing Co effect on C44 of bcc Fe. Nickel and rhodium
slightly reduce the T2g

↑ DOS change in bcc Fe, both of them
giving �N↑��F ,���−1.2 states /Ry. Accordingly, these two
elements also produce an electronic-structure-driven en-
hancement of C44. On the other hand, since they increase the
lattice parameter of bcc Fe rather significantly, the total Ni
and Rh alloying effects on C44 will remain close to zero.

The proposed volume plus electronic-structure mecha-
nism gives a simple qualitative picture of the alloying effects
on C44 of bcc Fe. However, there are also some exceptions
which do not completely follow the expected trends. For
instance, in spite of the fact that Ni and Rh produce similar

�N↑��F ,�� but different volume effects, their total alloying
effects on C44 are very close to each other. It is clear that
other complex mechanisms are needed for a more accurate
model of the alloying effects on the elastic constants of fer-
romagnetic bcc Fe. This is the topic of further research.

VI. CONCLUSIONS

The elastic properties of ferromagnetic bcc Fe1−xMx �M
=Al, Si, V, Cr, Mn, Co, Ni, and Rh; 0�x�0.1� random
alloys have been investigated using the EMTO method in
combination with the coherent-potential approximation. In
general, the calculated single-crystal elastic constants for
Fe-Al and the bulk moduli for all binaries show good agree-
ment with the available experimental data. All solute atoms
enlarge the lattice parameter and decrease the C11, C12, and
C� single-crystal elastic constants of bcc Fe. At the same
time, nearly constant or slightly increasing trends are ob-
tained for C44�x�. This anomalous behavior is explained us-
ing the electronic structure of ferromagnetic bcc Fe and
Fe-M alloys. On the average, the most significant alloying
effects on the single-crystal elastic constants appear when Al,
Si, or Ni is added to bcc Fe. The anisotropy is found to be
enhanced by Al, Si, and Ni additions, compared to that of
pure bcc Fe.

The present theoretical data may serve as a consistent
starting point for modeling the mechanical properties of Fe-
based alloys. The few discrepancies found between the cal-
culated and the measured data call for further improvements
in the theoretical approach, e.g., by accounting for the tem-
perature effects. In addition, more accurate measurements of
the elastic properties of ferromagnetic Fe-based alloys by
employing modern experimental techniques would be de-
sired.
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