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We present a study of palladium-hydrogen system by the linearized augmented plane-wave �LAPW� and
Naval Research Laboratory �NRL� tight-binding �TB� methods. We constructed a TB Hamiltonian by fitting to
first-principles LAPW data for the electronic energies of a large range of palladium and palladium hydride
structures differing in symmetry and compositions as a function of volume. This TB Hamiltonian was then
used to calculate phonon frequencies and elastic constants. Our calculations show good agreement with ex-
periments and demonstrate the efficiency of the NRL-TB scheme. In addition, we performed tight-binding
molecular dynamics simulations to calculate the density of states, mean-squared displacement, and the forma-
tion energy as a function of hydrogen content. We found a relative dip in the lattice energy of structures near
the experimental limit of hydrogen content. We calculated the nearest hydrogen-hydrogen distance for various
compositions of palladium hydride and confirmed the Switendick criterion.

DOI: 10.1103/PhysRevB.81.184103 PACS number�s�: 71.15.Nc, 71.15.Pd

I. INTRODUCTION

Palladium has been known as an excellent metallic ab-
sorber of hydrogen for more than a century.1 The ability to
take up large volumes of hydrogen makes palladium efficient
and safe storage of hydrogen and its isotopes. Considerable
progress has been made in an investigation of structural,
thermodynamic, and kinetic characteristics of this system.2–5

Despite substantial development many important questions
are not yet answered. The details of electronic energy states
and the mechanism of hydrogen diffusion remain not fully
understood. Of particular interest is the high solubility and
mobility of the hydrogen in the face-centered-cubic �fcc� lat-
tice of palladium, where the hydrogen atoms occupy octahe-
dral sites.

A comprehensive model of the palladium-hydrogen sys-
tem requires a description of the electronic structure and the
bonding between the atoms. A range of methods has been
used for electronic energy calculations in the palladium-
hydrogen system varying from first-principles calculations6,7

to pseudopotential methods8 and other microscopic or semi-
empirical models.9,10 The first-principles calculations are
constrained to relatively small number of atoms and there-
fore are mostly limited to the calculations of stoichiometric
compositions. Although the semiempirical microscopic mod-
els are better suited to treat large systems but they may not
reveal essential details of the electronic structure. At an early
stage, the tight-binding �TB� method in conjunction with the
coherent-potential approximation was applied for calculating
the band structure and density of states �DOS� in the
palladium-hydrogen system including nonstoichiometric
compositions.11 The advantage of the TB method is effi-
ciency in the calculations of large systems combined with the
substantial level of the electronic spectrum details which can
be handled by these calculations.

Recently the NRL-TB method has been developed to pro-
vide transferability between different structures and capabil-

ity of calculating total energies.12 In this method the param-
eters of the Slater-Koster Hamiltonian13 are fit to reproduce a
first-principles database of not only the band structures but
also the total energies for several crystal structures differing
in volume or symmetry.14,15 In this paper we present the
results of TB calculations for palladium hydride with a static
atomic distribution and with molecular dynamics �MD�
simulations of atomic motion for a wide range of tempera-
tures, from 0 to 400 K. We apply static and dynamic methods
to calculate the structural and electronic properties of palla-
dium hydrogen including electron energies, elastic constants,
phonon frequencies, mean-squared displacements, and for-
mation energies as a function of hydrogen content.

II. FITTING TIGHT-BINDING PARAMETERS
TO LAPW DATA

The NRL-TB method is based on fitting the on-site terms,
the two-center Hamiltonian and the overlap parameters to the
electronic eigenvalues and total energies provided by first-
principles calculations. We have obtained the set of the TB
parameters by fitting the total energy and the energy bands
provided by our linearized augmented plane-wave �LAPW�
calculations for a static distribution of atoms located at fixed
lattice coordinates. We have carried out LAPW calculations
for a large range of palladium and palladium hydride struc-
tures differing in symmetry and compositions. These struc-
tures included the palladium lattice of various symmetries,
the simple-cubic hydrogen lattice, L12 lattice of Pd3H and
PdH3, lattices with the five-atom supercell of Pd4H, and with
the seven-atom supercell of Pd4H3. Overall, we have calcu-
lated the energy for a total of 85 structures and volumes.
Table I shows a wide range of compositions and structures
with equilibrium lattice parameters found for each structure
which formed a database that was the input to the tight-
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binding calculations. We fitted each structure for a wide
range of the primitive cell volumes.

We have constructed a nonorthogonal two-center TB
Hamiltonian using the s, p, d orbitals for palladium atoms
and s, p orbitals for the hydrogen atoms by fitting the LAPW
results for the total energy and the band structures. For atom
i, the on-site TB parameters are defined as

hil = al + bl�i
2/3 + cl�i

4/3 + dl�i
2, �1�

where coefficients al, bl, cl, and dl �l=s, p, or d� are the
fitting parameters and the atom density �i has the form

�i = �
j

exp�− �2Rij�F�Rij� , �2�

where the sum is over all atoms j within a range Rc of atom
i, � is a fitting parameter, and F�Rij� is a cutoff function. In
the two-center approximation, the hopping integrals depend
only on the angular momentum dependence of the orbitals,
ll�u �ss�, sp�, pp�, pp�, sd�, pd�, dd�, dd�, and dd�� and
the distance between the atoms. The s and p orbitals of hy-
drogen can only form �ss�, sp�, pp�, and pp�� hopping
integrals between each other and �sd� and pd�� in addition
for hopping between hydrogen and palladium. The hopping
parameters for both the Hamiltonian and overlap matrices
have the form

Hll�u�R� = �ell�u + f ll�uR + gll�uR2�exp�− qll�u
2 R�F�R� , �3�

where R is the separation between the atoms and �ell�u, f ll�u,
gll�u, and qll�u� are the fitting parameters. The overlap param-
eters have a form similar to the hopping parameters in Eq.
�3�. The values of the parameters are shown in the Appendix.
This form of the TB parameters allows transferability to dif-
ferent crystal structures and atomic configurations.

The LAPW results for the formation energy are repro-
duced by the TB calculations with an accuracy up to 1 mRy
and also shows the sodium chloride structure to be the
ground state. This TB Hamiltonian also reproduces very well
the energy bands and density of states of pure Pd and of the
sodium chloride structure of PdH. Figure 1 shows how the

total energy is reproduced for some of the structures and
volumes used for the fit. Each structure has its own minimum
of the total energy. The minimum of the fcc structure, as
expected, is the lowest one among the palladium structures.
The total energy of the sodium chloride structure of palla-
dium hydride compound is even lower. This structure
reaches its minimum at a lattice constant of 4.04 Å which is
larger than 3.85 Å the lattice constant of the lowest energy
palladium structure fcc.16 The larger lattice constant is in
agreement with the experimentally observed expansion of
the palladium lattice at higher concentrations of
hydrogen.5,17 The lattice constant linearly increases with the
concentration of hydrogen in PdHx and extrapolates to
4.09 Å for x=1.18

III. TIGHT-BINDING CALCULATIONS

The NRL-TB method is highly adapted and very efficient
for calculations where the positions of atoms and distance
between vary. We can calculate the energy of any structure
with the same set of the parameters in a relatively wide range
of interatomic distances.14 The transferability of our TB pa-
rameters is tested by applying them to calculations of elastic
constants, phonon frequencies, the coefficient of thermal ex-
pansion, and the vacancy formation energies. We have per-
formed such calculations for the fcc structure of palladium16

and the NaCl structure of palladium hydride at the equilib-
rium lattice constants.

A. Phonon frequencies

Phonon frequencies are obtained from the derivatives of
the energy with respect to the displacement of the atoms
from their equilibrium lattice positions. In the harmonic ap-
proximation, the potential energy as a function of the dis-
placement and the energy variation can be written in the
form19

TABLE I. Crystal structures used for fitting TB parameters.

Composition Lattice
Equilibrium lattice

constant �Å�

Pd Body-centered cubic 5.79

Pd Face-centered cubic 7.27

Pd Simple cubic 4.805

PdH NaCl 7.63

PdH CsCl 4.935

PdH2 CaF2 8.29

Pd4H NaCl five-atom supercell 7.375

Pd4H3 NaCl seven-atom supercell 7.565

Pd3H L12 6.98

PdH3 L12 5.425

H Simple cubic 2.725
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FIG. 1. �Color online� Total energy of various palladium and
palladium hydride structures.
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Pharm =
1

2 �
R,R�,�,�

u��R�����R − R��u��R�� , �4�

where u� is the deviation from equilibrium of atom � on unit
cell associated with lattice vector R and ����R−R�� is the
force-constant matrix. The number of independent force con-
stants depends on a symmetry of a phonon mode. We have
found the phonon frequencies by the frozen phonon
method19 where a unit cell is commensurate with the wave
vector of the phonon and the displacements of atoms are
chosen according to the polarization and the phase of the
phonon mode. For the acoustic modes in the fcc palladium
structure with a lattice constant of a=3.847 Å, our
calculations16 give very good agreement with experiment.20

The acoustic frequencies in PdH are expected to be almost
independent on the mass of the hydrogen isotope because the
unit-cell center of mass oscillates with the acoustic modes
and hence the frequency mostly depends on the mass of the
heavy palladium atoms in the cell. According to
experiment,21 the acoustic frequencies are slightly lower in
palladium deuteride than in pure palladium indicating that
the presence of hydrogen isotope affects the frequencies by
altering the interactions between the atoms and therefore the
forces acting on these atoms. We calculated the acoustic pho-
non frequencies for the stoichiometric composition palla-
dium deuteride. The results are shown in Table II. With the
exception of the X5 mode, the calculated frequencies are
higher than the experimental values for PdD0.63. At this time,
we cannot definitively conclude if our results point to a non-
monotonic behavior of the acoustic frequencies with the
hydrogen/deuterium content since the phonon frequencies
have not been included into the LAPW database for the TB
fit.

Another reason for the discrepancies in phonon frequen-
cies is the substantial anharmonicity of the potential energy

of hydrogen isotopes in palladium hydride. The effect of this
anharmonicity was studied by Klein and Cohen22 for the op-
tical modes. In addition to the acoustic modes, there are three
optical branches in palladium hydride. We have computed
the optical phonon frequencies using the total-energy results
obtained from the TB calculations. The results are shown in
Table III. A relatively poor agreement with the experimental
values is not surprising since for the fit of the TB parameters
we have included the total energy calculated with the LAPW
only at the � point. In any case, in the harmonic approxima-
tion, a satisfactory agreement with experiment is not ex-
pected for the frequencies obtained even with the LAPW
total energies.22 To evaluate the impact of this problem we
have calculated the phonon frequencies with the LAPW total
energies using the harmonic approximation.

The LAPW calculations have been performed for the stoi-
chiometric composition �x=1� and for nonstoichiometric
compositions with x=0.63. For the latter, we used the
virtual-crystal approximation. We have calculated the total
energy at the � and L points of the Brillouin zone. At the �
point, the wave number of phonon mode is zero and there-
fore all atoms of the same kind oscillate in phase. The unit
cell consists of one palladium and one hydrogen atoms
which represent the dynamics of the entire lattice. The dis-
placement of the hydrogen isotope is much larger than the
displacement of the palladium atom since the center of mass
of the unit cell is fixed in an optical mode and therefore the
ratio of the atomic displacements is inversely proportional to
the ratio of their masses. At the L point, two nearest hydro-
gen atoms oscillate with the opposite phases and therefore
the unit cell should include two hydrogen and two palladium
atoms to represent the displacements of the phonon mode.

The force constants are calculated by fitting the deviation
of the total energy with displacement to the parabolic trend
in Eq. �4� where all atoms in the sum belong to the unit cell
used for the LAPW calculations. The ��� matrix is reduced

TABLE II. Acoustic phonon frequencies of palladium deuteride �in terahertz�.

Coordinates Symmetry Polarization NRL-TB �PdD� Experiment �PdD0.63� �Ref. 21�

�0,0,8� �

4a
X3 Longitudinal 6.07 5.5

X5 Transverse 3.47 4.0

�4,4,4� �

4a
L2 Longitudinal 9.25 6.0

L3 Transverse 3.02 2.5

TABLE III. Optical phonon frequency of palladium deuteride PdDx.

Symmetry x
Lattice constant

�Å�

Frequency
�THz�

NRL-TB LAPW Experiment �Ref. 21�

� 1.00 4.02 8.70 7.59

� 1.00 4.075 4.85 5.08

L3 1.00 4.02 9.12 4.34

� 0.63 4.02 13.43 9.00

L3 0.63 4.02 15.14 9.25
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to a single constant 	 at the � point. At the L point, there are
two force constants which correspond to the transverse and
longitudinal oscillation modes. In both cases, the deviation
of the total energy is fit to 	u2 /2, where u is the relative
displacement of either the hydrogen isotope and the palla-
dium atom, for the � point, or two hydrogen isotopes, for the
L point. Table III shows frequencies calculated as �	 /
�1/2,
where 
 is the reduced mass of two atoms: 
=mHmPd / �mH
+mPd� �� point� or 
=0.5mH �L point�. The hydrogen mass
should be replaced with the mass of deuterium for compari-
son with the experimental data.21

The frequencies are shown for two concentrations of deu-
terium: x=0.63 and x=1.00. The lattice constant varies with
the deuterium content. The x=0.63 composition is calculated
for the experimental lattice constant 4.02 Å and the x
=1.00 composition is calculated for two values of the lattice
constant 4.02 Å and the larger lattice constant of 4.075 Å
which is near expected for x=1.0 from the experimental
trend.18 We have found that the frequency increases with a
decrease in the lattice constant. Our calculations with the
virtual-crystal approximation show that, the frequency
changes with the composition even stronger than it is pre-
dicted by the calculations where the composition is fixed and
the lattice constant is altered to simulate the variations in
composition. Even for the fixed composition, the frequencies
are more sensitive to the size of the lattice constant than it is
expected from the calculations with the anharmonicity in-
cluded into the potential which increases with the size of the
lattice constant.22 Despite the quantitative differences, our
results are in qualitative agreement with Ref. 22 pointing to
the softening of the frequencies of the optical phonon. Un-
like the optical phonons, the acoustic branches do not vary
substantially with the hydrogen isotope content. At the L
point, the maximum acoustic frequency decreases from 6.9
THz in pure palladium to 6.0 THz in PdD0.63.

21 The reduc-
tion in the frequency gap between the optical and acoustic
modes indicates that the interaction between the hydrogen
isotope and palladium sublattices weakens with an increase
in hydrogen isotope concentration. The potential seen by a
hydrogen isotope near its equilibrium position flattens with
an increase in the hydrogen isotope concentration. This po-
tential is likely formed by the palladium neighbors of the
hydrogen isotope. Evidently the forces exerted on hydrogen
atoms by the palladium lattice weaken as the interactions
between palladium atoms experience relatively small varia-
tions. Above the limit in the hydrogen/deuterium content in
palladium, the motion of hydrogen atoms become more in-
dependent of the palladium lattice. Each hydrogen atom can
change its position with less energy penalty leading to insta-
bility of hydrogen distribution above the solubility limit. We
found an additional demonstration of the dominating role of
the interaction between hydrogen atoms and palladium
neighbors as well as signs of structural instability in our
tight-binding molecular dynamics �TBMD� study of vacancy
formation energies we present below.

B. Elastic constants

The calculations of the elastic constants serve as a sensi-
tive test for the TB parameters because the calculations de-

pend on small differences between the equilibrium energies
and the energy with the strain. We have shown that the TB
calculations reproduce the elastic constants of palladium
with ample accuracy.16 We have also obtained the elastic
constants for the palladium hydride and compared them with
both the LAPW and experimental data. For the stoichio-
metric PdH structure, we have calculated the tetragonal shear
modulus �C11−C12� /2 for the orthorhombic strain and the
trigonal shear modulus C44 for the monoclinic strain. The
nonzero components of the strain tensor are e1=−e2=�, e3
=�2 / �1−�2� for the orthorhombic strain and e6=�, e3
=�2 / �4−�2� for the monoclinic strain. The deviations of the
total energy with the strain can be written as V�C11−C12��2

and VC44�
2 /2, where V is the volume of undistorted lattice.

The TB calculations provide the total energy and the pressure
for various volumes near the minimum of the PdH structure
�see Fig. 1�. Using the TB results, we have calculated the
bulk modulus as B=V ·�2E /�V2=V ·�P /�V, where �P and
�V are the changes in the pressure and volume. Table IV
shows the elastic-constant results of the TB calculations in
comparison with the experimental data23 for palladium hy-
dride �PdH0.66� with a hydrogen concentration of 66%.

C. Molecular dynamics simulations

Using the NRL-TB parameters we performed MD
simulations24 for a supercell of 128 atoms for PdH shown in
Fig. 2. The supercell is obtained by repeating the primitive
cell four times along each of the primitive lattice directions.

TABLE IV. Elastic constants for palladium hydride �in
gigapascal�.

NRL-TB LAPW Experiment �Ref. 23�

1
2 �C11−C12� 35.55 23.5 32.78

C44 79.38 58 69.05

B 225.69 217 183.32

FIG. 2. �Color online� Evolution of palladium hydride supercell
consisting of 128 atoms: A—initial fcc structure at T=400 K; B—4
fs elapsed time at T=391 K; C—16 fs elapsed time at T=240 K;
D—570 fs elapsed time at T=200 K.
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The simulations were performed for 3000 steps with a time
step of 1 fs. Initially, the atoms are placed on the fcc lattice
with random velocities with a Boltzmann distribution func-
tion for a temperature of 2T. Very quickly in approximately
70 fs �35 steps�, the atomic motion slows down and to the
average velocities corresponding to the equilibrium at tem-
perature T. The fluctuations are reduced to the normal equi-
librium scale approximately in a picosecond time range. Fig-
ure 3 shows the radial-distribution function for the
equilibrium distribution of atoms at T=200 K corresponding
to a supercell in Fig. 2�D�. The peaks correspond to the po-
sitions where the potential energy of atoms reaches its mini-
mum �see the inset of Fig. 3�. The initial distribution func-
tions overlap for the hydrogen and palladium. For the
equilibrium distribution at finite temperature, the radial-
distribution functions are broadened due to atomic vibration.
The equilibrium distribution is substantially more broadened
for the hydrogen atoms because of their light mass.

We have performed the TBMD simulations for various
temperatures from 50 to 400 K. We used the TBMD method
to investigate the anharmonicity of the lattice energy. Addi-
tional information about the anharmonicity can be deduced
from the calculations of the coefficient of thermal expansion
and the mean-squared displacement. To evaluate qualita-
tively the anharmonicity we consider the following simple
equation for the change in the energy with u, the displace-
ment of an atom from its equilibrium position:

P�u� =
1

2
	u2 −

1

3

u3 +

1

4
�u4. �5�

The first term is the harmonic part �see Eq. �4��, and the
second and the third terms are responsible for the thermal-
expansion coefficient, �L and the mean-squared displace-
ments of palladium and hydrogen atoms.

D. Thermal-expansion coefficient

Using the TBMD simulation results for palladium hy-
dride, we calculate the energy per unit volume or the pres-
sure in the lattice for various temperatures and determine the
thermal-expansion coefficient from dP /dT=3�LB, where B
is the bulk modulus. The pressure changes linearly with the
temperature within the entire range of our calculations with
the slope of the linear fit 11.35 MPa/K. For the theoretical
and experimental values of the bulk modulus of 225.69 and
183.32 GPa, we find �L=1.7�10−5 K−1 and 2�10−5 K−1

which are approximately two times larger than the thermal-
expansion coefficient of pure palladium.25

E. Mean-squared displacement

For the stoichiometric palladium hydride, we have also
determined the atomic mean-squared displacement of the Pd
and H atoms for various temperatures between 50 and 400 K
using the atomic positions recorded in the process of the MD
simulation �see Fig. 4�. First, we recorded the instantaneous
positions r j�n� of 128 atoms j at each simulation step n for
the substantially large number of steps N in the range from
n=n0 to n=n0+N. Next, we calculated the statistical mean-
squared displacement by averaging the deviation of atomic
positions squared over the snapshots recorded: �uj

2�
=�n=n0

n0+N�r j�n�−r j�n0��2 /N. Finally, we averaged the mean-
squared displacements for each atom over all atoms of the
same kind: hydrogen isotope �uH

2 �=� j�H�uj
2� /64 or palla-

dium �uPd
2 �=� j�Pd�uj

2� /64. In the range of relatively low
temperatures, the mean-squared displacement changes lin-
early with the temperature. In this range, the palladium
mean-squared displacements in PdH are almost identical to
pure palladium measured experimentally26 and calculated by
the TBMD method.16 The mean-squared displacement of the
hydrogen atoms is varying from 0.025 a.u. at 50 K up to 0.12
a.u. at 400 K, which is close to the experimental value of
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0.19 a.u.27 The precise calculations of the mean-squared dis-
placement should include the corrections due to the zero-
point vibrations typical for the hydrogen atoms in the lattice
of heavy metals.28

F. Electronic density of states

We have determined the electronic DOS and the position
of the Fermi level for various temperatures in the range from
0 K up to 900 K. The density of states is found by counting
the number of eigenvalues within a bin of 0.1 eV width over
all k points included in the calculations. At zero temperature
the DOS of palladium has a sharp maximum near the Fermi
level which is approximately the energy where the d bands
end. This sharp change in energy requires a higher number of
k points for the molecular dynamics simulations to increase
the precision in the calculations of forces. We determined
that at least 108 k points were needed for the supercell of 64
palladium atoms to provide stability of the MD simulations.
The DOS of palladium hydride �see Fig. 5� is changing rela-
tively slowly near the Fermi level �which lies above the d
bands� and the number of k points can be reduced to 32.

G. Vacancy formation energy

We have studied the nonstoichiometric compositions of
the palladium hydride by applying the TBMD simulations to
the palladium-hydrogen system with various concentrations
of hydrogen. This study is aimed to understand the limit of
solubility of hydrogen in palladium lattice. The problem of
solubility requires knowledge on energies in both the solid
phase of palladium-hydrogen system and the gaseous phase
of hydrogen. The changes in the total energy on each side
include the electronic energy of interatomic bonds dissoci-
ated and formed as well as the kinetic and potential energy of
the movement of atoms.

Our method provides the model Hamiltonian of electronic
system which describes with high accuracy the changes in

energy of electronic states formed by bonding of atomic or-
bitals of atoms in all systems included into the model. The
accuracy is achieved by fitting the NRL-TB to the LAPW
energies calculated for a large number of structures. With
this Hamiltonian we can accurately calculate the difference
in the electronic energy between two atomic configurations
with two different compositions and interatomic distances.
The transferability of the NRL-TB method makes it possible
to calculate the variations in the electronic energies for a
large number of atomic compositions and a relatively wide
range of interatomic distances. Although the range of atomic
distances is substantially wide, it is limited by a functional
form of the TB parameters used in the NRL-TB. In particu-
lar, the hopping parameters are approximated by Eq. �3�
which includes the positive powers of the interatomic dis-
tances only. This functional form leads to the attractive in-
teratomic potential for all distances including the short-range
potential where the interaction should be repulsive. This lim-
its our method to only be applied within a range of distances
substantially longer than a distance comparable to a size of
the hydrogen molecule where atoms are located near the re-
pulsive range of the interatomic potential. Figure 6 illustrates
the problem. The dashed line shows the potential energy of
interaction between two hydrogen atoms which is calculated
with the parameters obtained from the fit in the range shown
by the solid line. The potential is attractive as expected in the
fitting range. At short distance, the energy continues to de-
crease making the short-range part inapplicable.

Within the range of applicability, we still can obtain a
valuable information about the relative changes in energy of
various structures. We have calculated the energy of palla-
dium hydride as a function of the hydrogen content. The
energy change can be viewed as consisting of two contribu-
tions. One is due to the bonding between each hydrogen
atom and its palladium neighbors. The lattice of hydrogen
and palladium atoms already bonded vary its energy depend-
ing on the positions and distances. This second contribution
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can be studied by the TBMD method since the distances
between the atoms remain in the range where the TB Hamil-
tonian is applicable. We calculate the energies of these
atomic configurations. We can compare these energies after
subtracting the bonding energies. The variations in the en-
ergy provide the information which configurations are stable
and energetically preferable provided that other contributions
to the total energy are balanced including the bonding and
kinetic energies of atoms.

We have calculated the energy of palladium hydride as a
function of the hydrogen content. The calculations are based
on the method similar to the vacancy formation energy
calculations which we employed for vacancies and divacan-
cies in palladium.16 We calculated the energy of structures
with compositions between palladium and stoichiometric
palladium hydride, EPdHx

for a supercell consisting of 125 Pd
atoms and a varying number of H atoms, n=125x�0.2�x
�1�, randomly removed from the stoichiometric palladium
hydride. We also calculated the energy of stoichiometric
palladium hydride, EPdH, and the energy of fcc palladium
structure, EPd with the same distance between palladium at-
oms as in palladium hydride. The latter is used as a reference
point for the energy of palladium hydride. The difference
between EPdH and EPd divided by the number of hydrogen
atoms gives us the bonding energy of each hydrogen atom in
the palladium hydride. We subtract this energy multiplied
by the number of hydrogen atoms in a specific PdHx configu-
ration to eliminate the bonding energy of hydrogen. In
this approximation, the bonding energy changes linearly with
the hydrogen content, x. The deviation from the linear trend
is

�EPdHx
= EPdHx

− EPd − x�EPdH − EPd� . �6�

Figure 7�a� shows �EPdHx
as a function of x. The minimum

of the deviation is between 60% and 70% near the experi-
mental limit of solubility reached experimentally. Although
this minimum is not the minimum of the total energy, we can
likely conclude that the hydrogen concentration in the range
of 60–70 % is energetically preferable for the solid palla-
dium hydride structures.

In all these structures, the distance between hydrogen at-
oms remains within the range of applicability of the TB
Hamiltonian discussed above. This indicates that the posi-
tions of hydrogen atoms are primarily controlled by the in-
teractions with the palladium neighbors and the direct
hydrogen-hydrogen interactions do not play a significant role
in configurations with the hydrogen content below x=1.
Above we assumed that the bonding energy of hydrogen at-
oms is mostly determined by the nearest palladium neighbors
of each hydrogen atom and we calculated the bonding energy
from the energy of the stoichiometric structure. The weak-
ness of the direct H-H interactions justifies our assumption.
The dominating role of the hydrogen-palladium interaction is
also compliant with our observations for the frequencies of
optical and acoustic phonons which point to the softening of
the potential seen by hydrogen near the stoichiometric com-
position while palladium lattice experiences relatively small
changes. For a further study of hydrogen distribution, we
have also determined the nearest H-H distance for each
structure. We recorded the atomic positions and found the
minimum distance between two hydrogen atoms for each
MD step shown in Fig. 7�b�. The distance between the near-
est hydrogen atoms fluctuates but for virtually all configura-
tions, it evidently remains above the limit of 2.1 Å given by
the Switendick criterion.29

IV. SUMMARY

We have used the NRL-TB method to perform both static
and dynamic calculations of various properties of PdH�D�.
This work capitalizes on the fact that the TBMD method
substantially reduces the computational cost in comparison
with first-principles methods which currently appear to be
not practical for such massive calculations. The MD calcula-
tions exploited the computational speed of the TB method
and made it possible to perform calculation of 250 atoms in
the unit cell with 64 k points and for 3000 MD steps. Our
runs used parallelization of the MD code for up to 32 nodes
on an SGI Altix computer. A typical run took approximately
30 h. We expect that a similar calculation using one of the
first-principles codes would be more than a factor of 10–100
times slower depending on using pseudopotential or all-
electron method.
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APPENDIX

Tight-binding parameters for PdH, generated following the methods of Mehl and Papaconstantopoulos14 and Bernstein et
al.30 On-site energies are generated from the densities of Pd and H atoms: �Pd=�Pdexp�−�Pd

2 R�F�R�, where �Pd

=1.2880 a.u.−1/2 and �H=�Hexp�−�H
2 R�F�R�, where �H=0.84159 a.u.−1/2. F�R� is the cutoff function from Eq. �2� of Bern-

stein et al.,30 with Rc=16.5 a.u. and Lc=0.5 a.u. All energies are in Rydberg and all distances in atomic unit.

Pd-Pd interactions

On-site parameters
hl=al+bl�Pd

2/3+cl�Pd
4/3+dl�Pd

2

l al bl cl dl

s 0.04807 27.738 −969.51 22847.

p 0.57335 24.921 −669.76 7360.9

d 0.04051 0.72555 3.4858 −86.808

Hopping terms
Hll�u�R�= �ell�u+ f ll�uR+gll�uR2�exp�−qll�u

2 R�F�R�
Hll�u ell�u f ll�u gll�u qll�u

Hss� −6.3923 1.1511 −0.47063 1.0361

Hsp� 1.2649 0.25963 0.03103 0.81918

Hpp� −10.362 −1.0017 0.92481 0.93593

Hpp� 3.5640 −1.8254 0.13354 0.85261

Hsd� 0.71794 −0.91057 −0.07435 0.93272

Hpd� 11.656 −3.2504 −0.06050 0.94161

Hpd� −19.231 7.0242 0.25794 1.1206

Hdd� 10.299 −3.4069 0.00721 1.0139

Hdd� 1.4904 −9.1084 3.8189 1.1964

Hdd� −390.81 232.81 −26.964 1.4433

Overlap terms

Sll�u�R�= �ēll�u+ f̄ ll�uR+ ḡll�uR2�exp�−q̄ll�u
2 R�F�R�

Sll�u ēll�u f̄ ll�u ḡll�u q̄ll�u

Sss� 3.0077 −0.15638 −0.02704 0.68759

Ssp� −2.1653 −0.53362 0.06923 0.84405

Spp� −22.418 7.8234 −1.2656 0.98059

Spp� 188.13 −73.633 8.0682 1.0704

Ssd� −0.22069 0.17646 0.04321 0.84791

Spd� −2.1505 0.43175 −0.01089 0.68648

Spd� −10.577 0.88181 0.37926 0.96803

Sdd� 583.28 126.21 33.309 1.4844

Sdd� −1.1894 −0.10777 0.02561 0.79519

Sdd� 1.7408 0.14079 0.02149 0.98143

H-H interactions

On-site parameters hl=al+bl�H
2/3+cl�H

4/3+dl�H
2

l al bl cl dl

s 0.24555 0.27111 0.01093 0.07728

p 1.2692 −0.08594 −0.21199 −0.27801
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Hopping terms Hll�u�R�= �ell�u+ f ll�uR+gll�uR2�exp�−qll�u
2 R�F�R�

Hll�u ell�u f ll�u gll�u qll�u

Hss� 16.515 0.17840 0.18736 1.0675

Hsp� −0.13898 −0.03387 −0.00106 0.56659

Hpp� 0.17997 0.05310 0.01802 0.61214

Hpp� 21.312 3.4509 0.41243 1.1765

Overlap terms Sll�u�R�= �ēll�u+ f̄ ll�uR+ ḡll�uR2�exp�−q̄ll�u
2 R�F�R�

Sll�u ēll�u f̄ ll�u ḡll�u q̄ll�u

Sss� 39.931 1.8425 −2.3724 1.0823

Ssp� 0.37803 −0.40186 −0.01243 0.94884

Spp� 3.7892 −0.09191 0.00270 0.75749

Spp� 0.35224 0.02048 −0.01089 0.54363

Pd-H interactions

On-site parameters hl�Pd�=bl�H
2/3+cl�H

4/3+dl�H
2

l bl cl dl

s 0.02841 −0.02372 −0.07125

p 0.03492 0.00882 0.00954

On-site parameters hl�H�=bl�Pd
2/3+cl�Pd

4/3+dl�Pd
2

l bl cl dl

s 2.9322 60.098 1153.9

p 1.5965 38.358 1267.5

Hopping terms Hll�u�R�= �ell�u+ f ll�uR+gll�uR2�exp�−qll�u
2 R�F�R�

Hll�u ell�u f ll�u gll�u qll�u

Hss� −0.45416 −0.05871 0.04298 0.76758

Hsp� 0.17453 0.05522 0.01674 0.72297

Hpp� −2.1200 0.09348 0.05199 0.73834

Hpp� 0.00812 −0.01380 −0.00060 0.71359

Hps� 1.8691 0.30642 −0.14296 0.99247

Hds� −1.6572 −0.49398 −0.08927 0.99691

Hdp� 0.70937 0.18817 0.05284 1.0241

Hdp� 0.07305 0.03441 0.02136 0.92624

Overlap terms Sll�u�R�= �ēll�u+ f̄ ll�uR+ ḡll�uR2�exp�−q̄ll�u
2 R�F�R�

Sll�u ēll�u f̄ ll�u ḡll�u q̄ll�u

Sss� −1.8913 0.01111 0.08878 0.79915

Ssp� 0.11866 −0.03077 −0.01818 0.72583

Spp� 0.30489 −0.21013 0.00020 0.74882

Spp� −0.28112 −0.06840 −0.01940 1.0883

Sps� −1.0808 −2.3212 −0.68882 1.1572

Sds� 299.99 39.354 1.4383 1.6287

Sdp� −1.7937 0.92290 0.81594 1.0359

Sdp� 0.11598 1.1318 0.57892 1.2534
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