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We study the superfluid-insulator transition in a one-dimensional system of interacting bosons, modeled as
a disordered Josephson array, using a strong-randomness real-space renormalization-group technique. Unlike
perturbative methods, this approach does not suffer from run-away flows and allows us to study the complete
phase diagram. We show that the superfluid-insulator transition is always Kosterlitz-Thouless like in the way
that length and time scales diverge at the critical point. Interestingly however, we find that the transition at
strong disorder occurs at a nonuniversal value of the Luttinger parameter, which depends on the disorder
strength. This result places the transition in a universality class different from the weak disorder transition first
analyzed by Giamarchi and Schulz �Europhys. Lett. 3, 1287 �1987��. While the details of the disorder potential
are unimportant at the critical point, the type of disorder does influence the properties of the insulating phases.
We find three classes of insulators which arise for different classes of disorder potential. For disorder only in
the charging energies and Josephson coupling constants, at integer filling we find an incompressible but gapless
Mott-glass phase. If both integer and half-integer filling factors are allowed then the corresponding phase is a
random-singlet insulator, which has a divergent compressibility. Finally in a generic disorder potential the
insulator is a Bose glass with a finite compressibility.
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I. INTRODUCTION

Superfluid-insulator transitions occur in a variety of ex-
perimental systems, ranging from low-temperature helium
through Josephson arrays to ultracold atomic systems. The
simplest paradigm of such a transition is the rather well un-
derstood Mott transition of interacting bosons on a perfect
lattice commensurate with the boson density.1,2 The theoret-
ical picture is far less clear in disordered systems, which
occur in a wide variety of experiments: helium in vycor,
superconductor-metal, and superconductor-insulator transi-
tions in nanowires and thin films.3–15 Recently, disordered
systems were also realized using ultracold atoms.16–24 Fur-
thermore, this topic was brought back into the limelight with
recent experiments in solid helium-4, which show the ap-
pearance of a superfluid fraction.25 One suggested explana-
tion for this phenomenon is helium turning superfluid in
structural defects of the surrounding solid.26

Of particular interest is the superfluid-insulator transition
in disordered one-dimensional �1D� systems. Even without
the disorder the superfluid phase in one dimension is more
subtle than in high dimensions. In particular, it does not ex-
hibit true long-range order. Nevertheless the uniform super-
fluid admits a simple description in terms of a universal har-
monic theory or Luttinger liquid. In the opposite limit of a
disordered potential but no interactions, particles are always
localized. One might naively guess that there is no superfluid
phase in the presence of disorder since interaction alone or
disorder alone both have a localizing effect on the bosons.
This however does not seem to be the case.

The simplest way to see this is to introduce disorder as a
perturbation to the interacting superfluid within the Luttinger
liquid description. This was done by Giamarchi and Schulz

�GS� in Refs. 27 and 28. The main result of this approach is
to describe a phase transition between an essentially uniform
superfluid, in which the disorder is irrelevant, into a localized
phase. The natural tuning parameter of the transition is the
interaction constant and it occurs at a universal value of the
Luttinger parameter, independent of the strength of the dis-
order.

The above approach suffers from two main limitations.
First, because it is perturbative in the disorder strength local-
ization is signaled by a runaway renormalization-group �RG�
flow. Therefore the approach does not allow for a detailed
theory of the insulating phase. Second, the natural regime for
the phase transition in this analysis is that of strong interac-
tions and a nearly uniform superfluid, which is not always
the case in systems of interest. For example, atom-chip traps,
in which ultracold atoms seem to undergo a localization
transition,17 are in precisely the opposite regime. The bosons
are weakly interacting while the potential they feel is highly
disordered.29 It is not clear whether the analysis of Giamar-
chi and Schulz provides a valid description of the transition
in such a system. Third, within the Giamarchi-Schulz ap-
proach it is assumed that disorder always remains narrow
and Gaussian and fully characterized by the width. It is un-
clear that such a distribution is an attractor especially in 1D,
where weak links characterizing tails of the distribution can
be very important and lead to Griffiths effects.

Different approaches have been used to specifically de-
scribe the insulating phases of bosons and suggested several
possibilities depending on the nature of the system. In the
most generic disordered potential, Ref. 30 argued for the
formation of a Bose-glass phase characterized by a finite
compressibility and diverging local superfluid susceptibility.
In the presence of a commensurate lattice Refs. 31 and 32
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predicted the existence of a Mott-glass phase, an incompress-
ible yet gapless insulator.

In recent work we introduced a unified approach to treat
both the phase transition at strong disorder as well as the
properties of the insulating phases.33,34 For this purpose we
employed a real-space renormalization-group �RSRG�
technique.35–38 We found that the superfluid-insulator transi-
tion at strong disorder is insensitive to the type of disorder
introduced into the system. It is always Kosterlitz-Thouless
like in the following sense: characteristic time scales and
length scales both diverge at the transition as exp�1 /��−�c�,
where � is the tuning parameter. The nature of the disordered
superfluid phase is also universal. It is described by an effec-
tive harmonic chain with random Josephson couplings drawn
from universal distributions generated as fixed points of the
RSRG flow. These distributions were recently used to com-
pute the localization behavior of density waves.39

The symmetry properties of the disorder, while not impor-
tant in the superfluid phase or the transition, are crucial for
determining the nature of the insulating phases. Using the
RSRG approach we confirmed the formation of a Bose-glass
phase for generic disorder and a Mott glass for a commen-
surate lattice with off-diagonal disorder. The latter phase was
also seen in recent numerical simulations40,41 �numerical
confirmations of the existence of the Bose-glass date further
back, e.g., Refs. 42 and 43�. In addition we found a glassy
phase, which we termed a random-singlet glass, in a system
with particle-hole symmetry. This phase is characterized by a
divergence of both compressibility and superfluid suscepti-
bility. Nevertheless it is still insulating, with conductance
dropping as exp�−�L� with length. This phase is analogous
to the random-singlet phase found in the spin-1

2 X-Y chain.36

The purpose of the present paper is twofold. First, we
provide the detailed analysis of chains with generic diagonal
disorder, leading to the results of Ref. 34. Second, we extend
the analysis and compute the value of the Luttinger param-
eter at the phase transition within the RSRG method. We find
that, at strong disorder, the transition occurs at a nonuniver-
sal value of the Luttinger parameter that depends of the
strength of disorder. This is contrary to the perturbative
analysis of Refs. 27 and 28.

The structure of the paper is as follows. In Sec. II we
define the model we study and discuss its relevance to actual
physical systems. We give a detailed derivation of the RSRG
flow equations for the special case of particle-hole symmetric
disorder in Sec. III and for generic disorder in Sec. IV. We
give a detailed account of the numerical as well as the ap-
proximate analytical solutions of the flow equations. Then in
Sec. V we solve for the value of the Luttinger parameter at
the transition. Finally we conclude with a summary of the
results and their validity and a discussion of their possible
experimental implications.

II. MODEL

Our starting point for the theoretical analysis is the quan-
tum rotor Hamiltonian,

H = �
j

1

2
Uj�n̂j − n̄j�2 − �

j

Jj cos�� j+1 − � j� . �1�

This model describes an effective Josephson-junction array
with random Josephson coupling Ji and charging energies Ui.

In addition there is a random offset charge n̄i to each grain,
which is tantamount to a random gate voltage. Although the
model can be visualized as a Josephson-junction array, it
actually provides an effective description valid for a wide
variety of systems that undergo a superfluid to insulator tran-
sition. In bosonic systems, in particular, such transitions are
usually driven by quantum phase fluctuations. Hamiltonian
�1� should then be thought of as a low-energy effective
theory one obtains after integrating out the gapped amplitude
fluctuations. The remaining degrees of freedom relevant to
the transition are the quantum rotors.

One concrete example of how such a model is naturally
generated at low energies is provided by a system of ultra-
cold atoms in an atom-chip trap. In this system the disor-
dered potential is induced by corrugation in the wire that
generates the trapping magnetic field.29 With increasing cor-
rugation, the atoms concentrate in small puddles at minima
of the potential. Neighboring puddles are connected with
each other by a random Josephson coupling which depends
on the potential barrier between them. The result is exactly
the random Josephson array defined in Eq. �1�.

Another possible physical realization of model �1� is a
disordered superconducting nanowire. Here the issue is more
subtle because there may be gapless fermionic degrees of
freedom that generate dissipation. Indeed Refs. 44 and 45
applied the RSRG to such wires starting from a
Hertz-Millis46,47 dissipative action, with a dissipation term
������. An alternative approach is to use phase only models,
which describe resistively shunted Josephson-junction
arrays.48 This naturally leads to a dissipation term of the
form q2������, which does not affect global superconductor-
insulator transitions. Such models combined with strong dis-
order may also be described by the present analysis in parts
of their phase diagram. Note that we do not discuss here the
case of low filling weakly interacting bosons, as in, e.g.,
Refs. 49 and 50.

III. PARTICLE-HOLE SYMMETRIC CHEMICAL
POTENTIAL DISORDER

Of all the random coupling constants in model �1�, the
random offset charge �or local chemical potential� seems to
be the hardest to incorporate in an RG treatment. Since the
offsets simply add up to give the offset of a block of sites, it
seems clear that this disorder will just grow as the square
root of the scale of the real-space RG making it hard to track.
However this difficulty turns out to be largely superficial and
can be easily overcome in the analysis. To make the discus-
sion more transparent we start from the case where only
integer and half-integer offset charges, n̄i, are allowed on
each site. This condition maintains particle-hole symmetry
and therefore still does not correspond to the generic case.
Nevertheless, this restriction allows a relatively simple RG
analysis which affords important analytic and numerical in-
sights into the possible phases and the phase transitions. In
the next section we generalize our treatment to the case of
generic disorder.

We note that despite the restrictive condition, allowing
only n̄j =0,1 /2, this type of disorder may actually be a rea-

ALTMAN et al. PHYSICAL REVIEW B 81, 174528 �2010�

174528-2



sonable approximation for chains of superconducting grains
with pairing gap much larger than the charging energy. Un-
der these conditions we can assume that the electrons on the
grains are always paired and we can take e�=2e as the unit
of the bosonic charges. On the other hand the positive back-
ground charge is a random number that could be even or odd
in units of e and consequently either integer or half integer in
units of the boson charge e�. Allowing for charged impurities
on the substrate or unscreened coulomb interactions between
different grains would of course lead violation of the restric-
tions on the offset charges.

A. Particle-hole symmetric quantum rotor model

The essence of the renormalization-group transformations
either in real or momentum space is the gradual coarse grain-
ing of the system. In this section we extend the decimation
scheme of Ref. 33 to the Hamiltonian in Eq. �1� for the case
that n̄j can take the values of 0 and 1/2 randomly. The last
condition ensures the particle-hole symmetry in the problem:
the Hamiltonian does not change under the transformation
n→1−n. These two values of n̄j represent the two possible
extremes which drive the physics of the Bose glass.30 Sites
with n̄j =0 have a well-defined Coulomb blockade with
charging energy Uj. Sites with n̄j =1 /2, on the other hand,
have no Coulomb blockade. With no further interactions,
these sites yield both infinite compressibility and infinite su-
perfluid susceptibility due to the number fluctuations costing
no energy. Hamiltonian �1� is characterized by the distribu-
tion of hoppings Jj and charging energies Uj, and of the
proportion of sites with n̄=1 /2. We will refer to the latter
sites as half-integer sites or “half sites.”

B. Extended real-space renormalization group

Let us now construct the extended decimation scheme for
model �1�. Following Refs. 33 and 35–37 we construct an
RG scheme that eliminates iteratively large energy scales
from the Hamiltonian. Two sites connected by the strongest
bond will be converted to a phase-coherent cluster. Similarly,
in sites with strong charging energy U we eliminate all the
excited states. However, the result of this elimination will be
different for integer and half-integer sites. Let us now discuss
these steps in detail.

We denote the largest energy scale in Hamiltonian �1� �
=max�Ji ,Ui	. In each step in the RG we eliminate the stron-
gest coupling from the Hamiltonian and hence successively
reduce �. If the strongest coupling is the charging energy of
site i, Ui, we eliminate all the excited states of this site. For
integer sites with n̄i=0, we minimize the charging energy by
setting ni=0 and include the coupling of this site to the rest
of the chain perturbatively. As in Ref. 33, the second-order
perturbation theory leads to a coupling between the new
nearest neighbors i−1 and i+1,

J̃i−1,i+1 = Ji−1Ji/� . �2�

On the other hand, if n̄i=1 /2 we reduce site’s i Hilbert space
to the states ni=0,1. The hoppings connecting site i to its
neighbors are still active and to the first approximation are

not affected by the elimination of the high-energy states. The
decimation step for n̄i=1 /2 produces a new kind of site, a
doublet site, only capable of having ni=0 or 1. Let us denote
the fraction of doublet sites as s, the fraction of integer sites
as q, and the fraction of half sites as p. Note that these
fractions add up to unity p+q+s=1.

When the strongest coupling in the chain is the bond Ji,
unless both sites i and i+1 are already-decimated doublet
sites, a phase-coherent cluster forms. Since charging energy
is the inverse of capacitance, the effective Ui,i+1 of the new
cluster will be

1

Ũi

=
1

Ui
+

1

Ui+1
. �3�

For a doublet site, Ui is set to �. It is easy to see that the
filling factor n̄ is an additive quantity,

ñ̄i,i+1 = �n̄i + n̄i+1� mod 1. �4�

Therefore two half sites or two integer sites form an integer
cluster. An integer site and a half site form a half cluster.
Similarly, a doublet site and an integer site form a half clus-
ter, and a doublet and half site form an integer cluster.

It is important to note here that the above decimation step
does not assume long-range order; it states that phase fluc-
tuations within the newly formed cluster are harmonic and
therefore the cluster cannot be broken due to phase slips.
These harmonic fluctuations are crucial for the understanding
of the properties of the superfluid phase, as explained in Sec.
V. Nevertheless these phase fluctuations can be neglected for
the purpose of the RG flow and they do not change the
critical properties of the model.33

A qualitatively new decimation step, which goes beyond
Ref. 33 occurs when the strong bond Ji connects two doublet
sites. In this case the two sites form a unique nondegenerate
ground state,

��i,i+1
 =
�ni = 0,ni+1 = 1
 + �ni = 1,ni+1 = 0


�2
, �5�

which has energy −Ji /2. The second-order perturbation
theory leads to an effective hopping between sites i−1 and
i+2,

J̃i−1,i+1 = Ji−1Ji+1/Ji = Ji−1Ji+1/� . �6�

Since each doublet site can be thought of as a spin-1/2 de-
gree of freedom, the elimination of Ji consists of the forma-
tion of a singlet. Hence we recover the Ma-Dasgupta RG
transformation.35,36 Note that formally Eqs. �2� and �6� are
identical.

C. Flow equations

Next, we describe the flow equations implied by the
above decimation steps. As in Refs. 36 and 37, we param-
etrize the cutoff energy scale with the variable 	
� log��0 /��, where �0 is the initial cutoff. Also, we define
the dimensionless couplings 
i=� /Ui−1 which are charac-
terized by probability distributions fq�
 ,	� for integer sites
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and fp�
 ,	� for half sites. In principle these distributions can
be different, but one can show that their difference is irrel-
evant in the RG sense, and therefore does not affect any of
our conclusions. For simplicity, we assume from the begin-
ning that fq= fp� f . We also define �i=log�� /Ji� as the loga-
rithmic bond variable, with distribution g�� ,	�. Note that by
construction �i and 
i have nonzero probability distribution
in the interval �0,��.

Renormalization-group steps gradually decrease the num-
ber of remaining sites in the chain �N�	��. Thus decimation
of the integer site with large charging gap U reduces N by
one while a similar decimation of a half-integer site simply
converts it to the doublet site. Also, decimation of a strong
link and joining two sites into a cluster reduces the number
of active sites by one unless the link connects two doublets.
In the latter case the number of remaining sites is reduced by
two. Thus the flow of N is given by

dN�	� = − �g0�	��1 + s2� + qf0�	��N�	�d	 , �7�

where f0�	�� f�0,	� and g0�	��g�0,	�. From Eq. �7� and
the above RG conditions, we obtain the flows of the fractions
p, q, and s,

ds

d	
= − g0s�1 − s2� + f0�p + qs� ,

dp

d	
= − g0�p�1 − s2� − 2q�1 − q�� − f0�p − pq� ,

dq

d	
= − g0�s2 − 1 + 3q − 2q2 − qs2� − f0�q − q2� . �8�

It is easy to check that ds /d	+dp /d	+dq /d	=0, provided
that p+q+s=1.

The RG conditions also lead to master equations for the
distributions,

� f�
�
�	

= �1 + 
�
� f�
�

�

+ �1 − s�g0� � d
1d
2f�
1�f�
2�

�
�
1 + 
2 + 1 − 
� − f�
�g0�1 − s� + f�
��f0 + 1� ,

�g���
�	

=
�g���

��
+ �s2g0 + qf0�� � d�1d�2g��1�g��2�

�
��1 + �2 − �� + g���g0�1 − s2� − qg���f0.

�9�

Even though these equations look quite complicated, the
meaning of the each term is straightforward. For example,
the second term in the first of these equations corresponds to
renormalization of the capacitance of the cluster following
the decimation of the link. The multiplier 1−s reflects the
fact that the renormalization takes place only if the link does
not connect two singlets.

Equations �8� and �9� can be significantly simplified not-
ing that p=q= �1−s� /2 is their solution for arbitrary func-
tions f0�	� and g0�	�. It is easy to check that p=q is in fact
an attractive solution. Indeed Eq. �8� gives

1

q − p

d�q − p�
d	

= − f0�1 − q� − g0�2�1 − q� + s�1 − s�� .

�10�

Unless q=1, the right-hand side of Eq. �10� is always nega-
tive, which means that the line p=q is an attractor. Physically
one can understand this result as follows: the integer versus
half-integer filling of a cluster is determined by the parity of
the total number of half-integer decimated sites. As clusters
grow in size under RG due to coarse graining, the number of
such sites becomes large, and thus even and odd parities
occur with the same probability. The case of commensurate
disorder, q=1, which was analyzed in Ref. 33 is an exception
since it corresponds to the strictly zero fraction of half sites
where the clusters always remain even.

The other important observation is that in the weakly in-
teracting regime f0�1 one can use a simple exponential an-
satz to solve Eq. �9�,

f�
� = pf0e−f0
 g��� = g0e−g0�. �11�

As we will see below �see also Ref. 33�, the universal prop-
erties of the superfluid-insulator transition are determined by
the noninteracting fixed point with vanishing f0, where the
ansatz is well justified. According to our numerical simula-
tions, these exponential scaling functions are attractors of the
flow equations and they describe very well the distribution of

 and � even when f0 is not very small �see discussion be-
low�. Substituting the ansatz �Eq. �11�� and p=q= �1−s� /2
into Eqs. �8� and �9� we find

df0

d	
= f0�1 − g0�1 − s��1 + f0�� ,

dg0

d	
= −

g0

2
��1 − s�f0 + 2s2g0� ,

ds

d	
=

f0

2
�1 − s2� − g0s�1 − s� . �12�

This system has two fixed points for s: s=0 and s=1. The
first fixed point s=0, p=q=1 /2 as we will see below de-
scribes the superfluid phase while the second one
s=1, p=q=0 corresponds to the random-singlet glass insu-
lator.

D. Superfluid (SF) fixed point

Let us first address the superfluid fixed point—s=0 �no
doublet sites�. Note that from the last equation of the system
�Eq. �12��, this fixed point is stable only when f0 is small.
Since f0 flows either to zero or to infinity, the fixed point s
=0 is stable when f0→0. Then the linearized flow equations
to first order in s and f0 reduce to

df0

d	
= f0�1 − g0� , �13�
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dg0

d	
= −

1

2
f0. �14�

Remarkably, apart from a factor of 1/2 in the second equa-
tion, these are the same flow equations as obtained near the
SF fixed point of the random Bose-Hubbard model with no
half sites �i.e., q=1�, as in Eq. �6� of Ref. 33. The extra factor
of 1/2 can be absorbed in a redefinition of f0. This factor
appears because half of the sites in the lattice have half-
integer filling and hence their interactions are ineffective in
suppressing the superfluidity and thus do not renormalize g0
which is related to SF stiffness �see Sec. V�.

Equations �13� and �14� are easily solved to give

f0�	� = A + �1 − g0�	��2, �15�

where A is a tuning parameter that controls the flow. When
A�0, the flows terminate on the noninteracting fixed line
f0=0 , g0�1. The point A=0 lies on the critical manifold,
which terminates in a K-T fixed point �note that if we use
v=�f0 we obtain the standard Kosterlitz-Thouless flow equa-
tions� at g0=1 , f0=0.

At the critical manifold we can solve exatly for the flow
of g0 and f0. Using the parametrization g0=1+
g. f0 and 
g
are determined by the differential equations,

�
g

�	
= −

1

2
f0,

� f0

�	
= − f0
g . �16�

By dividing the two equations we have

d�
g�2 = df0 �17�

and

�
g

�	
= −

1

2

g2. �18�

This gives


g =
2

	
+

2

	2 f0 =
4

	2 . �19�

Note that the solution of the flow equations in the case of
only integer sites �q=1� yields the same results, only with
f0→2 /	2.

When A�0, the parameters f0 and g0 flow past the fixed
point, where f0 begins to increase. The increase in f0 entails
a flow away from the s=0 fixed point toward the s=1 fixed
point. In Fig. 1 we show the examples of flows of s near the
critical point both in the superfluid and in the insulating re-
gimes.

We now want to stress a very important point. It appears
that in the superfluid regime the system flows to the classical
fixed line, where there is no charging term. However, as we
hinted above �see Sec. III B�, this statement should be under-
stood with special care. Each time the RG scheme merges
two sites into a single superfluid cluster it neglects the har-
monic Josephson plasmon between the two sites, although its

energy is well below the RG cutoff at this step. These inter-
nal excitations do not influence the progression of the RG
flow. However, they become the elementary phonon excita-
tions of the single superfluid cluster that evolves to be the
RG fixed point. Therefore the fact that the charging term
becomes irrelevant simply means that one should keep only
these harmonic phonons. In other words, one can ignore vor-
tices or phase slips, which destroy the superfluid phase if
they proliferate. Indeed there is a direct connection between
onsite interactions and phase slips. As we show next, at
strong disorder, such sites are responsible for renormaliza-
tion of the superfluid stiffness �s playing the role of phase
slips. The fact that f0 flows to zero implies that such events
renormalizing �s become unimportant and one can use a non-
interacting quadratic description. This issue will be discussed
thoroughly in Sec. V. Technically the fact that interactions
are irrelevant in our description comes from the fact that we
are working in the grand-canonical ensemble. While in the
insulating regime there is no difference between excitation
energies in canonical and grand-canonical ensembles and in
the superfluid regime there is a significant difference. Thus in
canonical ensemble the lowest energy excitation corresponds
to a phase twist or phonon while in the grand-canonical en-
semble the lowest energy corresponds to the addition of an
extra particle, which costs much less energy than the phase
twist. So the fact that in our scheme the interactions are
irrelevant in the SF phase should be understood only in this
grand-canonical sense.

E. Insulating fixed point—Random-singlet glass

The s=1 fixed point corresponds to the insulating phase.
Indeed one can check that in this limit g0�	�→0 and f0�	�
→�. However, this insulator is not the Mott glass that de-
scribes the case of integer only sites considered in Ref. 33.
At s=1, all the sites remaining in the system are doubly
degenerate. These sites can be thought of as spin-1/2 degrees
of freedom, with �↑ 
= �n̄+1 /2
 and �↓ 
= �n̄−1 /2
. Without

FIG. 1. �Color online� RG flow of the fraction of the singlet sites
s according to Eq. �12� near the critical point. The solid line corre-
sponds to the insulating regime while the dashed line does to the
superfluid phase. In both cases we assumed there are no singlet sites
at the onset, i.e., s�	=0�=0.
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hopping, the ground state obviously has a huge degeneracy.
However, the residual hopping lifts this degeneracy. In the
spin language, the hopping terms correspond to usual xy
spin-spin interaction,

Ji cos��i+1 − �i� → Ji��i
x�i+1

x + �i
y�i+1

y � . �20�

Thus we arrive at a spin-1/2 system with random xy cou-
plings. The ground state of this system is known to be the
random-singlet phase.36 A strong bond between sites i and
i+1 delocalizes a boson between two sites and creates a
cluster that has a charge gap Ji: ��i,i+1
= �1i
�0i+1
+ �0i
�1i+1
.
Quantum fluctuations produce an effective coupling between
sites i−1 and i+2 as in Eq. �2�. The typical length over
which the singlets form, �, scales as 	2. Alternatively,
one can say that the gaps of each singlet cluster is
�=�0 exp�−���.

The flow equations can be linearized near s=1 and we
obtain

df0

d	
= f0,

dg0

d	
= − g0

2,

ds

d	
= �1 − s�f0. �21�

The first equation implies that f0 diverges as f0
e	. This
scaling implies that interaction in the remaining nonsinglet
sites is narrowly distributed near the maximum energy scale
�. Following from that scaling of f0, s converges to 1 ex-
tremely fast: s=1−
 exp�−e	�. And finally g0, which corre-
sponds to the average of ln�Jj�, follows the random-singlet
scaling and flows slowly to zero as g0= 1

	 .
The random-singlet glass is an insulator with the super-

fluid stiffness of a chain of length L scaling as the spin sus-
ceptibility of a random Heisenberg model, as analyzed in
Ref. 51,

�s 
 e−C�L �22�

with C being a nonuniversal constant �note that for the ran-
dom Heisenberg chain the susceptibility is the same in all
directions�. This behavior of �s immediately follows from
Eqs. �7� and �21�, see also Ref. 36, and Ref. 52 where this
quantity was studied numerically. At the same time this in-
sulator is gapless, with the gap also decaying exponentially
with �L but with the coefficient C /2. Unlike the Mott-glass
phase or a Bose-glass phase, which we will discuss below,
the random-singlet insulator is characterized by a diverging
density of states at zero energy and hence by a divergent
compressibility ��� and superfluid susceptibility �s. The
former �=dn /d�, in the spin language is the response to a
field �z
�. Similarly, �s defined as the response to the per-
turbation 
�â+ â†�, with â being a bosonic annihilation op-
erator; in the spin language, corresponds to the perturbation
�x
�. Since the random-singlet ground state has SU�2� sym-
metry, the two responses have the same form and diverge as

�,�s 

1


� log3��0/
��
, � 


1


� log3��0/
��
. �23�

As the slow decay of g0 with 	 suggests, indeed the random-
singlet glass has more superfluid features than the Mott
glass. Both have a vanishing gap, but the Mott glass has
vanishing compressibility, and its superfluid susceptibility is
only finite.

F. Numerical RSRG for the p-h symmetric state

In order to corroborate the analytical results for the
RSRG, we carried out the RG flow numerically without any
simplifying assumptions. The numerics, by and large, backs
the analytical results. In Fig. 2 several flow traces are given
in the f0 vs g0 parameter space and in the p-q plane. The
initial distributions used consist of box distributions in the
range 0.2+
�U�1.2+
 for the charging energy and
0.2−
�J�1.2−
 for the nearest-neighbor tunneling.

IV. PHASE DIAGRAM OF THE BOSE-HUBBARD (B-H)
MODEL WITH GENERIC DISORDER

When considering experimentally realizable models, we
must also consider randomness in the chemical potential or

g0

f0

a.

q

p
(half−
sites)

b.

(integer−
sites)

FIG. 2. �Color online� RG flows of various realizations of dis-
order in the �a� f0-g0 plane and �b� p-q plane, for chains with initial
distributions characterized by �
 , p0�= �−0.1,0.05� �circles�,
�−0.05,0.04� �squares�, �−0.02,0.04� �triangles�, and �0,0.04�
�stars�. Here p0 is the initial fraction of the half-integer p sites.
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random offset charges. In particular, n̄ could have values
anywhere between −1 /2 and 1/2. Typically, this type of dis-
order is very relevant. Indeed if we join two sites 1 and 2
together into a cluster then the new value of n̄12 becomes a
sum of n̄1 and n̄2 modulo one �so that the result also belongs
to the �−1 /2,1 /2� interval�.

To address this problem it is worthwhile review a few
important insights gained from our analysis of the particle-
hole symmetric model. In that case the low-energy behavior
was dominated by the line p=q where the number of half
sites with n̄=1 /2 was the same as the number of integer
sites, with n̄=0. At the same time we saw that the universal
properties of the SF-INS �superfluid-insulator� transition
with p=q and p=0, q=1 were identical up to a factor of
one half in Eq. �14�, which is absent in the integer filling
model.

We thus can anticipate that the fixed point governing the
SF-insulator transition has a uniform distribution of n̄ when
we remove the particle-hole symmetry restrictions. But also,
in analogy with the half-integer case, we can expect that the
fixed point describing the SF-INS transition remains intact.
On the other hand, again having the p-h symmetric case in
mind, we expect that the distribution of n̄ at the critical point
strongly affects the properties of the insulating phase. As it
turns out, the diagonal disorder plays the role of a “danger-
ously irrelevant variable” �as s is in the analysis above—
irrelevant in the SF side of the transition but strongly rel-
evant in the insulator side�. The diagonal disorder does not
change the nature of the critical and crossover behavior but it
determines to which insulating phase the system will flow. In
Ref. 33 the p-h symmetric model with only integer fillings
had a Mott-glass insulating phase. By allowing also sites
with charging degeneracy �n̄=1 /2� but preserving the p-h
symmetry, the system in its insulating phase is a random-
singlet glass. When we remove the p-h symmetry, we expect
that the insulator becomes a Bose glass: gapless, compress-
ible state with a diverging susceptibility to SF fluctuations.

Before going into more detailed analysis, which confirms
the above assertions, we would like to comment on the simi-
larities with the perturbative RG approach of Giamarchi and
Schulz.28 In particular, they derived the following flow equa-
tions near the transition between superfluid and localized
phases:

dD
d	

=
9

2
�K−1 −

2

3
�D , �24�

d�K−1�
d	

=
1

2
D , �25�

where K is the Luttinger parameter, ��s� and D is propor-
tional to the variance of the disorder in the chemical poten-
tial: ��x���x���D
�x−x��. We point out that in Ref. 28,
Eqs. �24� and �25� are written in terms of the inverse Lut-
tinger parameter being K, the inverse of the common con-
vention which we use �see, e.g., Ref. 40�. Note that there is a
direct analogy between Eqs. �13� and �14� and Eqs. �24� and
�25� if one identifies K with g0 and D with f0.

Interestingly in Ref. 30 it was argued that the SF-INS
transition described by Eqs. �24� and �25� does not belong to
the KT universality class because of the first power of D
appearing in the second of these equations, as opposed to the
second power in the conventional case. This difference ac-
cording to the authors lead, in particular, to the unconven-
tional scaling of the correlation length with K−Kc near the
critical point. However, this must be a misstatement since, as
we argued earlier, the substitution D=�2 brings the flow
equations to the conventional KT form. This change in vari-
ables should not affect the scaling. Moreover the flow equa-
tions in terms of K and � are more natural because � has
dimensions of the external potential and thus it �not D� is
analogous to the strength of the periodic potential, which
drives the transition in a nondisordered case.

The similarity between the perturbative analysis of Ref.
28 and the one presented here goes even further. A simple
scaling argument shows that disorder in the chemical poten-
tial is strongly relevant in both approaches. However in the
language of Ref. 28 the strongly relevant part of the disorder
corresponds to the forward scattering, which can be reab-
sorbed into the canonical smooth fluctuations of the density.
It is the backward scattering or phase slips, which determine
the fate of the superfluid phase. By analogy with our ap-
proach we can argue that even the smooth part of the disor-
der potential should become strongly relevant in the insulat-
ing regime. Thus it should play the role of a dangerously
irrelevant term just as the distribution of n̄ does in our ap-
proach. Unfortunately the pertubative RG approach becomes
uncontrolled in the insulating regime and this postulate can-
not be reliably verified.

A. RG scheme for the generic disorder B-H model

We probe the observsations above by extending our
RSRG analysis to treat arbitrary disorder: Ui, Ji, and n̄i all
random in the model in Eq. �1�. First let us analyze the
charging term while ignoring the hopping. Each site has a
charge gap given by

�i =
1

2
Ui�1 − 2�n̄i�� , �26�

where −1 /2� n̄�1 /2.
As before, we treat the model iteratively, but this time, in

each step of the RG we find the largest energy scale

� = max
i

�Ji,�i	 �27�

and eliminate it. If it is a gap, �i, then the site i freezes into
its lowest energy charging state. Quantum fluctuations in-
duce an effective hopping between sites i+1 and i−1,

Ji−1,i+1 =
Ji−1Ji

2�
� 1

�1 + 2�n̄i��
+

1

�12�n̄i��
� . �28�

The last multiplier in this expression is a nonuniversal pref-
actor, which varies between 1 and 1/2. This prefactor does
not affect any universal features of the transition and we can
safely set it to unity. On the other hand, if Ji is the largest
energy scale, then the sites i and i+1 form a SF cluster with
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effective charging energy given by Eq. �3� and with a filling
offset,

n̄i,i+1 = n̄i + n̄2, �29�

where the last equality is defined modulo adding or subtract-
ing one, so the the result always belong to the interval:
n̄i,i+1� �−1 /2,1 /2�.

B. Generic case flow equations

The ensuing flow can be quantified using flow equations
for the distribution of logarithmic couplings, �i=log � /Ji,
and the joint distribution F�
 , n̄�= f�
 , n̄���
−1+2�n̄��, where

i=� /U and the Heaviside step function � enforces the con-
straint � /��1 or equivalently 
�1−2�n̄�.

The flow equations are given by

�g

�	
=

�g

��
+ �f1 + g0�1 − fs��g � g��=�1+�2

+ g�g0fs − f1� ,

�30�

� f

�	
= 


� f

�

+ g0f � f �
=
1+
2,n̄=n̄1+n̄2

+ f�1 + f1 − g0fs� ,

�31�

where

f1 = �
−0.5

0.5

dn̄�1 − 2�n̄��f�1 − 2�n̄�, n̄� �32�

is the density of sites with a large charging energy,

fs =� d
� dn̄��
 − 1 + 2�n̄��f � f �
=
1+
2,n̄=n̄1+n̄2
. �33�

Physically 1− fs is the density of strong bonds connecting the
sites with large onsite interaction, which are close to half
filling. These sites form a cluster with ��� and thus have
to be eliminated as a spin singlet. In the equations above �
implies the convolution over � in g�g and over both 
 and
n̄ in f � f .

Although the equations look somewhat obstruse, near the
critical point they can be solved with the same scaling ansatz
as before. Indeed, since near the transition the interactions
are negligible, we can safely ignore 

, which is on the order
of 1, in the convolution �Eq. �33��. Also similarly to the
particle-hole symmetric case we can expect that near the
critical point the distribution of n̄ is uniform and thus f�
 , n̄�
does not depend on n̄. We then use our standard scaling
ansazt,

g��� = g0e−g0�, �34�

f�
, n̄� =
f0

2

1 − e−f0
e−f0
 � f0e−f0
, �35�

where in the last equality we used f0�1. In the same ap-
proximation of small f0 we find that f1� f0 /2. Substituting
the scaling ansatz into the flow Eqs. �30� and �31� and using
f0�1 we immediately recover that f0 and g0 obey Eqs. �13�

and �14�. The latter automatically implies that the SF-IN
transition in the case of generic disorder belongs to the same
universality class as in the particle-hole symmetric case.

We confirm these findings performing numerical analysis
of the full RG, Eqs. �30� and �31�. We find a clear signature
of the K-T transition that is even more pronounced than be-
fore. In Fig. 3 the flows in the f-g parameter space are shown
for three different initial conditions.

C. Nature of the Bose glass

We now turn to the analysis of the insulating phase at
generic disorder, i.e., of the Bose glass. Even though the
simple exponential form of f�
 , n̄� and g��� does not give the
exact solution to the flow equations, as we deduce from nu-
merical analysis, it gives a very good approximation to the
true distributions. For large values of f0, Eq. �35� simplifies
to f�
 , n̄�� f0

2 exp�−f0
�. It is straightforward to check
that under these conditions we have f1�1 and
fs�4f0 exp�−f0 /2�. Then the flow e1quation for g0 becomes
very simple,

dg0

d	
� − g0. �36�

Such flow indicates that the Bose-glass phase is indeed in-
termediate between the Mott Glass where g0��−f0g0 and the
random-singlet insulator with g0��−g0

2. Physically the pa-
rameter g0 characterizes the strength of the hoppings remain-
ing in the system. As we argued before slow 1 /	 decay of g0
in the random-singlet phase resulted in the divergent density
of states at zero energy and as a result in a divergent com-
pressibility. On the other hand in the Mott glass g0 was van-

f0

g0

FIG. 3. �Color online� Flows in the f0 vs g0 plane. Initially, the
interaction energy U and the hopping J are uniformally distributed
in the range 0.2−
�J�1.2−
 and 0.2+
�U�1.2+
; the offset
charge is also uniformally distributed between −�n̄� n̄��n̄. The
values of 
 and �n̄ for the plots shown are 
=−0.05, �n̄=0.12
which is in the SF phase �circles�, 
=−0.04, �n̄=0.08 �squares�,

=−0.03, �n̄=0.08 �triangles�, 
=−0.02, �n̄=0.08 �stars�, and

=0, �n̄=0.12 �diamonds�.
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ishing very rapidly g0
exp− �exp�	�� and thus the corre-
sponding Mott glass had a vanishing density of states at zero
energy and vanishing compressibility. In the Bose-glass
phase we have exactly intermediate behavior: g0
exp�−	�.
As we will see shortly this scaling implies finite density of
states at low energies and thus a finite compressibility. In
Fig. 4 we plot the flows of the parameter g0 as a function of
	 obtained from numerical solution of the RG equations for
two different insulating samples with generic disorder. As
can be seen from the latter figure, the flow of g0 vs 	 is
consistent with g0
exp�−	�.

Another interesting conclusion is coming from the fact
that f1�1 is independent on f0 �and hence dg0 /d	�−g0�.
We remind that f1d	 gives the probability of decimating a
site when we change the cutoff scale from � to ��1−d	�. It
is remarkable that in the Bose-glass phase this probability is
independent of f0. On the contrary, the probability of elimi-
nating the link is proportional to g0 and thus vanishes at long
	. Thus we come to the conclusion that the number of the
sites remaining in the system N scales exactly as the cutoff
energy scale,

N � �� , �37�

which indicates uniform density of localized states in the
insulating state. As we will see shortly the parameter � plays
the role of the compressibility. It is interesting to note that �
discontinuously changes across the phase transition. Indeed
very close to the transition the number of sites remaining in
the system is given by

N�	� 
 N0 exp�− g0	� 
 exp�− 	� . �38�

This behavior is correct for length scales shorter than the
correlation length �
exp�1 /�A�, where A is the tuning pa-
rameter appearing in Eq. �15�, A→0 corresponding to the
critical point. After that we should use the flow
equations valid in the insulating regime where
N
exp�−f1	�
exp�−	�. So we see that the scaling

N
N0 exp�−	� works very well. We thus conclude that the
ratio N�	� /��	� goes to a constant, which is independent of
A.

Compressibility and SF susceptibility

The easiest way to see that � is indeed the compressibility
is to map the renormalized array of clusters into a spin-1/2
chain. Since deep in the insulating phase the displacement �n̄�
is close to 1/2, the local interaction strengths, Ui, is mostly
quite large and obeys Ui��. This implies that we could
retain only the two lowest charing states, which we the
spin-up and spin-down states of an effective spin 1/2 degree
of freedom,

ni =
1

2
+ ŝz. �39�

In this picture the gap �i=U�1−2�n̄�� plays the role of the
external magnetic field along the z axis hi

z. The hopping Ji is
in turn maps to the xy coupling between the neighboring
spins.

Let us first determine the distribution function of hz: H�hz�
assuming that f�
 , n̄� is given by Eq. �35� with f0�1,

H�hz� � f0
2�

−1/2

1/2

dn̄�
1−2�n̄�

�

d
e−f0

��hz� −
�



�1 − 2�n̄���

�
1

2�
��� − �hz�� , �40�

which is just a uniform distribution.
The compressibility of the insulating phase is given by the

z-field susceptibility of the spin chain. The latter is easily
shown to be twice the probability density of H�hz=0�. Thus
the compressibility is

� =
�n

��
= N

�sz

�hext
z = 2NH�hz = 0� =

N

�
, �41�

where hext
z is the infinitesimal external magnetic field along

the z axis. Indeed, this is the result advertised in Eq. �37�.
The superfluid susceptibilty �s is obtained as the response

of the spin chain on a small magnetic field in x direction.
Note that in the Bose-glass phase the coupling between dif-
ferent sites is vanishingly small and thus �s can be derived
by considering an isolated site, which is described by a spin
1/2 Hamiltonian,

Hi = hzŝi
z + hext

x ŝ́x. �42�

A straightforward calculation yields that the average magne-
tization along the x axis is

�ŝx
 =
1

2

hext
x

��hext
x �2 + �hz�2

. �43�

Thus the susceptibility is

g0

Γ
FIG. 4. �Color online� A semilog plot of g0 vs 	 in the Bose-

glass phase. The two samples are the same as the star and diamond
curves in Fig. 3 with 
=−0.02, �n̄=0.08 �stars� and 
=0, �n̄
=0.12 �diamonds�. The dark lines are guide to the eye and have a
slope of −1 in the plot. As can be seen, the late stage of the flow of
g0 fits g0
e−	 very well.
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�s = N�
�hext

x �

� dhz

2�

1

�hz�
=

N

2�
log

�

�hext
x �

=
�

2
log

�

�hext
x �

. �44�

Obviously �s diverges as hext
x →0. Thus we find that the

Bose-glass phase is characterized by divergent �s and finite �
in agreement with Ref. 30.

V. COMPRESSIBILITY, STIFFNESS, AND LUTTINGER
PARAMETER IN THE SUPERFLUID PHASE AND

AT CRITICALITY

Let us now focus on the properties of the superfluid phase
we find. The superfluid phase is associated with the forma-
tion of a superfluid cluster that spans the chain. The cluster
consists of all the original bare sites that were not decimated
due to their charging energies. These surviving sites obey the
Hamiltonian,

Hef f
SF = �

i
�1

2
J̃i��i+1 − �i�2 +

1

2
Uin̂i

2� , �45�

where �i and n̂i are the phase and number operators of the
surviving cites, and Ui are the charging energies of each bare

site. The J̃i are harmonic couplings between the surviving
sites, which are the result of the decimation of a strong bond
�marked with a tilde since they can get renormalized by in-
tervening charge-blockaded sites� as we now explain. When
deriving the RG equations, we eliminated the strongest
bonds iteratively, by setting the sites they connected into
phase-coherent clusters, which implies replacing the stron-
gest Josephson couplings with a harmonic coupling,

− Ji cos��i+1 − �i� →
1

2
Ji��i+1 − �i�2. �46�

We then approximated the cluster to be phase coherent,

�̃ � �i � �2. �47�

This strong approximation is sufficient for obtaining the flow
equations but we need to allow intracluster fluctuations it in
order to discuss the properties of the superfluid phase.

The stiffness and the compressibility of the superfluid

phase are given in terms of the parameters J̃i and Ui in the
effective Hamiltonian �45�, which describes the proliferating
superfluid cluster. The compressibility is given by

� =
1

L

1

USF-cluster
=

1

L
�

i�SF

1

Ui
, �48�

where L is the total length of the chain. The inverse super-
fluid stiffness is similarly obtained as

1

�s
=

1

L
�

i�SF

1

J̃i

. �49�

Note that the simple expression for the stiffness owes to the
fact that the fixed-point Hamiltonian �45� is harmonic.

Therefore the stiffness suffers no further renormalization by
quantum fluctuations and it is the same as in the classical
model �see Ref. 33�. We will now proceed to calculate the
average compressibility, stiffness, and Luttinger parameter of

the superfluid K�����s.

A. Differential equation for the inverse-charging energy

The compressibility given by Eq. �48� can be calculated in
a rather straight forward way within the RG scheme outlaid
in the previous sections. The variable 
 in the RG scheme is
specifically designed to keep track of the cluster compress-
ibilities. We recall the RG flow Eq. �9� for the distribution
function f�
�,

df�
�
d	

= �1 + 
�
� f�
�

�

+ g0� d
1d
2
�
 − 
1 − 
2 − 1�

�f�
1�f�
2� + f�
��f0 + 1 − g0� . �50�

The solution to this equation will allow us to compute the

compressibility from the average value of 
 as �= 
̄ /�.
To obtain a differential equation directly for the average

compressibility �inverse-charging energy� we move to the
Laplace-transformed representation: F���=�0

�e−�
f�
�,
which obeys

dF���
d	

= − f0 + F����� − 1� − �
�F���

��
+ g0F���2e−� + F���

��f0 + 1 − g0� . �51�

We now use that


̄ = −� �F���
��

�
�→0

�52�

to obtain

d
̄

d	
= 
̄�f0 + g0 − 1� − 1 + g0. �53�

The inverse-charging energy is given by Eq. �48� in which
an extra factor of � appears. Adding it on we obtain

d�

d	
= ��f0 + g0� − �1 − g0�/� , �54�

where �= 
̄ /�.

B. Flow equation for the stiffness

Calculation of the stiffness requires a slight extension of
the RG scheme. The method described thus far did not in-
clude a cluster variable which stores the internal stiffness. In
other words the RG scheme does not keep track of the inter-
nal sum over 1 /Ji �Eq. �49�� within the proliferating clusters.
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Fortunately, such a variable can easily be included by ex-
tending the cluster distribution function f�
� to a joint distri-
bution f�
 ,��, where

� = �
i�cluster

1

J̃i

�55�

is a variable designed to keep track of the superfluid stiffness
of the clusters. Each time two clusters are joined in the RG

flow by a large bond J=�, the variable � of the joined clus-
ter is given by

�12 = �1 + �2 +
1

�
= �1 + �2 +

1

�0
e	. �56�

The flow equation for f�
 ,�� is a straight forward exten-
sion of Eq. �50�,

df�
,��
d	

= �1 + 
�
� f�
,��

�

+ g0� d
1d
2
�
 − 
1 − 
2 − 1�� d�1d�2
�� − �1 − �2 − �0

−1e	�f�
1,�1�f�
2,�2� + f�
,���f0 + 1 − g0� .

�57�

This is a rather complicated equation for the joint distribu-
tion of cluster stiffness and charging energy. However it can
be greatly simplified if we are interested only in the average
of the stiffness. The latter can be calculated by integrating
Eq. �57� with respect to 
 and taking its Laplace transform
with respect to �: S���=�0

�d
�0
�d�e−��f�
 ,��. This yields

dS���
d	

= − f̃�0,�� − S��� + g0S���2e−�·1/�0 exp 	 + S����1 + f0

− g0� , �58�

where

f̃�0,�� =� d�e−��f�
 = 0,�� .

Again using the fact that

�̄ = −� �S���
��

�
�→0

, �59�

we obtain

d�̄

d	
= �̄�f0 + g0� + g0/� +� � f̃�0,��

��
�

�→0
, �60�

where we used �=�0 exp�−	� We note that the only differ-
ence between Eq. �54� and �60� is in the subleading term,
g0 /� above, and �g0−1� /� in Eq. �54�. There is also the last
term in Eq. �60�, which should be negligible and negative.

C. Differential equation for the length of a superfluid
cluster

The differential equation for the typical length of the
clusters33 is given by

d�

d	
= ��f0 + g0� . �61�

It is interesting to note that this equation is the same, at the
leading order, as the equations, derived above, for the sums

of inverse-charging energies 

̄ and the sum of inverse Jo-
sephson couplings �̄ within a cluster.

When calculating the stiffness and compressibility using
the flow equations for a particular cluster, as illustrated
above, we need to renormalize until the size of a SF cluster is
that of the entire chain,

�	 = L . �62�

Therefore the compressibility

� =
1

L

1

USF-cluster
=


̄/�
�	

�63�

and the inverse stiffness

1

�s
=

1

L
�

i�SF

1

Ji
=

�̄

�	

�64�

always tend to a number as 	→�.

D. Compressibility and stiffness at the critical point

Let us assume that we start sufficiently close to the critical
point so that the distributions f�
 ,	� and g�� ,	� already
converged to the universal forms characterized by f0�	� and
g0�	� �see Eqs. �34� and �35��. In Sec. III D we found the
explicit flow of these functions at criticality g0−1�2 /	
+2 /	2 and f0�4 /	2 �that is, the flow on the separatrix�.
These flows start at some initial value 	0 which characterizes
the bare disorder distributions of the microscopic system.
The larger is 	0 the wider is the disorder distribution in Ji.

Combining this with flow equation for 
 �Eq. �53�� we
find

d
̄

d	
= 
̄� 2

	
+

6

	2� +
2

	
.

This has the solution for large 	,
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̄ � C
 · 	2 exp�− 6/	� �65�

with C
 being a constant, which we obtain from initial con-

ditions. We know that for sufficiently large 	0, 
̄0= 1
f0

�0� = 1
4	0

2.
This implies


̄ =
1

4
	2 exp�− 6/	� �66�

and C
=1 /4.
Similarly, for �̄ we get

�̄ �
1

�

1

6
	2 exp�− 6/	��C� − exp�6/	�� , �67�

where the second term in the brackets comes from the g0
term in the equation for �. The constant C� can also be
obtained from boundary conditions. At the onset �̄0=0 since
we start with bare sites and only after some RG we get the
sum of 1 /J to grow. This implies

C� = exp�6/	0� . �68�

By the same token, the solution of Eq. �61� at criticality is

�	 = �0e		2

	0
2 , �69�

where �0 is of order 1.
Putting our results in the definitions of �s and �, we obtain

the compressibility of the critical system sending 	→�,

� =

̄/�
�	

=
	0

2

4�0�0
�70�

and the inverse stiffness,

1

�s
=

�̄

�	

=
	0

2

6�0�0
�exp�6/	0� − 1� . �71�

The energy scale for both the stiffness and the compressibil-
ity is given by �0, the initial energy scale of the problem.
Both also tend to constants along the critical flow line.

E. Luttinger parameter at criticality

By multiplying Eqs. �70� and �71� we obtain the Luttinger
parameter of the SF cluster,

K2 = �2��s =
3�2

2

1

exp�6/	0� − 1
. �72�

Indeed we find that it is a constant along flows on the critical
manifold, which is independent of the initial energy scale
�0. On the other hand this result is clearly not universal
since it depends on 	0.

As mentioned above, 	0 parameterizes the strength of the
bare bond disorder distribution. For a given system on the
critical manifold, the larger is 	0 the broader is the system’s
initial distribution of both J and 1 /U. We can therefore in-
terpret Eq. �72� as stating that at strong disorder, the Lut-
tinger parameter required to stabilize a superfluid phase de-
pends on the disorder strength. A larger Luttinger parameter

is needed the more disordered is the system. This statement
is clearly different from the situation at weak disorder, for
which Giamarchi and Schulz had predicted a transition at a
universal value of the Luttinger parameter.27,28 We shall
comment on the relation between these two limits in the
discussion below.

VI. DISCUSSION

A. Comparison with the weak disorder limit

Using the real-space RG approach, we obtain a consistent
picture both of the possbile insulating phases of the random
Bose-Hubbard model but also of the transition from the su-
perfluid to them. The seminal work of GS �Refs. 27 and 28�
obtained a description of what seems to be the same transi-
tion in terms of a perturbative RG in weak randomness—the
opposite limit to our starting point. We now ask: how do
these two scenarios, or descriptions, correspond to each
other? Now that we obtained our result for the Luttinger
parameter at criticality, Eq. �72�, we can address this ques-
tion.

One of the central results of Ref. 28 is the universality of
the Luttinger parameter at the transition,

Kc
�GS� =

3

2
. �73�

Since GS considered the anomalous dimension of what is
essentially a phase-slip operator, the universality of K at the
transition was deduced from the fact that when K�3 /2,
phase slips are irrelevant. Since in weak-randomness phase
slips are clearly the most relevant operators, the vanishing of
their scaling dimension implies criticality. Also, the general-
ity of the GS approach and the self-averaging of the SF
phase53 implies that phase slips turn relevant when K=3 /2
even for strong disorder.

At strong randomness, however, we find that a different
type of disturbance of the superfluid phase can disorder it. In
the real-space RG analysis grains with large charging ener-
gies are decimated, implying that a whole grain becomes
isolated from the rest of the chain. This process is equivalent
to a phase-slip dipole happening around the grain. Phase-slip
dipoles consist of a phase slip and an antiphase slip happen-
ing simultaneously at neighboring positions in the chain. In
the week coupling limit, these dipoles are not enough to
degrade the superfluidity since they do not produce a voltage
drop. But when the disorder is strong, the dipoles, or equiva-
lently, the blockaded insulating sites, suppress tunneling
across the lattice, as we find from our analysis.

For sufficiently strong disorder, the Luttinger parameter at
which blockaded sites destroy superfluidity, i.e., the critical
Luttinger parameter, is given by Eq. �72�,

K = ��3

2

1

exp�6/	0� − 1
. �74�

For the p-h symmetric case considered in Sec. III and K

=��2 / �exp�4 /	0�−1� for the commensurate case, with n̄j
=0. As explained below Eq. �72�, 	0 is a measure of the
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initial disorder of the system. Thus, K grows monotonically
with the disorder, and exceeds the universal GS value of K
=3 /2 at intermediate values of 	0
3. This implies that the
transition we find takes over the universal GS transition at a
finite disorder since we find that the breakdown of superflu-
idity occurs at K�3 /2, the transition happens well into the
region where single phase slips are irrelevant, and thus they
do not modify the critical properties of the model, and can be
safely ignored. This also justifies our procedure of SF cluster
formation as outlined in Eq. �46�. It is interesting to note that
	0
3 corresponds to a charging distribution which is
peaked at about 4 /	0

2�0
1 /2�0, as obtained by plugging
	0 into Eq. �11�.

Our conclusion is that at finite randomness the critical
fixed point of the RSRG takes over �Fig. 5�. When this hap-
pens, universality of the Luttinger parameter at the transition
is lost. Since the transition we are describing is still a
Kosterlitz-Thouless-type transition, many properties of the
weak-randomness transition and strong-randomness transi-
tion are shared. One can argue that the Luttinger-parameter
universality lost at strong disorder morphs into a different
universlity—that of the exponent with which the distribution
of J vanishes at small energies, which is g0−1→0+ at criti-
cality.

An outstanding question is how the weak-randomness
phase-slip driven transition changes into the transition we
find at strong disorder. One possiblity is that the two scenario
continuously morph into each other. Yet another more excit-
ing possiblity is that our analysis is equivalent to the calcu-
lation of the scaling dimension of an operator different from
single phase slips and that such an operator becomes relevant
at sufficiently strong disorder at Luttinger parameters K
�3 /2. Therefore it causes a break down of superfluidity be-
fore phase slips become relevant.

Another important difference between the perturbative ap-
proach of GS and our results is that GS assume that the
diagonal disorder is Gaussian and fully characterized by its
variance while the off-diagonal disorder is weak and irrel-
evant. On the contrary, in the strong-randomness approach,
we see that transition corresponds to a wide power-law dis-
tribution of tunneling amplitudes. Standard replica methods
are not applicable to this type of disorder distribution and
thus it is not surprising that the jump we find in K is differ-
ent. The appearance of broad power-law distribution of links
in 1D is not surprising. There is always a finite chance of
encountering a large insulating cluster separating two super-
fluid regions, which effectively blocks the tunneling between
superfluids. This is a special property of 1D systems. In Ref.
33 we demonstrated that this is indeed the case for a simple
toy model. The real-space RG just reflects this property of
1D systems. Thus if disorder is not very small so that weak
links necessarily occur with finite probability, we believe that
our scenario of the SF-IN transition to be more plausible
than GS scenario of weak disorder. However, the final reso-
lution of this question is currently beyond reach of both the
RSRG and the GS analysis since it is concerned with the
intermediate randomness regime. Probably this question can
be addressed numerically.

B. Real-space RG limits of validity

In the above discussion we contrast the limits of strong
and weak disorder, which begs the question of where we set
the boudary between the two. As we shall argue, the RG
procedure is well defined not only when the coupling distri-
butions are of the infinite-randomness type36 but also near
the axes of the f0−g0 parameter space, where g0�1 �which
yields an infinite-randomness type ��J�� or where the charg-
ing energy has a very broad distribution, f0�1.

To obtain our results we have used essentially two
renormalization-group steps. The first was a site decimation
due to a large charging gap. This step assumes that the onsite
charging gap �i=Ui�1−2n̄i� is much bigger than the neigh-
boring Josephson coupling: �i�Ji ,Ji−1 and it produces an
effective tunneling between the neighboring sites, Ji−1,i+1
=cJiJi+1 /�i, with c�1 of order unity. If the strong mismatch
between � and J is not fulfilled, we need to include higher
orders in the perturbation theory, which will give rise to

longer range hopping of order �J̃ /�i�n, with J̃=exp�log J� the
geometric average of the Josephson coupling �we assume
that f0�1 and that �i�� j for j� i�. Even in cases of mod-
erate disorder, as is obtained near the fixed point, where

��J�
Jg0−1, J̃ is quite small: J̃ /�
e−1/g0, which even at g0
=2, far from the critical point, is 
0.6 implying that charge
fluctuations are highly localized, and are unimportant, so
long that �J has some support near J=0. Such tails in ��J�
are guaranteed by the Griffiths effects induced by occasional
strong charging sites as described above.

The second RG step we used was a strong bond decima-
tion. As already mentioned in Sec. III D, this RG step ne-
glects plasma excitations within the resulting cluster. Ne-
glecting chemical-potential disorder �which only makes this
perturbation step better�, the effect of the plasma modes is to
produce a Debye-Waller factor on the order of 
e−0.5�U/J in
the tunneling between the cluster and its neighbors. We have
neglected that in our analysis of the fixed point and its vicin-
ity, since there U
 f0�1, the charging energies of the con-
stituent grains are guaranteed to be small, and the Debye-
Waller suppression is negligible. Note that the decimated
Josephson connection within clusters are essential to the
stiffness calculation in Sec. V.

VII. EXPERIMENTAL CONSEQUENCES

A. Critical current of a finite superfluid chain

At low-energy scales, the real-space renormalization
group allows detailed knowledge of the superfluid phase.
Most importantly, the effective low-energy Josephson-
junction coupling distribution is

��J� = g0
1

J1−g0
. �75�

The knowledge of the Josephson distribution function allows
us to make a connection with a rather simply measurable
experimental property: the critical current of a chain.

Unlike the Luttinger parameter, the critical current of a
bosonic chain in the absence of phase fluctuations is con-
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trolled by its weakest hopping link. Given a strongly disor-
dered bosonic chain in its superfluid phase, we can apply the
real-space RG until the effective coupling distirbutions ap-
proach their universal behavior and, in particular, the distri-
bution �Eq. �75�� for the Jospehson energies of each bond
and with negligible charging effects.

Let us now calculate the scaling of the critical current on
the bare length of the system. Given a particular disorder
distribution, the universal distributions are obtained once the
UV cutoff is �0, and only a fraction 1 /� of the chain is still
active, and the chain is of length L /�. The scaling behavior
of the weakest Josephson energy expectation value, Jmin, is
obtained by requiring that the probability of having at least
one bond with an energy J�Jmin is of order 1, which trans-
lates to the condition,

L

�
�

0

Jmin dJ

�0

g0

�J/�0�1−g0
= 1. �76�

Carrying out the integral we obtain

Jmin 
 � �

L
�1/g0

. �77�

In the weak disorder regime, where g0�1 we see that the
critical current is almost size independent. While at strong
disorder near the transition g0→1+ the critical current scales
as the inverse system size. This prediction can be directly
tested in experiments. Using extreme value statistics one can
even find the whole Gumbel distribution of the critical cur-
rent in the SF regime,

P�Jmin� 

g0

Jmin
1−g0

exp�−
L

�
�Jmin�g0� . �78�

B. Resistance at finite temperatures

By a similar argument, we can guess the finite-
temperature behavior of a disordered superfluid chain. First,
we make the following simplifying assumptions: if a bond
strength is J�T, we can neglect its finite-temperature
resistance but if J�T, a bond will give a finite resistance r,
which is T independent. Furthermore, we ignore, for the sake
of this discussion, the dependence of r on J.

Under these simple assumptions, the resistivity � at tem-
perature T is given by the density of bonds of strength
J�T. Therefore,

� 
 r�
0

T dJ

�0

g0

�J/�0�1−g0
= r�T/�0�g0, �79�

where, as defined above, �0 is the rough energy scale at
which the chain is exhibiting the universal low-energy be-
havior.

In finite chains, we expect that Eq. �79� would only be
valid when T�Jmin. Very crudely, by replacing the lower
limit of the integral in Eq. �79� by Jmin as given by Eq. �77�,
we obtain for T�Jmin,

� 
 r�� T

�0
�g0

−
�

L
� . �80�

VIII. CONCLUSIONS

In this paper we extend the real-space RG analysis of
Ref. 33 to the case of noncommensurate chemical potential.
We find that remarkably, the symmetry and details of the
diagonal disorder are irrelevant for the SF-INS transition in a
system with only onsite interactions. Nevertheless, the sym-
metry of the disorder completely determines the type of in-
sulator that the system obtains. The superfluid phase will
break down at a Kosterlitz-Thouless critical point and will
become: �i� a gapless, incompressible, Mott glass if the
chemical potential is commensurate �n̄j =0�, �ii� a gapless,
compressible Bose glass with diverging superfluid suscepti-
bility if 1 /2� n̄j �1 /2 is unrestricted, and �iii� a gapless
random-singlet glass with a diverging compressiblity and su-
perfluid susceptibilty in the case of p-h symmetric chemical
potential �n̄j =0,1 /2�.

An important question about our approach is its connec-
tion with the seminal work of Giamarchi and Schulz,27 we
calculated the properties of the superfluid phase using the
real-space RG analysis. By considering the Luttinger-
parameter K, we showed that at strong disordered the SF-
INS transition occurs at a finite value of K, larger than the
universal GS value, and that the universality of the Luttinger
parameter is replaced with a universality of the power-law
distribution of effective hopping at low energies. The real-
space RG approach is thus not complementary to the GS
approach, but provides a description of the SF-INS transition
at strong disorder, and allows direct access to the insulating
phases, where the GS approach fails.

An interesting direction to pursue in the future is the uti-
lization of the RSRG approach for calculation of transport

Randomness

(Γ )0

Κ

Lutt. Par.

1

Insulator

SF

strong randomness
transition

weak randomness
transition

3/2

FIG. 5. �Color online� From all the analyses we carried out it
seems that our transition does not happen at a universal value of the
Luttinger parameter, but rather, at a universal value of the power
law of the J distribution �g0=1�. From the discussion, it seems that
there are two scenarios for the breakdown of the SF. At weak ran-
domness it is the G-S single-vortex proliferation mechanism that
first destabilizes the SF. In this range, the scenario we present would
destabilize the SF at lower K than single-vortex proliferation
�dashed gray� and is therefore not a true boundary. At larger ran-
domness, our scenario is the first to stabilize the SF, as it occurs at
larger K’s than the universal G-S value. A concequence is that the
universality of the Luttinger parameter at criticality is lost.
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properties and finite-temperature properties of the random
1D Bose-Hubbard chain �several works discussed recently
the transport properties in the weak disorder regime and
finite-temperature properties, see, e.g., Refs. 54 and 55�.
Such calculations could probably be done by combining our
approach with that of Motrunich et al.56 The presence of very
large disorder in the insulating phases should make such cal-
culations accessible. On the other hand, they may prove dif-
ficult near the transition due to the finite randomness there.

Another outlying question is that of the correlations in the
SF phase. Self-averaging indicates that the Luttinger param-
eter we find in Sec. V also dictates the decay of correlations
in the strongly disordered superfluid phase. This, however,
remains to be confirmed in direct numerical investigation of
a strongly random harmonic chain. We should emphasize
that due to our method for finding the Luttinger parameter, it

should be consistent with the anomalous dimension of the
phase-slip operator in the GS theory.
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