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We have studied the evolution of an excited electron bubble in superfluid 4He for several tens of picosecond
combining the dynamics of the liquid with an adiabatic evolution for the electron. The path followed by the
excited bubble in its decay to the ground state is shown to strongly depend on pressure. While for pressures
below 1 bar the 1P excited electron bubble has allowance for radiatively decay to the deformed ground state,
evolving then nonradiatively toward the ground state of the spherical electron bubble, we have found that
above 1 bar two distinct baby bubbles appear in the course of the dynamical evolution, pointing to a different
relaxation path in which the electron may be localized in one of the baby bubbles while the other collapses,
allowing for a pure radiationless de-excitation. Our calculations are in agreement with experiments indicating
that relaxed 1P bubbles are only observed for pressures smaller than a critical one, on the order of 1 bar, and
that above this value the decay of the excited bubble has to proceed differently. A similar analysis carried out
for the 2P bubble shows that the adiabatic approximation fails at an early stage of its dynamical evolution due
to the crossing of the 2P and 1F states.
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I. INTRODUCTION

Electron bubbles �ebubbles� in liquid helium are fascinat-
ing objects with an apparently simple structure that have
been the subject of a large number of experimental and the-
oretical studies, see, e.g., Refs. 1–12 and references therein.
The imaging of individual ebubbles moving in the liquid,13

some unexplained events in cavitation experiments,14 and the
efforts in creating and detecting multielectron bubbles15,16

are recent issues calling for a dynamical description of the
electron bubble, but not the only ones. For instance, the
equilibration of the electron bubble in superfluid liquid he-
lium, studied in detail by Eloranta and Apkarian8 within
time-dependent density-functional �DF� theory, also needed
of an accurate dynamical description. The ebubbles ad-
dressed in that work are spherically symmetric, which made
the calculations affordable for using the best available DF for
4He, the so-called Orsay-Trento functional.17 Other dynami-
cal studies have resorted to much simpler approaches in-
spired on local functionals of the kind proposed by Stringari
and Treiner long time ago,18 or on generalizations of the
Gross-Pitaevskii equation to the description of liquid
helium.19–22 They have allowed to carry out dynamical stud-
ies involving nonspherical ebubbles, and their interaction
with vortices in the superfluid. However, these local ap-
proaches do not describe the superfluid accurately. In par-
ticular, its elemental excitations are poorly reproduced. To
circumvent this shortcoming, nonlocal extensions have been
proposed23 and applied, e.g., to vortex nucleation in super-
fluid helium.24

Another problem requiring a dynamical treatment, still
not addressed in full detail, is the relaxation of an ebubble
after being excited by photoabsorption, which constitutes the
subject matter of this work. This process couples the fairly
slow displacement of the helium bubble with the rapid mo-
tion of the electron it hosts, producing excitations in the liq-
uid that take away a sizeable part of the energy deposited in

the ebubble during the absorption. The emission spectrum of
the electron bubble after it has relaxed around the excited
electron state has been calculated.10,25,26 However, whether
and how these full relaxed configurations are attained before
decaying by photoemission was not elucidated.

In this work we attempt a theoretical description of the
evolution of the excited ebubble based on the zero-
temperature DF approach, using an as much accurate as tech-
nically feasible description of the liquid and an electron-
helium �e-He� interaction that have been proved to reproduce
the experimental absorption energies of the ebubble. The ini-
tial configuration is determined by a static calculation of the
excited ebubble. This state has a large radiative lifetime, on
the order of several tens of microsecond, in contrast with the
short time scale for the helium displacement, on the order of
picosecond. The subsequent dynamical evolution of the
ebubble is described within the adiabatic approximation,
which is valid for a period of time difficult to ascertain,27 that
we shall discuss in some detail. We will show that, depend-
ing on the initial excited state and the external pressure ap-
plied to the liquid, the bubble may keep its initial simply
connected topology, or evolve toward a nonsimply connected
one made of two baby bubbles that share the probability of
finding the electron in,28 the electron eventually localizing in
one of them while the other collapses. To reduce the numeri-
cal effort to a reasonable amount, we shall mostly discuss
results for the collapse of an ebubble starting from the
spherical 1P state. Results for the collapse of the 2P state will
be also shown.

This work is organized as follows. In Sec. II we describe
our model and present a quasistatic study of the ebubble,
completing the results we have presented elsewhere,25 and
recalling some technical details about the method we have
used to solve the variational equations for the fluid and the
electron. In Sec. III we present the adiabatic evolution of the
ebubble for two selected values of the liquid pressure. The
validity of the adiabatic approximation is analyzed in Sec. IV
and a summary is presented in Sec. V.
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II. QUASISTATIC DESCRIPTION

We first address some properties of excited electron
bubbles in liquid 4He using the Orsay-Trento density func-
tional including the terms that mimic backflow effects and
are crucial to quantitatively reproduce the experimental
phonon-roton dispersion relation in bulk liquid 4He at zero
pressure.17 They have no influence on the statics of the sys-
tem and have been often neglected12,29 in the dynamics be-
cause their inclusion makes the dynamical calculations very
cumbersome.8,30–32 In practice, we have found that these
terms have little effect on the dynamics of the electron
bubble presented in this work.

The e-He interaction has been modeled by the Hartree-
type local effective potential derived by Cheng et al.33 This
allows us to write the energy of the electron-helium system
as a functional of the electron wave function ��r� and the
4He effective macroscopic wave function ��r�
=���r�exp�ıS�r��, where ��r� is the particle density and
v�r�=��S�r� /mHe is the velocity field of the superfluid

E��,�� =
�2

2mHe
� dr����r��2 +� drE���

+
�2

2me
� dr����r��2 +� dr���2Ve-He��� . �1�

In this expression, E��� is the 4He “potential” energy density
and the e-He interaction Ve-He��� is written as a function of
the helium density.33 Details are given in Refs. 9 and 34. In
the absence of vortex lines, S is zero and E becomes a func-
tional of � and �. Otherwise, one has to use the complex
wave function ��r� to describe the superfluid.

For a given pressure �P�, we have solved the Euler-
Lagrange equations which result from the variation with re-
spect to �� and �� of the zero temperature constrained
grandpotential density �̃�� ,��=��� ,��−����2, with

���,�� =
�2

2mHe
����r��2 + E��� +

�2

2me
����2 + ���2Ve-He���

− �� , �2�

where � is chemical potential of the liquid. The variation of
the above functional yields two coupled equations that have
to be self-consistently solved

−
�2

2mHe
	� + �
E


�
+ ���2

�Ve-He���
��

	� = �� , �3�

−
�2

2me
	� + Ve-He���� = �� , �4�

where � is the eigenvalue of the Schrödinger equation
obeyed by the electron.

Our method of solving the variational equations is based
on a high-order discretization in Cartesian coordinates of the
differential operators entering them �13-point formulas in the
present case�, and the use of fast Fourier transformation
techniques35 to efficiently compute the convolution integrals
in ����, such as the mean-field helium potential and the
coarse-grained density entering the definition of the correla-

tion energy.12 This allows us to use a large spatial mesh step,
of about 1 Å size, without an apparent loss of numerical
accuracy when we compare our results with others �see be-
low� obtained using three-point formulas for the derivatives
that, as a consequence, require a rather small mesh step to be
accurate. The density at the boundary of the three-
dimensional 140�140�140 Å3 box used to carry out the
calculations is fixed to the value of the bulk liquid density at
the given P. We recall that knowledge of E��� allows to
determine the equation of state of the bulk liquid and its
chemical potential, since �=�E /�� and P=−E���+��.
Equations �3� and �4� have been solved employing an
imaginary-time method,36 and we have carried out the appro-
priate tests to check the stability of the solutions. We mention
that the energies we have obtained for the 1S→1P and 1S
→2P transitions9 are in very good agreement with
experiment,6 and that our results compare well with those
obtained by Eloranta and Apkarian8 using the same func-
tional but a different numerical method and e-He interaction.
This constitutes an excellent test not only for the numerics
but also for the physical ingredients employed in both calcu-
lations. We have recently discussed the effect of the presence
of vortices on the absorption spectrum of ebubbles attached
to them.25

Upon excitation to the 1P state by light absorption, the
ebubble experiences a drastic change in shape. This is due to
the fairly large radiative lifetime of this state �calculated to
be 44 �s in Ref. 26, 60 �s in Ref. 10, and 56 �s in Ref.
25� as compared to any characteristic helium time scale, al-
lowing the liquid to relax around the excited state. As a con-
sequence, the bubble adapts its shape to the 1P electron prob-
ability density before decaying by photoemission to the
deformed 1S state. Consequently, the bubble configuration at
the emission time can be obtained by minimizing the grand-
potential of the system keeping the electron in the excited 1P
state. We have done it by solving Eqs. �3� and �4� taking for
� the �1P wave function. In this case, a Gram-Schmidt
scheme has been implemented to determine both 1P and 1S
relaxed states that obviously no longer correspond to a
spherical bubble. In this axially symmetric environment, the
spherical nL states are split depending on the value �m� of
the orbital angular momentum on the symmetry z axis, and
the �m states are degenerate. We have found that, within a
nL manifold, the m states are ordered in increasing �m�
values.25 For this reason, we will refer to the axially sym-
metric state that corresponds to the m=0 submanifold when
we speak of a deformed “nL” state. When needed, we shall
use the conventional notation for the orbital angular momen-
tum of single-particle states in linear molecules, namely,
 ,� ,
 ,� , . . . for �m�=0,1 ,2 ,3 , . . ., and superscripts +�−� for
specularly symmetric �antisymmetric� states.

Figure 1 displays quasiequilibrium ebubble configurations
at different stages of the absorption-emission cycle obtained
at P=0 bar. The electron-probability densities are repre-
sented by colored clouds, these with one lobe correspond to
1S states �spherical bubble, picture 1; deformed bubble, pic-
ture 4� and these with two lobes correspond to 1P states
�spherical bubble, picture 2; deformed bubble, picture 3�. In
this figure, the line indicates the bubble dividing surface, i.e.,
the surface at which the liquid density equals half the
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saturation-density value �0, e.g., 0.0218 Å−3 at P=0 bar,
and represents the surface of the helium bubble. We have
found25 that at P=0 bar, the 1P→1S emission energy is 36
meV, close to the 35 meV found in Ref. 10, constituting
another excellent test of the theoretical framework used by
us and by these authors. The energy released in the optical
1S-1P absorption-emission cycle can be determined combin-
ing the results we have obtained in previous works.9,25 For
instance, at P=0 bar the released energy is 69 meV �com-
pare with the 76 meV obtained in Ref. 10�. This energy is
transferred to the superfluid through generation of different
kind of excitations.

Quasiequilibrium configurations of the ebubble relaxed
around the 1P state are shown in Fig. 2 for several P values.
In this figure, helium is represented by warm colors and the
electron-probability density �arbitrary units� by cool colors.
The relaxation of the bubble around the 1P state produces a
characteristic two-lobe peanut structure whose waist—or

neck—is progressively marked as the pressure applied to the
liquid increases. Notice that helium displays a stratified den-
sity around the bubble. This feature appears whenever the
superfluid presents a kind of free surface, as in drops, films
or bubbles.9,17,36

Figure 2 shows that at a pressure of 
8 bars helium starts
to penetrate between the two lobes of the electron wave func-
tion. At 
9 bars the helium density in this region reaches
the saturation density, and the bubble splits into two baby
bubbles. This produces an abrupt change in the emission
energy, falling an order of magnitute between P=8 and 9
bars; in the “broken-neck” region extending up to the solidi-
fication pressure, the photon-emission energy is barely

1 meV.25 This is expectable at these pressures, as the main
difference between 1S and 1P probability densities appears
in the waist region. If this region is inaccessible to the elec-
tron due to the presence of helium, these states become al-
most degenerate. On the contrary, if this region is not acces-
sible to the superfluid due, e.g., to the presence of a vortex
whose vorticity line coincides with the symmetry axis of the
ebubble, the baby bubbles may be held together by a tiny
neck.25

It is worth pointing out that some of the quasiequilibrium
configurations displayed in Fig. 2 may not be reachable in
the evolution of the bubble. The reason is that helium falling
in the waist region during the violent collapse may produce a
large pileup of superfluid in that region, thus causing the
actual breaking of the neck at pressures much smaller than
the 8 bars obtained quasistatically. This possibility has been
anticipated by Maris.2

III. TIME EVOLUTION OF THE EBUBBLE:
PICOSECOND DYNAMICS

The dynamics of the excess electron localization in liquid
helium has been adiabatically addressed by Rosenblit and
Jortner37,38 using a sharp-surface model for the bubble. The
superfluid was considered as incompressible, and the bubble
expansion time, i.e., the time for creating the ebubble, was
estimated to be 8.5 ps when energy dissipation by emission
of sound waves was taken into account.38 This process ex-
hibits a marked P dependence, the higher the pressure the
shorter the expansion time.

Later on, the incompressibility approximation was relaxed
using a DF approach, finding that at P=0 bar the bubble
surface breathes with a period of about 130 ps.8 These cal-
culations have revealed that the localization process may
launch shock waves, and that the subsequent main dissipa-
tion mechanism is sound radiation; excitations in the roton
well were not produced.8 In the present work we consider
that the ebubble has had time enough to relax to its spherical
1S ground state and the electron is subsequently excited by
light absorption to the 1P state, whose dynamical evolution is
the subject matter of this section.

A. Adiabatic time evolution

Since the electron evolves much faster than helium as
their mass ratio is mHe /me�7300, we have followed the dy-

Absorption
∆E = 105 meV

Emission
∆E = −36 meV

Relaxation stage

∆E = −40 meV

Relaxation stage

∆E = −29 meV

1

2

3

4

FIG. 1. �Color online� Ebubble quasiequilibrium configurations
at different stages of the absorption-emission cycle corresponding
to P=0 bar. The electron-probability densities are represented by
colored clouds. The dashed line is the bubble dividing surface. The
size of the frames is 70�70 Å2.

P = 0 bar P = 5 bar

P = 8 bar P = 9 bar

FIG. 2. �Color online� 1P bubble quasiequilibrium configura-
tions for P=0, 5, 8, and 9 bars. Helium is represented by warm
colors and the electron-probability density �arbitrary scale� by cool
colors. The size of the samples is 70�70 Å2.
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namics of the excited ebubble by combining the actual time
evolution of the liquid with an adiabatic evolution for the
electron. Within this approximation, the electron wave func-
tion is found by solving, at each time step, the static
Schrödinger Eq. �4� to obtain the instantaneous 1P electron
state �1P, and the structure of the liquid is obtained by de-
termining the complex, time-dependent effective wave func-
tion ��r , t� from the time-dependent DF equation

ı�
���r,t�

�t
= −

�2

2mHe
	��r,t�

+ �U��,v� + ��1P�2
�Ve-He���

��
	��r,t� , �5�

where the effective potential U�� ,v� is given, e.g., in Refs.
30 and 31 and has an explicit dependence on the local cur-
rent field j�r�=��r�v�r� arising from the backflow term the
static potential energy in Eq. �1� lacks of. These coupled
equations are solved imposing as initial conditions the sta-
tionary solution of the superfluid for the spherical 1S
ebubble, employing the electron wave function �1P for
building the e-He interaction, as indicated in Eq. �5�. The
time step has been set to 0.01 ps, and we have used a fourth-
order Runge-Kutta method to obtain the first time steps of
the evolution. To determine the solution for subsequent
times, we have used Hamming’s �predictor-modifier-
corrector� method.39 This procedure is very robust and accu-
rate, even for large amplitude motions.40

B. Results

We have solved the adiabatic-dynamic coupled equations
for P=0, 0.5, 1, 2, 3, and 5 bars. We will mostly show results
for the two extreme pressure values, namely, 0 and 5 bars.
The evolution starts by stretching the bubble along the sym-
metry z axis and shrinking its waist. This produces density
waves in the liquid that take away a sizeable part of the
energy injected into the system during the absorption pro-
cess, 105 meV at P=0 bar and 148 meV at 5 bars.9

The evolution can be safely followed for about 25–30 ps.
For larger times, the density waves reflected on the box
boundaries get back to the region where the bubble sits,
spoiling the calculation. This time interval is large enough to
see bubble splitting at the higher pressures. Otherwise, one
needs to introduce a source of damping in the equation gov-
erning the liquid evolution �Eq. �5��, to prevent sound waves
from bouncing back. Usually, introducing damping requires
to enlarge the calculation box to accommodate a buffer re-
gion where waves are washed out, see, e.g., Refs. 8, 21, 22,
and 41. This increases the number of grid points and slows
the calculation.

Below 1 bar, we have found that the ebubble configura-
tion is simply connected and radiates a sizeable part of the
excitation energy as sound waves. For instance, at P
=0 bar, the energy difference between the spherical 1P con-
figuration and the relaxed 1P quasiequilibrium configuration
is 
40 meV �see Fig. 1�. The ebubble undergoes damped
oscillations that will likely lead it to the corresponding qua-
sistatic 1P configuration described in Sec. II. As a conse-

quence, it would eventually decay radiatively to the de-
formed 1S state that will radiationless evolve toward the
spherical 1S state.

An example of this sort of evolution is shown in Fig. 3 for
P=0 bar. We have found that after 15 ps, the shape of the 1P
bubble is similar to the quasistatic configuration referred to
in Sec. II. Using a simpler model, Maris has found a smaller
value, 11 ps.2 The difference is a natural consequence of the
two basic approximations he has made, namely, treating the
liquid as incompressible and neglecting sound-wave radia-
tion. Due to the inertia of the bubble in the expansion pro-
cess, it continues to stretch in the direction of the symmetry
axis. This dilatation in the z direction goes on for the largest
times we have followed the evolution �30 ps�, accompanied
by the appearance of a more marked neck.

At 1 bar, the neck collapses due to the large kinetic energy
of the liquid filling in the region between the two 1P lobes,
and the ebubble configuration becomes nonsimply con-
nected. This causes the deformed 1P and 1S levels to become
nearly degenerate, and their probability densities are almost
identical. The appearance of any asymmetric fluctuation,
which is beyond the scope and capabilities of our frame-
work, will cause the electron to eventually localize in either
of the baby bubbles. The subsequent evolution of the system
is the collapse of the empty baby bubble and the evolution of
the other one toward the spherical 1S ground state. In this
case, the excited 1P bubble decays to the 1S spherical con-
figuration without passing through the 1P quasistatic con-
figuration described in the previous section, and the de-
excitation is nonradiative. An example of this sort of
evolution is shown in Fig. 4 for P=5 bars. For this pressure,
we have found that a configuration similar to the simply
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(Å

)

-40

-20

0

20

40

-40

-20

0

20

40

-40 -20 0 20 40

t=0 ps 5 ps

10 ps

20 ps

15 ps

25 ps

FIG. 3. �Color online� Adiabatic evolution of the 1P ebubble at
P=0 bar. The panels display the helium configurations correspond-
ing to 0, 5, 10, 15, 20, and 25 ps. The dashed line represents the
dividing surface of the quasiequilibrium configuration at P=0 bar
shown in Fig. 2.
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connected quasistatic one is attained after 10 ps, although the
inertia of the bubble expansion breaks the quasistatic neck at
about 18 ps. The density pileup in the neck region continues
and at about 22 ps the helium density in this region has a
peak of 
2�0, whose relaxation pushes the two baby bubbles
in opposite directions helping the fission process.

Our calculations are in agreement with cavitation
experiments42 indicating that relaxed 1P bubbles are only
produced for pressures smaller than about 1 bar, and that
above this value the decay of the excited bubble has to pro-
ceed differently, likely radiationless. Indeed, we have found
that the 1P bubble fissions at P=1 bar, but it does not at P
=0.5 bar. Our results are also in agreement with the
interpretation27 of the vanishing of the photoconductivity
signal below 1 atm experimentally observed by Grimes and
Adams.6 According to this interpretation, an ebubble in the
1P state is unstable against a radiationless de-excitation back
to the ground state, the electron ultimately settling into one
of the baby bubbles while the other collapses with phonon
�heat� emission. It is this released heat that drives the photo-
current. Below that pressure, the ebubble decays radiatively,
it does not release enough heat and is not detected in the
photocurrent experiment.

The evolution of the electron energies for the 1S �empty�
and 1P �occupied� states, together with a representation of
the electron-probability densities, is presented in Fig. 5 for
two pressure values. The fission of the bubble at P=1 bar
happens after 60 ps. To obtain this result, we have proceeded
as in Refs. 21 and 22, introducing a damping term in Eq. �5�.
To make sure that the bubble does not fission at P=0.5 bar,
we have also introduced a damping term for this pressure.

We have studied the excitations produced in the liquid by
the expansion of the ebubble. From the evolution of the first

wave front, we have estimated that it moves in the z direction
at 
330 m /s at P=0 bar and at 
410 m /s at P=5 bars.
These values are well above the speed of sound in helium at
these pressures, meaning that the dynamics is highly nonlin-
ear. Besides, we have determined the nature of these excita-
tions by Fourier analyzing the density waves along the z axis,
leaving aside the region near the bubble surface. The density
profile is shown in the top panel of Fig. 6, corresponding to
P=0 bar at 13 ps, and the Fourier transform of the density
fluctuation �related to the static structure function of the liq-
uid� is presented in the bottom panel. Apart from the low-q
component, arising from the mean-density profile, one can
identify two distinct peaks, the more marked one at q

0.8 Å−1 in the phonon branch near to the maxon region,
and another at q
2.3 Å−1 slightly to the right of the roton
minimum. A similar “roton” peak was found in Ref. 8. A less
marked peak appears at q
1.7 Å−1, slightly to the left of
the roton minimum. Similar peaks have been found for
shorter and larger times. From the relative intensity of these
peaks, we are prone to identify most of the emitted waves as
high-energy “phonons.”

We have also analyzed the effect of the backflow term on
the appearance of the density waves. One can see from the
bottom panel of Fig. 6 that neglecting this term changes a
little the relative intensity of the phonon and roton peaks,
increasing the former and decreasing the later as expected
from the effect of the backflow term on the excitation modes
of the superfluid, see Fig. 12 of Ref. 17. We want to stress
that rotons are not excited if one uses a less accurate, local
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FIG. 4. �Color online� Adiabatic evolution of the 1P ebubble at
P=5 bars. The panels display the helium configurations corre-
sponding to 0, 5, 10, 15, 20, and 25 ps. The dashed line represents
the dividing surface of the quasiequilibrium configuration at P
=5 bars shown in Fig. 2.

FIG. 5. �Color online� Adiabatic evolution of the energies of the
1S �empty� and 1P �occupied� states, together with a representation
of the electron-probability densities for P=0 bar �top panel� and
P=5 bar �bottom panel�. The electron-probability densities are also
displayed at four selected time values.
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functional such as that of Refs. 18–22. In this case, only the
low-q phonon spectrum of the superfluid is quantitatively
reproduced. Whether this has a sizeable influence on the
ebubble dynamics or not, can only be ascertained by a de-
tailed comparison between the results obtained using both
kind of functionals.

1P ebubbles may be excited by photoabsorption to the 1D
state, either to its m=0 component �2+� or to its m= �1
components �1�−�. The absorption spectrum at different
stages of the time evolution can be measured in a pump-
probe experiment by which the ebubble is excited by two
consecutive laser pulses. The delay set between these pulses
should correspond to the time elapsed between the excitation
of the spherical bubble and the time at which the absorption
spectrum of the 1P ebubble is recorded. Time-resolved elec-
tronic spectroscopy has been proposed by Rosenblit and
Jortner38 as a tool for the exploration of the localization dy-
namics of the excess electron.

Time-resolved excitation energies are shown in Fig. 7 at
P=0 and 5 bars. While the evolution of the 1−→1�− ex-
citation is qualitatively similar at both pressures, the 1−

→2+ excitation evolves differently in the high-pressure re-
gime when the bubble splits. Indeed, at 0 bar the excitation
energy smoothly decreases with time, whereas at 5 bars it
starts decreasing, increasing next, and eventually becoming
larger than the excitation energy to the 1�− state. Note that

both the change in behavior and the crossing take place some
picosecond before bubble splitting.

The 1−→1�− transition is little affected by bubble split-
ting because it involves two states with negative specular
symmetry, which means that the probability density of both
states is zero in the neck region. On the contrary, the 1−

→2+ transition involves two states with different specular
symmetry and thus it is more affected by bubble splitting.

Along with the excitation energies, some values of the
associated oscillator strengths are displayed in Fig. 7. The
oscillator strengths have been calculated in the dipole ap-
proximation as43

fab =
2me

3�2 �Ea − Eb���a�r�b�2.

As known, the oscillator strengths fulfill a sum rule that in
the one-electron case is �afab=1.44 At both pressures, we
have found that these transitions have comparable oscillator
strengths. The largest difference appears for P=5 bars in the
split-bubble regime. In it, the strength of the 1−→2+ tran-
sition is roughly half that of the 1−→1�− transition. We
thus conclude that the analysis of the peak energy and oscil-
lator strength of the 1−→2+ transition might disclose the
fission-like behavior of the excited 1P bubble, complement-
ing the experimental information gathered from cavitation
and photoconductivity experiments.

The current field �j�r�=��r�v�r�� is shown in Fig. 8 for
P=0 and 5 bars at 12 and 22 ps. At 12 ps the current fields
are qualitatively similar for both pressures: the bubble ex-
pands along the symmetry axis and shrinks in a plane per-
pendicular to it. At 22 ps, when P=5 bars, large currents
keep bringing liquid into the neck region, splitting the bubble
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FIG. 6. �Color online� Top panel: density profile of the super-
fluid corresponding to P=0 bar at 13 ps �only the z�0 part is
shown�. The inset shows the ebubble configuration in a 140
�140 Å2 frame, and the region displayed in the rectangle is the
Fourier transformed one. Bottom panel: solid line, Fourier trans-
form of the superfluid density profile shown in gray in the top
panel. The dashed line is the Fourier transform of the density ob-
tained at the same evolution time without including backflow ef-
fects. In both cases the peak at q=0 Å−1 arises from the mean-
density profile, not subtracted from the local density before
transforming. The lines have been drawn as a guide to the eyes.
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time values is also displayed. Lines have been drawn as a guide to
the eyes.
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and producing important density oscillations in the central
region.

We have also followed the collapse of the 2P bubble at
P=0 bar. About 2 ps after the collapse has started, a sizeable
part of the excitation energy has been released into the liquid
and two waves are distinguishable around the bubble, as
shown in Fig. 9. These waves travel through the liquid at the
same speed as in the 1P bubble case, 
330 m /s. Shortly
after 7 ps, the m=0 levels of the 2P and 1F states become
very close and, as discussed in the next section, see Eq. �7�,
the adiabatic approximation fails. At this point, the 2P bubble
displays an incipient four-lobe shape arising from a similar
structure in the 2P electron probability density. It is worth
mentioning that a likely related effect, namely, the near de-
generacy of the 2P and 1F states, was found in the quasistatic
calculations of Ref. 26 as P increased.

In view of the mentioned failure and the lacking of ex-
perimental information on the collapse of the 2P bubble, we

have closed its study at this point, leaving it for future work.

IV. VALIDITY OF THE ADIABATIC APPROXIMATION

The validity of the adiabatic approximation in the first
stages of the bubble collapse, when the topology of the
bubble is simply connected, stems from the very different
time scale of the electron motion as compared to that of the
bubble,45 represented by the period of its shape oscillations.
If the fluid is incompressible and the bubble spherical, the
surface � modes of the cavity are at energies

��� =� �

mHe�0R3 �� − 1��� + 1��� + 2� , �6�

where � and �0 are the surface tension and atom density of
the liquid, respectively. For �=2 this energy is about 1 K,
and the period of the oscillation is 
50 ps.

The situation may change in the course of the collapse
because the energy difference 	=E1P−E1S between the de-
formed states decreases and the time scale �=h /	 may be-
come similar to the period of the shape oscillations of the
deformed bubble. Since 	 is small in the two bubble regime,
the approximation likely fails there.27,46 It is worthwhile
mentioning that neck fluctuations, not included in our ap-
proach nor in previous works, would pinch off the bubble at
earlier stages of the collapse, in a similar way as they may
cause the prompt scission of the fissioning atomic nucleus
after the saddle configuration has been overcome.47

On the light of our model, in which no assumptions are
made on the shape of the bubble nor the impenetrability of
the bubble surface by the localized electron, it is instructive
to analyze the validity of the adiabatic approximation assum-
ing that, during the evolution, the bubble keeps its original
axial symmetry and specular symmetry about the plane per-
pendicular to the symmetry axis that contains the node of the
1P state. This excludes any possible fluctuation and the ap-
pearance of asymmetric modes, like the breathing mode dis-
cussed in Ref. 27. Our discussion relies on the detailed pre-
sentation by Messiah,48 that we summarize in the following.

The subsystem to which the adiabatic approximation is
applied is the electron, whose wave function is decoupled
from that of the liquid. This wave function evolves in the
potential field generated by the liquid distribution, and its
Hamiltonian is time dependent, He�t�=He��He�t��. Let �n

t be
an eigenfunction of the Hamiltonian at time t, so that
He�t��n

t =�n�t��n
t . If �n�t� is the actual wave function �n

0

evolved up to time t, one has �n�t�=U�t��n
0, where U is the

evolution operator. In the adiabatic approximation, one iden-
tifies �n�t� with �n

t , the intuitive justification being that if
one perturbes the subsystem slowly and gently enough, it has
enough time to adapt itself to the new environment “with no
inertia” from the past configuration.

The error made in this approximation for a given state
�i—the validity of the adiabatic approximation is assessed
for a given state of the subsystem, not necessarily for them
all—is defined as the probability of finding the subsystem in
a state different from the initial one evolved in time within
the “true” dynamics, �ij = ��� j

t�U�t���i
0�2. This error can be

written in a workable way as48
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�ij�t� = � �

�� j�t� − �i�t��2 �� j
t�

dHe

dt
��i

t�2

. �7�

If �ij �1∀ i� j, the adiabatic approximation is justified. It is
usually understood that it breaks down when the levels get
very close or when they cross each other. Notice, however,
that this assumes that these states can be connected by the
evolved Hamiltonian. If a symmetry is dynamically con-
served �in our case, angular momentum and specular sym-
metry are�, then the adiabatic evolution of states with a given
quantum number associated to this symmetry is not per-
turbed by states with different values of this quantum num-
ber. Although sometimes ignored, this is a very reasonable
statement.

In the case of the 1− state arising from the spherical 1P
manifold, the adiabatic approximation holds even when its
energy becomes almost identical to the energy of the 1+

state arising from the spherical 1S one, i.e., a small 	 does
not invalidate the adiabatic approximation. The closest state
having the same angular momentum and specular symmetry
is the 2− one arising from the spherical 1F manifold. At
P=5 bars, we have found that these two states are 2000 K
apart in the 10–20 ps range. Since �
7.6 K ps, one has
� / �E2− −E1−�2
2�10−6 ps K−1. The value of the matrix
element in Eq. �7� is some tens of kelvin per picosecond, so
that the adiabatic approximation would be fulfilled even for
the configuration displayed in Fig. 4 at 25 ps. Indeed, we
have calculated � in the above time range and have found
that it is on the order of 10−8.

It is also worth analyzing the stability of the quasiequilib-
rium configurations when the symmetries are not exactly
conserved because of perturbations from the environment. In
this situation, let us assume that when the bubble splits the
electron localizes in one of the lobes. Leaving out the dis-
cussion on the actual localization process, we have tried to
infer the likely evolution of an ebubble with a localized elec-
tron. The localized electron state in either baby bubble is
approximated by

�� =
1
�2

�1S �
1
�2

�1P. �8�

Consider now a short-time dynamics in which the liquid is
kept frozen. The evolution of, e.g., the �+ localized state is
an oscillation between the two lobes

��t� = e−iE1St/��cos��t��+ − i sin��t��−� , �9�

where �= �E1P−E1S� /�. If this frequency is large enough,
the liquid cannot react to the localization of the electron in
either lobe and will essentially behave as if the electron were
delocalized.

The time elapsed between two consecutive localizations
of the electron in a given baby bubble is �=� /�. The value
of this period as a function of pressure for the quasiequilib-
rium configurations is displayed in Fig. 10. In the split-
bubble regime �P�9 bars�, this period is of several picosec-
ond, indicating that the electron-localization dynamics into
one of the baby bubbles is not a trivial process to address.

The electron will bounce back and forth as the liquid tries to
adapt to it. Real-time calculations are thus needed to describe
electron localization.

It is clear that the previous discussion on the validity of
the adiabatic evolution lacks for incorporating fluctuations or
excitations of low-energy modes that may appear in the
course of the bubble evolution and couple the 1P and 1S
states that otherwise are not, as previously discussed. One
such mode has been thoroughly addressed by Elser:27 a pea-
nut configuration, whose walls are impenetrable by the elec-
tron, is represented by two intersecting sharp spheres of ra-
dius R2 �instead of the deformed baby bubbles displayed in
Fig. 4� joined along a circular orifice of radius a. These
spheres are breathing in counterphase, producing an antisym-
metric mode whose stiffness K and inertia M can be ob-
tained analytically. This mode is very appealing, as it repre-
sents a small, swifting imbalance of the symmetric electron-
probability density.

In the harmonic limit, if a�R2, the stiffness and inertia of
the asymmetric mode are49

K = 16� E0
2

R2
2	

+ ��� + R2P�� ,

M = 4��m4He�0R2
3. �10�

In these equations, E0=�R0
2
9 meV represents the energy

unit with �=2.36�10−2 meV Å−2 being the surface tension
of the liquid, R0
20 Å is the radius of the spherical bubble,
R2
16 Å is the radius of the baby bubbles, �
1.70 is a
dimensionless constant, and 	=E1P−E1S. The frequency of
the antisymmetric breathing mode is given by �AB=�K /M,
and the radius of the orifice is27
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FIG. 10. �Color online� Top: superposition of the 1S and 1P
states corresponding to the quasiequilibrium configuration at P
=9 bars to approximately localize the electron in one of the baby
bubbles. Bottom: tunneling period of a localized electron in one of
the lobes of the quasiequilibrium ebubble as a function of pressure.
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	 =
4�

3
E0�R0

R2
�2� a

R2
�3

. �11�

The adiabatic approximation fails when �AB�	 /�. This
yields 	
0.14 meV in the P=0–5 bars range, as only the
first term in the stiffness turns out to be relevant in this
regime. Thus, keeping only the first term in K, one gets50

a

R2
= �� 27

8�4�
�� me

mHe�0R0
3��R2

R0
��1/9


 0.13. �12�

Hence, a
2.1 Å. Clearly, such analytical results cannot be
obtained within the DF approach, but we can use them to
determine whether the dynamic and static configurations
shown in Secs. II and III are reliable.

The adiabatic approximation thus holds at P=0 bar, as
the neck radius is fairly large, see Fig. 3, and 	 is always
much larger than 0.14 meV, see Fig. 5. From Fig. 4 we also
conclude that, at P=5 bars, the adiabatic approximation is
valid up to nearly the collapse of the waist. Indeed, the neck
radius of the helium configuration at about 17–18 ps is

2 Å, see Fig. 4. It is worth noting the difficulty in defining
an effective radius for the orifice when the surface of the
bubble is diffuse; we recall that the surface thickness of a
4He drop of 103–104 atoms is some 6–8 Å.51 Note also that
the surface thickness of the helium bubble is rather indepen-
dent of the curvature of the surface, as can be inferred from
the fairly constant bright region around the bubbles dis-
played in Figs. 3 and 4.

Since we do not treat the bubble as impenetrable to the
excess electron, the relation between the actual 	 and a val-
ues should not exactly be as given by Eq. �11�. Using the
result ��AB�	=0.14 meV as a criterion for the applicabil-
ity of the adiabatic approximation instead of reaching the
limiting value a
2 Å, we find that the approximation holds
up to 21 ps, when the bubble has already split into two baby
bubbles. Both procedures indicate that when the adiabatic
approximation likely fails, the baby bubbles have already
developed.

The previous analysis leads us to conclude that, at high
pressures, baby bubbles are formed some tens of picosecond
after the starting of the collapse of the 1P bubble. From this
point on, the likely fate of the system is the localization of
the electron in one of the baby bubbles and the collapse of
the other. This process is helped/triggered by fluctuations
that break the specular symmetry of the ebubble configura-
tion. As mentioned, determining the time scale of electron
localization is beyond the capabilities of the adiabatic ap-
proximation. It has been calculated21 that once the electron is
localized, it takes to the superfluid some 20 ps to adapt to it
while the other baby bubble is absorbed.

V. SUMMARY

Within density-functional theory, we have carried out an
analysis of the adiabatic evolution of the excited electron
bubble in superfluid liquid 4He. We have found that for pres-

sures below 1 bar, the 1P ebubble may relax to its quasistatic
equilibrium configuration and decay radiatively to the de-
formed 1S state. This state evolves nonradiatively to the
spherical 1S bubble, completing the absorption/emission
cycle. This conclusion arises, in part, from studies carried out
for 100 ps using a less accurate functional,52 whose results
qualitatively agree with ours for the first tens of picosecond.

At higher pressures, the situation drastically changes and
the excited 1P bubble no longer decays to the quasistatic
equilibrium configuration, whose physical realization is un-
likely. Indeed, our analysis of the adiabatic approximation
indicates that it is valid up to a point where two deformed,
nearly disconnected baby bubbles appear in the dynamical
evolution, pointing toward a fission-like de-excitation pro-
cess, the likely subsequent evolution of the system being the
localization of the electron in one of the baby bubbles and
the collapse of the other. This collapse takes some 20 ps,21

and the whole de-excitation process is radiationless.
We have also found a marked change in the behavior of

the time-resolved absorption spectrum of the 1P bubble de-
pending on whether the bubble fissions or not, i.e., on the
liquid pressure. This change is, in principle, an experimen-
tally accessible observable whose determination may
complement the information obtained from cavitation and
photoconductivity experiments.

Our analysis of the collapse of the 2P bubble has shown
that the adiabatic approximation breaks down at an early
stage of the dynamical process due to the crossing of 2P and
1F states. Although disclosed by the adiabatic approxima-
tion, this crossing has nothing to do with the approximation
itself, but is inherent to the dynamics of the electron bubble.
From the crossing point on, the bubble will relax around a
mixed state with 2P and 1F components, and hence the
physical realization of a pure quasiequilibrium 2P configura-
tion is unlikely. It is very plausible that the same applies to
other high-energy nL ebubbles generated in the absorption
process. The possibility that some of them undergo a spon-
taneous symmetry breaking, as suggested by Grinfeld and
Kojima53 for the 2S state, can only reinforce our conclusion.
Obviously, this does not question the existence of either re-
laxed quasiequilibrium configurations at low pressures or of
baby bubbles at high pressures, arising from the evolution of
the spherical 2P bubble. It just means that, on the one hand,
the relaxed bubble will not be a pure 2P configuration and,
on the other hand, to study the de-excitation of these bubbles
one has to go beyond the adiabatic approximation and carry
out a more demanding real-time dynamics calculation for the
electron.
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