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We study the dynamical correlation functions of the Richardson pairing model �also known as the reduced-
or discrete-state Bardeen, Cooper, Schrieffer model� in the canonical ensemble. We use the algebraic Bethe
Ansatz formalism, which gives exact expressions for the form factors of the most important observables. By
summing these form factors over a relevant set of states, we obtain very precise estimates of the correlation
functions, as confirmed by global sum rules �saturation above 99% in all cases considered�. Unlike the case of
many other Bethe Ansatz solvable theories, simple two-particle states are sufficient to achieve such saturations,
even in the thermodynamic limit. We provide explicit results at half filling and discuss their finite-size scaling
behavior.
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I. INTRODUCTION

Possibly the most remarkable incipient property asso-
ciated to a fermionic gas is its instability to the pairing
phenomenon. Under an arbitrarily weak attractive force,
which can originate in such a simple process as coup-
ling to phonons, the gas will develop an instability toward
the formation of Cooper pairs, this process forming the
basis of the Bardeen, Cooper, Schrieffer �BCS� theory of
superconductivity,1 with further remarkable consequences
such as the Meissner and Josephson effects. Within BCS
theory, single-particle excitations are suppressed by the su-
perconducting gap, which is obtained from the solution of a
variational ansatz for the wave function defined in the grand-
canonical ensemble �electron number is by construction not
conserved anymore� and in the thermodynamic limit �since a
continuous energy band is assumed�.

While these mean-field approaches successfully describe
the experimental features of the traditional bulk supercon-
ductors, recent experiments have also considered metallic
nanograins2,3 in which the level spacing is finite and of the
same order as the superconducting gap, and in which some
Coulomb-blockade effects could occur in view of the finite
charging energy of the grain. These studies open the door to
many interesting further questions not answerable within
BCS theory, and require mesoscopic effects to be encom-
passed back into the model. One way to approach this prob-
lem is to use the so-called reduced BCS model, defined by
the Hamiltonian

HBCS = �
�=1

�=+,−

N
��

2
c��

† c�� − g �
�,�=1

N

c�+
† c�−

† c�−c�+, �1�

which was introduced by Richardson in the early 1960s in
the context of nuclear physics.4 The model describes
�pseudo� spin-1/2 fermions �electrons, nucleons, etc.� in a
shell of doubly degenerate single-particle energy levels with
energies �� /2, �=1, . . . ,N. c�,� are the fermionic annihila-
tion operators, �=+,− labels the degenerate time-reversed
states �i.e., spin or isospin� and g denotes the effective pair-

ing coupling constant. Despite its simplified character �the
interaction couples all levels uniformly�, the model does
have a number of advantages as compared to BCS theory.
First of all, it can be solved within the canonical ensemble
�fixed number of electrons�, a situation which is relevant for
isolated nanograins. Second, and rather remarkably for an
exactly solvable model, it remains solvable for an arbitrary
choice of parameters and can thus provide quantitative pre-
dictions for various situations obtained by considering vari-
ous choices of the set of energy levels �� �both their number
and their individual value�, coupling g, and filling. Besides
mesoscopic superconductivity, this model and its solution
also find applications in other fields �see the reviews in Refs.
5 and 6 for some applications outside of condensed-matter
physics�.

The nature of the electronic states in a metallic nanograin
can conceivably be probed in a number of different experi-
ments. Electronic transport through such a grain could be
studied by attaching either metallic or superconducting leads.
The observable I-V characteristics or Josephson currents
would be theoretically obtainable from correlation functions
within the grain. Such correlations, however, are not easily
obtainable from the basic exact solution of the model, which
focuses on wave functions but does not allow to make direct
contact with the dynamics of observables. The history of the
study of correlations in the Richardson model is, however,
already rather rich. Richardson himself in 1965 �Ref. 7� de-
rived a first exact expression for static correlation functions.
In a significant development, Amico and Osterloh8 proposed
a new method to write down such correlations explicitly but
with results limited to system sizes of up to 16 particles. A
major simplification was then proposed by Zhou et al.:9,10

using the algebraic Bethe Ansatz �ABA� and the Slavnov
formula for scalar products of states,11 they managed to ob-
tain the static correlation functions as sums over Np

2 determi-
nants of Np�Np matrices. These expressions have been fur-
ther simplified by us in a previous publication, where they
were evaluated numerically for a particular choice of the
energy levels �� �Ref. 12� allowing to describe the crossover
from mesoscopic to macroscopic physics, going beyond pre-
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vious results limited to fewer particles.8,13 We mention that a
different approach, valid in the case of highly degenerate ��,
is also available.14

Despite all these developments, up to now none of these
approaches has been adapted and used to calculate dynamical
correlation functions, important to quantify the response of a
physical system to any realistic experimental probe. In this
paper we use a method that mixes integrability and numerics
and is similar to that used by some of us to study the dy-
namical correlation functions15 and entanglement entropy16

in spin chains, as well as dynamical correlations in Bose
gases.17 In short, the ABACUS method18 consists in using the
exact knowledge of the form factors of physical observables
as determinants of matrices whose entries are the unknown
Richardson rapidities. For any given state, these rapidities
are calculated by solving the Richardson equations. The cor-
responding form factors are then evaluated. Finally we need
to sum over all these contributions, but this can be done by
searching for the states in the Hilbert space that contribute
more significantly to the correlation function. This is done by
optimizing properly the scanning of the Hilbert space18 and
the accuracy of the result is kept under control by checking
the values of the sum rules. However, we will see that for the
Richardson model, this scanning is particularly easy since
the two-particle states dominate the sum even when increas-
ing the number of particles �in strong contrast with what
happens for other models15,17�. This property is clearly con-
nected with the mean-field character of the model in the ther-
modynamic limit and the subsequent suppression of quantum
fluctuations. However at finite �sufficiently low� number of
particles the effect of quantum fluctuations can be revealed
by small, but maybe measurable, multiparticle channels. We
mention that another variation on the ABACUS logic has re-
cently been used for the calculation of out-of-equilibrium
observables in the pairing model subjected to a quantum
quench, but in that case the class of excitations contributing
was much wider.19,20

The paper is organized as follows. In Sec. II we discuss
the model and its general properties. In Sec. III we recall the
algebraic Bethe Ansatz approach to the model and we pro-
ceed to some simplifications of the determinant expressions.
In Sec. IV we introduce the sum rules for the considered
correlation functions and we present the selection rules for
the form factors that will help in the numerical computation
by reducing the number of intermediate states we have to
sum over. In Sec. V all the correlation functions are explic-
itly calculated at half filling. We report our main conclusions
and discuss open problems for future investigation in Sec.
VI. Appendix A reports the technical details on how to solve
the Richardson equations for any excited state while Appen-
dix B looks at the details of the strong-coupling expansion of
a studied correlation function in order to explain its scaling
behavior.

II. MODEL

As it is written in Eq. �1�, singly as well as doubly occu-
pied levels are allowed. The interaction, however, couples
only doubly occupied levels among themselves, and due to

the so-called blocking effect,3,4 unpaired particles completely
decouple from the dynamics and behave as if they were free.
We will denote the total number of fermions as Nf and the
total number of pairs as Np. Due to level blocking, we will
thus only consider Nf =2Np paired particles in N unblocked
levels, keeping in mind that we could reintroduce blocked
levels later if needed in the actual phenomenology desired.
In terms of pair annihilation and creation operators

b� = c�−c�+, b�
† = c�+

† c�−
† , �2�

the Hamiltonian is

H = �
�=1

N

��b�
†b� − g �

�,�=1

N

b�
†b�, �3�

and n�=2b�
†b� is the number of particles in level �.

The pair creation and annihilation operators satisfy the
commutation relations

�b�,b�
†� = ����1 − 2b�

†b��, �b�,b�� = �b�
† ,b�

†� = 0. �4�

The term 2b�
†b� in the first commutator makes the model

different from free bosons and therefore nontrivial.
Using the pseudospin realization of electron pairs

S�
z =b�

†b�−1 /2, S�
− =b�, and S�

+ =b�
† , the BCS Hamiltonian

becomes �up to a constant�

H = �
�=1

N

��S�
z − g �

�,�=1

N

S�
+S�

− . �5�

The operators S�
�,z obey the standard su�2� spin algebra and

so Hamiltonian �5� describes a spin-1/2 magnet with long-
range interaction for the XY components in a site-dependent
longitudinal magnetic field ��. Such a magnetic Hamiltonian
is known in the literature as a Gaudin magnet.21 An impor-
tant relation is

S�
�S�

	 = S�
2 − �S�

z �2 � S�
z . �6�

A. Grand-canonical BCS wave function

In the grand-canonical �GC� ensemble the ground-state
wave function is the BCS �Ref. 1� variational ansatz

�GS� = �
�

�u� + ei
�v�b�
†��0�, u�

2 + v�
2 = 1, �7�

where the variational parameters u� and v� are real and 
� is
a phase which, it turns out, must be � independent. �GS� is
not an eigenstate of the particle number operator Nf and the

average condition 	Nf�= N̄f determines the GC chemical po-
tential. Likewise, the commonly used definition

�GC = 2g�
�

	b�� = 2g�
�

u�v�ei
� �8�

for the superconducting gap makes sense only in a GC en-
semble, since 	b�� is zero when evaluated at fixed particle
number. The variational parameters are obtained as

FARIBAULT, CALABRESE, AND CAUX PHYSICAL REVIEW B 81, 174507 �2010�

174507-2



v�
2 =

1

2
1 −
�� − �

���� − ��2 + ��GC�2� , �9�

where � is the GC chemical potential.

B. Canonical description and Richardson solution

The exact solution �i.e., the full set of eigenstates and
eigenvalues� of Hamiltonian �1� in the canonical ensemble
was derived by Richardson.4 The model can be encompassed
into the framework on integrable models22 and is tractable by
means of algebraic methods.9,10,23,24 We review here only the
main points of this solution.

In the ABA, eigenstates are constructed by applying rais-
ing operators on a so-called reference state �pseudovacuum�.
We here choose the pseudovacuum �in the pseudospin repre-
sentation� to be fully polarized along the −ẑ axis

S�
z �0� = −

1

2
�0�, ∀ � . �10�

In the pair representation, this state thus corresponds to the
Fock vacuum. Eigenstates with Np pairs are then character-
ized by Np spectral parameters �rapidities� wj, and take the
form of Bethe wave functions

�wj�� = �
k=1

Np

C�wk��0� . �11�

The operators C, together with operators A, B, and D defined
as

A�wk� =
− 1

g
+ �

�=1

N
S�

z

wk − ��

, B�wk� = �
�=1

N
S�

−

wk − ��

,

C�wk� = �
�=1

N
S�

+

wk − ��

, D�wk� =
1

g
− �

�=1

N
S�

z

wk − ��

�12�

obey the Gaudin algebra, which is the quasiclassical limit of
the quadratic Yang-Baxter algebra associated to the gl�2� in-
variant R matrix �we refer the readers to Ref. 10 for details�.

The wave functions �Eq. �11�� are eigenstates of the trans-
fer matrix, and thus of Hamiltonian �1�, when the parameters
wj satisfy the Richardson equations

−
1

g
= �

�=1

N
1

wj − ��

− �
k�j

Np 2

wj − wk
j = 1, . . . ,Np. �13�

Throughout the paper we will refer with Latin indices to the
rapidities and with greek ones to the energy levels. The total
energy of a Bethe state is, up to a constant,

Ew� = �
j

wj . �14�

For a given N and Np the number of solutions of the Rich-
ardson equations is � N

Np
�, and coincides with the dimension of

the Hilbert space of Np pairs distributed into N different lev-
els, i.e., the solutions to the Richardson equations give all the
eigenstates of the model.

Note that one could also use the pseudovacuum to be the
state fully polarized along the ẑ axis �instead of −ẑ�. This
leads to slight differences in the expressions, which one can
resolve by comparing Refs. 9 and 10.

III. CORRELATION FUNCTIONS AND ALGEBRAIC
BETHE ANSATZ

We are interested in the dynamical correlation functions
of the form

GO��
�t� =

	GS�O�
†�t�O��0��GS�
	GS�GS�

, �15�

at fixed number of pairs Np. Here O� stands for a “local”
operator in the Heisenberg picture �i.e., depending on a
single energy level ��. We consider O� equal to S�

z or S�
�.

By inserting the complete set of states �w�� with w� a set
of Mw rapidities solution to the Richardson equations, and
using the time evolution of the eigenstate, we can rewrite the
dynamical correlation function as the sum

GO��
�t� = �

w�

	w��O��GS��	w��O��GS�eiwt

	GS�GS�	w��w��
, �16�

where form factors and norms are obtainable by algebraic
Bethe Ansatz9,10 and will be discussed in the next section.
The frequency w is just w=Ew−EGS−��Mw−Np�, where
the energies E� and EGS are given in Eq. �14�. � is the
chemical potential �needed only for S�� and Mw is the num-
ber of rapidities of the state �w��. More easily, we can write
w=Ew−E0,w, where E0,w is the lowest energy state with the
same number of rapidities as �w��. Notice that for Sz corre-
lation function, we only need states with Mw=Np, and so the
chemical-potential term is absent while for 	S+S−�, we need
only states with Np−1 rapidities.

The most relevant physical observables are clearly global
ones, when the sum over the internal energy levels is per-
formed. We will consider diagonal and global correlation
functions, whose static counterparts for S� are the diagonal25

and off-diagonal order parameters. We consider in the fol-
lowing the three global correlators:

Gzz
d �t� = �

�=1

N 	GS�S�
z �t�S�

z �0��GS�
	GS�GS�

, �17�

G+−
d �t� = �

�=1

N 	GS�S�
+�t�S�

−�0��GS�
	GS�GS�

, �18�

G+−
od �t� = �

�,�=1

N 	GS�S�
+�t�S�

−�0��GS�
	GS�GS�

. �19�

We will mainly study them in frequency space, since their
structure is less complicated, and we will only plot a few
examples in real time.

We stress that while the level-resolved correlators depend
strongly on the choice of the energy levels ��, for the global
ones it is expected that most of the qualitative features and
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several quantitative ones are not affected by the choice of the
model. Thus our results, even if obtained for a specific
choice of ��, should display the main features of the dynami-
cal correlation functions for a wide variety of Richardson
models.

Algebraic Bethe Ansatz and form factors

The previous exact expression �Eq. �11�� gives one an
extremely compact parametrization of the system’s eigen-
states. Only Np complex parameters �rapidities� are needed
despite the factorially large Hilbert space. As stated in the
current section, it is also possible to find compact expres-
sions for the scalar products and form factors �matrix ele-
ments of operators� needed to evaluate Eq. �16�. They are
given by determinants of Np by Np square matrices which are
also easily computable despite the large dimension of the
Hilbert space.

We can find eigenstates one by one by finding given so-
lutions to the Np Richardson equations shown in Eq. �13�
�see Appendix A�. The contribution to the correlation func-
tions coming from each of these eigenstates is then obtained
through simple determinants. We can therefore compute the
sum in Eq. �16�, one eigenstate at a time. Provided a fairly
small subset of the full Hilbert space heavily dominates this
sum �as will be discussed in section and further proven nu-
merically�, it is possible to approach the exact correlation by
summing a limited number of easily computable contribu-
tions.

The starting point to calculate correlation functions with
the algebraic Bethe Ansatz is having a representation for the
scalar products of two generic states defined by Np rapidities
�Np Cooper pairs�

	w��v�� = 	0��
b=1

Np

B�wb��
a=1

Np

C�va��0� , �20�

when at least one set of parameters �e.g., wb but not va� is a
solution to the Richardson equations. Following standard no-
tations, C is the conjugate of the operator B. Such a repre-
sentation exists, and is known as the Slavnov formula,11

which for the case at hand specifically reads9

	w��v�� =

�
a�b

Np

�vb − wa�

�
b�a

�wb − wa��
a�b

�vb − va�
� detNp

J�va�,wb�� ,

�21�

where the matrix elements of J are given by

Jab =
vb − wb

va − wb
��

�=1

N
1

�va − ����wb − ���

− 2�
c�a

Np 1

�va − vc��wb − vc�
� �22�

from which the norms of states simply follow from v→w as
�v��2=detNp

G with a Gaudin matrix

Gab = ��
�=1

N
1

�va − ���2 − 2�
c�a

Np 1

�va − vc�2 a = b ,

2

�va − vb�2 a � b ,� �23�

recovering Richardson’s old result.7

The key point is that any form factor of a local spin op-
erator between two Bethe eigenstates can be represented via
Eq. �12� as a scalar product with one set, e.g., v� not satis-
fying the Bethe equations, for which Slavnov’s formula is
applicable. This has been explicitly worked out in Ref. 9. For
w�, v� containing, respectively, Np+1 and Np elements, the
nonzero form factors are

	w��S�
−�v�� = 	v��S�

+�w��

=

�
b=1

Np+1

�wb − ���

�
a=1

Np

�va − ���

detNp+1 T��,w�,v��

�
b�a

�wb − wa��
b�a

�vb − va�

�24�

and, for both w� and v� containing Np rapidities

	�w��S�
z ��v�� = �

a=1

Np �wa − ���
�va − ���

�

detNp�1

2
Tz��w�,�v�� − Q��,�w�,�v���

�
b�a

�wb − wa��
b�a

�vb − va�
,

�25�

with the matrix elements of T given by �b�Np+1�

Tab��� = �
c�a

Np+1

�wc − vb���
�=1

N
1

�vb − ����wa − ���

− 2�
c�a

1

�vb − wc��wa − wc�
� ,

TaNp+1��� =
1

�wa − ���2 , Qab��� =

�
c�b

�vc − vb�

�wa − ���2 .

Above, Tz is the Np�Np matrix obtained from T by deleting
the last row and column and replacing Np+1 by Np in the
matrix elements. Here it is assumed that both va� and wb�
are solutions to Richardson’s Bethe equations. However, the
results are still valid for S�

� if only wb� satisfy the Bethe
equations.

When approaching a bifurcation point �see Appendix A�
in the solutions of the Richardson equations, some individual
terms in the sum defining the matrix elements of T tend to
diverge �because wb→�� for some b and ��. Those diver-
gences cancel out when the sum is taken, but they can still
lead to large numerical inaccuracies. By using the Richard-
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son equations, it is possible to eliminate such potentially
problematic terms and rewrite the matrix T as

Tab =

2�
c�a

Np

�wc − vb�

wa − vb

�

c�b

1

�vb − vc�
− �

c�a

1

�vb − wc�
� ,

�26�

where potentially diverging terms have been removed. We
stress once again that such a formula holds only if both wa�
and va� are solutions to the Richardson equations with the
same g. This expression has been obtained before in Ref. 19.

IV. SUM RULES AND SELECTION RULES

The standard way to assess the accuracy of a numerical
calculation in which we discard part of the states consists in
using sum rules, e.g., summing of all the contributions inde-
pendently of the energy of the intermediate state. When sum-
ming over all states, we always get static quantities, and, in
the present case, they can be obtained by very simple con-
siderations.

For Gzz
d we have the sum rule

�
�=1

N

�
v�

�	v��S�
z �GS��2

	GS�GS�	v��v��
= �

�=1

N 	GS��S�
z �2�GS�

	GS�GS�
= 	�Sz�2� =

N

4
.

�27�

Only the � N
Np

� states with the same number of rapidities as the
ground state contribute to this correlation function. Instead
for G+−

d we have

�
�=1

N 	GS�S�
+S�

−�GS�
	GS�GS�

=
N

2
+ 	Sz� =

N

2
, �28�

as easily shown by using Eq. �6�. Here, only the � N
Np−1 � states

with one less rapidity than the ground state contribute to this
correlation and to the similar one containing off-diagonal
terms G+−

od . In this last case we have

�
�,�=1

N 	GS�S�
+S�

−�GS�
	GS�GS�

� �od, �29�

that is the off-diagonal order parameter, which can be ob-
tained by the solution of the Richardson equations for the
ground state and using the Hellmann-Feynman theorem.12

We will see in the following that the two-particle states
will give most of the contribution to the correlation func-
tions, always saturating the sum rules to more than 99%
accuracy. We show in the following sections that some se-
lection rules imply that only two-particle states have nonzero
contribution to the correlation functions for g=0 and for g
→�. Although at intermediate couplings this set of states
does not give 100% saturation of the sum rules, these two
limits clearly give insight as to why they remain extremely
dominant in every regime.

A. Weak-coupling regime

In the noninteracting g=0 limit, the fixed Np eigenstates
are quite naturally described by placing the Np Cooper pairs
�flipped pseudospins� in any of the � N

Np
� possible sets of Np

energy levels picked from the N available ones. This trans-
lates into a representation in terms of rapidities given by
setting the Np rapidities to be strictly equal to the energies ��

of the Np levels occupied by a pair. Since

lim
u→��

C�u� = lim
u→��

Si
+

u − ��

, �30�

the states built in such way will have diverging norms and
form factors, but it remains possible to describe the limit
correctly because in the ratio of form factors and norm the
two divergences cancel. Since any of these states is an eigen-
vector of every S�

z operators, at g=0 the only contributions to
the Sz correlations come from the ground state to ground-
state form factor 	GS�S�

z �GS�. In a perturbative expansion26

in g, it is easy to see that at first order, the corrections to the
ground state comes only from states �w�= ��1�

. . .��Np
� �� dif-

fering from it by at most one rapidity �in the g→0 limit�.
They constitute the full set of two-particle states, obtained by
creating a “hole” and a “particle,” i.e., moving a single Coo-
per pair �rapidity� in the ground state to any of the available
unoccupied states.

At g=0, the 	v��S�
−�GS� form factors are nonzero

whenever �v�= ��1
. . .��Np−1

�� is obtained by removing a

single rapidity from the Np pairs ground state �GS= w1
=�1 , . . . ,wNp

=�Np
��. These states can also all be thought of as

two-particle states in the Np−1 pairs sector, since they can
all be generated by moving a single rapidity in the Np−1
ground state.

In the specific case of half filling �Np=N /2�, treating ev-
ery two-particle excitation means that only N2 /4 states are
needed, out of the full � N

N/2 �-dimensional Hilbert space. Quite
naturally, when a nonzero coupling is included these states
might not be sufficient anymore, but as will be shown in the
next two sections, for g→�, only this set of states is once
again needed to compute every nonzero form factor of local
spin operators.

B. Strong-coupling (g\�) regime

Yuzbashyan et al.27,28 showed that the solutions to the
Richardson equations are such that in the g→� limit, a num-
ber Nr of the rapidities will diverge as wi�Cig+O�g0�. The
coefficients Ci are given by the Nr roots of the appropriate
Laguerre polynomial27

LNr

−1−N−2�Nr−Np��Ci� = 0. �31�

In the infinitely large-coupling limit, the impact of the di-
verging rapidities is well defined. In fact, limu→� C�u�
���S�

+ =Stot
+ is the total spin raising operator. In this

limit, the coupling term g���S�
+S�

− =gStot
+ Stot

− completely
dominates the Hamiltonian and so its eigenstates become
eigenstates of the Stot

2 operator too. Through simple energetic
consideration,27,29 one can then easily show that the number
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of diverging rapidities is related to the eigenvalue J�J+1� of
Stot

2 by the relation

Nr = J + Np −
N

2
. �32�

A state defined by Np rapidities, of which Nr are infinite,
therefore belongs to a subspace of the total Fock space de-
fined by eigenvalues of Stot

z and Stot
2 given by quantum num-

bers m=−N /2+Np and J=Nr−Np+N /2. This allows us to
derive explicit strong-coupling selection rules for the various
form factors used in this work.

Since a given eigenstate, in this limit, is built out of a
linear superposition of the various spin states with fixed J
and m, it can be decomposed onto the joint eigenbasis of spin
� combined with the various multiplets emerging from the
addition of the remaining N−1 spins 1

2 .
For a given �fixed degeneracy index k� N−1 spins multi-

plet with magnitude J�, one can write the highest weight
state as

�k,J = J� +
1

2
,m = J� +

1

2
� = �↑�� � �k,J�,m� = J�� .

�33�

The n times repeated action of Stot
− =S�

− +SN−1
− on this state

will generate the eigenstates

�k,J� +
1

2
,m� +

1

2
− n� = C1

n�↑�� � �k,J�,J� − n� + C2
n�↓��

� �k,J�,J� − n + 1� ,

where we do not need to explicitly specify the Clebsh-
Gordan coefficients. Combining this multiplet with a spin 1

2
also gives rise to a second set of states given by J=J�−1 /2
and the corresponding allowed values of m� −J ,−J
+1, . . . ,J−1,J�. These states are easily constructed by mak-
ing them orthogonal to the previously found ones, i.e.,

�k,J� −
1

2
,m� +

1

2
− n� = − C2

n�↑�� � �k,J�,J� − n� + C1
n�↓��

� �k,J�,J� − n + 1� . �34�

Any general state with fixed J and m can therefore have
contributions coming from J+1 /2 or J−1 /2 multiplets of the
N−1 excluded spins, i.e.,

�
k

Ak�k,J,m� = �
k
�B1

k�↑�� � �k,J −
1

2
,m −

1

2
� + B2

k�↓��

� �k,J −
1

2
,m +

1

2
� + B3

k�↑�� � �k,J +
1

2
,m

−
1

2
� + B4

k�↓�� � �k,J +
1

2
,m +

1

2
�� . �35�

Given this form, it is trivial to see that the application of S�
z

or S�
− on any of these states will result in

S�
z �

k

Ak�k,J,m� � �
k

B1

k�↑�� � �k,J −
1

2
,m −

1

2
� − B2

k�↓��

� �k,J −
1

2
,m +

1

2
� + B3

k�↑�� � �k,J

+
1

2
,m −

1

2
� − B4

k�↓�� � �k,J +
1

2
,m

+
1

2
�� ,

S�
−�

k

Ak�k,J,m� � �
k

B1

k�↓�� � �k,J −
1

2
,m −

1

2
� + B3

k�↓��

� �k,J +
1

2
,m −

1

2
�� .

Consequently, the form factors for S�
z

��
k�

Ak�
� 	k�,J�,m���S�

z ��
k

Ak�k,J,m�� , �36�

can exclusively be nonzero if J�� J−1,J ,J+1� and m�=m.
Similarly, the S�

− form factor

��
k�

Ak�
� 	k�,J�,m���S�

−��
k

Ak�k,J,m�� , �37�

is nonzero only if J�� J−1,J ,J+1� and m�=m−1.
Since, as we pointed out earlier, the value of J is related to

the number of diverging rapidities, these selection rules
translate into selection rules for the total number of rapidities
and the number of diverging rapidities.

The S�
z form factor is nonzero for m�=m and therefore for

a total number of rapidities in the intermediate states �Np��
given Np�=Np. Using this fact, the selection rule on J� and
Eq. �32�, we easily find that the only contributions come
from states with Nr�= Nr−1,Nr ,Nr+1�.

Similarly, for S�
−, we find that Np�=Np−1 and the number

of diverging rapidities must be given by Nr�= Nr ,Nr−1,Nr
−2�. For the specific case of ground state �Nr=Np diverging
rapidities� expectation values, nonzero contributions to S�

z

correlations are found exclusively for intermediate states
with either Np or Np−1 diverging rapidities since Nr�=Np
+1�Np is impossible. Identically, for S�

−, the only possible
cases are given by an intermediate state with Np−1 or Np
−2 diverging rapidities.

Finally, for the S�
z form factors involving only the ground

state, one can use the fact that

lim
g→�

�GS� = lim
g→�

�
j=1

NpC�v j��0� � �Stot
+ �Np�0� = �↑��

� �
i1,. . .,�Np−1�

� N−1

Np−1
�

�↑�1
. . . ↑�Np−1

�� + �↓��

� �
�1,. . .,�Np

�

�N−1

Np
�

�↑�1
. . . ↑�Np

�� , �38�
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where ��1,. . .,�M��↑�1
. . .↑�M

�� is simply the sum over all pos-
sible states containing M up spins picked out of the N−1
levels which exclude level �. The action of S�

z on this state is
trivially given by multiplying by 1/2 while adding a minus
sign to the second sum, which in the end allows us to simply
prove that

lim
g→�

	GS�S�
z �GS� �

1

2

� N − 1

Np − 1
� − �N − 1

Np
��

=
1

2

�N − 1�!
�N − Np − 1�!�Np − 1�!
 2Np − N

�N − Np�Np
� .

�39�

One immediately sees that the half-filling 2Np=N case
has the peculiar feature of having these “ground state to
ground state” form factors go down to zero in the strong-
limit coupling.

C. Correspondence between g=0 and g\� eigenstates

1. General algorithm

An algorithm relating the g=0 structure of a state to the
number of diverging rapidities it will have at g→� was
already proposed in Refs. 30 and 31. It necessitates the
evaluation of various quantities for every possible partitions
of the N levels into three disjoint contiguous sets of levels.
An equivalent result can be obtained through the simple fol-
lowing algorithm, which was discussed before in Ref. 20.

By splitting any g=0 configuration of rapidities into
blocks of contiguous occupied and empty states, one can
simply obtain the number of diverging roots. Figure 1 shows
some examples of this construction. Every circle represents a
single-energy level and the blackened ones are occupied by a
Cooper pair at g=0.

We then label the various blocks according to the follow-
ing prescription. The highest block of rapidities is labeled by
index i=1 and contains P1 rapidities. The block of unoccu-
pied states right below it will be also labeled by i=1 and
contains H1 empty levels. We continue this labeling by de-

fining P2�H2� as the number of rapidities �unoccupied states�
in the next block until every single one of the Nb blocks has
been labeled. In the event that the lowest block �i=Nb� is a
block of rapidities, as is the case in the middle example in
Fig. 1, we set HNb

=0.
The number of diverging rapidities is then simply given

by

Nr = �PNb
+ ANb−1 − min�PNb

+ ANb−1,HNb
�� �40�

with the Ai terms defined recursively as

Ai = �Pi + Ai−1 − min�Pi + Ai−1,Hi�� �41�

with A0=0.
This can be thought of as a “dynamical” process which is

best understood by looking at the g evolution of the rapidi-
ties as shown in Fig. 2 for the three states in Fig. 1.

FIG. 1. Construction of the contiguous blocks necessary to es-
tablish the g=0, g→� correspondence.

FIG. 2. �Color online� Evolution of the rapidities �real part�
from 0 to large g for the states presented in Fig. 1.
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As g rises, each rapidity has a tendency to go down to-
ward −�. Any block of Hi unoccupied states stops up to Hi
rapidities from doing so by keeping them finite. If Pi rapidi-
ties are going down and they meet a block of Hi unoccupied
states every rapidity will be kept finite if Hi� Pi �Ai=0
rapidities will go through�. On the other hand, whenever Hi
� Pi, only Hi rapidities can be kept finite and the remaining
Ai= Pi−Hi will keep going down toward −�. Starting from
the highest block of rapidities �of size P1� we therefore have
A1= P1−min�P1 ,H1� which go through the H1 empty states
below. These will be added to the following block of P2
rapidities giving P2+A1 rapidities which then meet a block
of H2 unoccupied states. A2= �P2+A1�−min�P2+A1 ,H2� will
go through and continue their descent. Keeping this analysis
going until we reach the last blocks gives out the result given
above.

2. Application to ground states and single excitation states

At g=0, for any of the canonical ground states containing
Np rapidities in the Np lowest energy levels, we have a single
block of unoccupied N−Np levels and a single block of Np
occupied levels �see the left group in Fig. 3�. Since no unoc-
cupied levels are below this Np-rapidities block, they would
all diverge in the g→� limit.

Focusing on the states built out of a single excitation
above this ground state, we find three distinct cases.
When one moves the top rapidity �from level Np� to a higher
level �say, level ��Np�, the resulting block structure is
�P1=1��H1=�−Np��P2=Np−1� �see middle group in Fig. 3�
which leads in the strong-coupling limit to the single P1
rapidity being kept finite while the remaining Np−1 will di-
verge. In the second scenario, if one promotes any of the
rapidities at level ��Np �excluding the topmost one� to the
level Np+1 the resulting structure is �P1=Np−�+1��H1
=1��P2=�−1� �see the right group in Fig. 3�. Once again,
this leads to one of the P1 rapidities staying finite due to the
unoccupied block H1=1 while the other Np−1 rapidities will
diverge.

The last possible case is a single excitation obtained by
moving a rapidity from level ��Np into an empty level �
�Np+1. Doing this gives the following block structure �P1
=1��H1=�−Np−1��P2=Np−���H2=1��P3=�−1�. In the
end the P1 rapidity will stay finite because of H1, and one of
the P2 rapidities will remain finite as well, leading to a total
of two finite rapidities.

From very simple combinatorics we therefore find that we
can build N−1 single finite rapidity states �at g→�� by de-

forming g=0 two-particle states. Moreover, at g→� for a
given number of rapidities, the total number of states with
J=Np−1 �single finite rapidity� is given by the total number
of solutions to the single Bethe equation �i=1

N 1
�−�i

=0.32 This
equation also has N−1 distinct solutions and therefore every
state with a single finite rapidity at strong coupling stems
from one of the two-particle states at g=0. This was pointed
out before in Refs. 30 and 31.

From the previous sections we concluded that for the S�
z

form factors one can get contributions coming from the Np
rapidities states with either Np or Np−1 of them diverging.
The first case we now know corresponds to the ground state.
Since we also showed that every state with one finite rapidity
is generated by singly excited states, it becomes clear that the
two-particle states do give out every nonzero contributions in
the g→� limit. For S�

− we showed that only the Np−1
ground state �all rapidities divergent� or the Np−1 states with
Np−2 diverging rapidities contribute. Once again this means
that the intermediate sum can be limited to the Np−1 ground
state and single excitation �two-particle� states. One should
also notice that, in this limit, any single excitation state
which leads to two finite rapidities will not contribute al-
though at weaker coupling they could.

Since the complete set of two particle states �plus the
ground state� saturates the sum rules in both g→0 and g
→� limits, it is reasonable to assume that they will also be
largely dominant in the crossover regime. This fact will be
explicitly proven numerically since even for the smallest sys-
tems, this subset represents, for any g, more than 99% of the
weight.

V. DYNAMICAL CORRELATION FUNCTIONS

We have presented all the ingredients to calculate the dy-
namical correlation functions: we need to solve the Richard-
son equations for each state �w��, calculate its energy Ew,
use the rapidities defining the solution to compute the deter-
minant and calculate the form factors. However, while the
formulas we obtained for the correlation functions are com-
pletely general and are valid for any choice of the Hamil-
tonian parameters �� and g, to obtain a physical result we
still have to perform the sum over the states and this cannot
be done analytically. Thus we need to make a choice of the
model to study. As we already mentioned, we only consider
the most-studied case in the condensed-matter literature,
which consists of N equidistant levels at half filling, i.e.,
N=2Np. We define the levels as

�� = � with � = 1 . . . N , �42�

i.e., we measure the energy scale in terms of the interlevel
spacing and we fix the Debye frequency �the largest energy
level� to N.

A. Diagonal Sz correlator

We start our analysis with the diagonal Sz correlator that,
in frequency space, reads

FIG. 3. A ground state and the corresponding set of states which
give a single finite rapidity at g→�.
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Gzz
d �� = �

n=1

N

�
v�

�	v��Sn
z �GS��2

	GS�GS�	v��v��
�� − Ev + EGS� �43�

with �v�� having N /2 rapidities. In particles language this is
a density-density correlator. At any finite N, this is a sum of
� peaks each at the energy of the excited state �v��, and each
weighted with the corresponding form factor.

In the thermodynamic limit where N→� while the inter-
level spacing d→0 �keeping a finite bandwidth for the
single-particle excitations�, we can think of any g�0 as be-
ing already the strong-coupling case, i.e., the BCS mean-
field treatment becomes exact. In such a case correlation
functions should be described by the g→� limit where only
the single finite rapidity band would contribute. However, we
are interested here in mesoscopic effects at finite N, that are
encoded in the quantization of the energy levels and in the
potential presence of nontrivial contribution from other ex-
cited states.

In any real physical system, the � peaks are smoothed by
different effects such as temperature broadening or, even in
the case of very small T, experimental resolution. All these
effects are expected to broaden the � peaks in an approxi-
mately Gaussian fashion. For this reason, in Fig. 4 we plot a
typical example of such correlator for different values of g,
at fixed number of pairs Np=32, with the � functions broad-
ened to Gaussians of width wG=0.1. The necessity to use
logscale plots comes from the fact that typically the second
energy subband, clearly separated by a gap for g�0.45, has
contributions which are orders of magnitude below the con-
tributions from the first excited subband. In the limit g→�,
the width of these two subbands would go to zero while the
gap separating the first subband from the ground state and
the second band from the first, would tend to the grand-
canonical BCS gap1

�GC =
N

2 sinh�1/2g�
. �44�

The quantization of the energy levels is evident, espe-
cially for small g. For larger values of g, a peak seems to
develop at the BCS gap even for these relatively small values
of N. The contributions from the first excited subband are
made more apparent in Fig. 5, which shows only this sub-
band. We can understand this peak developing at the bottom
of the band as being mostly due to the growing density of
states at this energy. It is not due to a single large contribu-
tion from a given state, but simply to the finite width of the
Gaussian peaks making the small energy differences unre-
solvable. In fact, as shown explicitly in Appendix B, in the
strong-coupling limit all states in the subband have identical
form factors and therefore equal contributions to the correla-
tion function. The coalescence of the energies happening
faster �in g� at the bottom of the band leads to this impres-
sion of a developing peak.

Very similar plots can be found frequently in the experi-
mental literature �see e.g., the review in Ref. 3� for the I-V
characteristic of superconducting nanograins. We are now in
a position to understand these results quantitatively.

However, without a realistic idea of the kind and ampli-
tude of broadening these plots are still only indicative. More-
over, it is difficult to correctly visualize these functions and
the relative importance of the various contributions. A more
precise information about the mesoscopic effects is encoded
in the integrated correlation function obtained from Gzz

d inte-
grating it up to a given 

Izz
d �� = �

0



d�Gzz
d ��� , �45�

i.e., the sum of the form factors of states with energy smaller
than . The integrated correlation functions can be plotted
without any smoothing. For several values of g, we report
them in Fig. 6 for fixed N=16. Any step corresponds to a
different eigenvalue �most of them have a twofold degen-
eracy� of the Hamiltonian. Notice that for large  the inte-
grated correlation function gives the value of the sum rule
being the sum of all form factors, i.e., Izz

d �=��= 	�Stot
z �2�

=N /4 �cf. Eq. �27��.

FIG. 4. �Color online� Diagonal correlation function Gzz
d �� ob-

tained by smoothing the energy � function with a Gaussian of width
wG=0.1 for different values of g and at fixed number of pairs Np

=32 �N=64�. We show C�g�+Gzz
d ���106�g/0.05 with the offset

C�g�=�n=0
�g/0.05�−120�106�n �effectively this makes scaled logscale

plots with an offset�.

FIG. 5. �Color online� Diagonal correlation function Gzz
d �� ob-

tained by smoothing the energy � function with a Gaussian of width
wG=0.1 for different values of g and at fixed number of pairs Np

=32. We present the first excited subband contribution plotted with
the frequency rescaled by the grand-canonical BCS gap, bringing
the bottom of the band at  /�BCS�1.
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To understand how the various excitations combine to
give this correlation function, in Fig. 7 we report the contri-
bution of the ground state and of the two-particle states to the
sum rule. The ground state �inset� accounts for the full cor-
relation function in the absence of interaction, �as discussed
previously� but its contribution quickly decays to zero with
increasing g, as consequence of a complete reorganization of
the ground-state structure. In the main plot of Fig. 7, we
show the sum of the ground state plus all two-particle states.
It is evident that in all considered cases, these states give
basically the full correlation function, and at most about 1%
is left to the other states. In particular for large g, the two-
particle states account for the full correlation function �as
shown in the previous sections�. Notice also that with in-
creasing N, the missing contribution becomes smaller. This
property simplifies enormously the computation of the corre-
lation functions. In fact, to have an effective description of

the correlation functions, we do not need to sum over the
total � N

N/2 � states, but only over the N2 /4 two-particles states.
For this reason, in the various figures, all correlation func-
tions have been calculated by only considering two-particle
states �for lower N, we checked by full sums that this “ap-
proximation” does not introduce any visible modification.�

We can now come back to the analysis of the correlation
function Izz

d �� itself. In Fig. 8 we plot three different curves
at fixed gN in such a way that the BCS gap is constant in the
large g approximation �see Eq. �44� giving the BCS gap in
the grand-canonical ensemble�. It is evident that for the
smallest value of N=16, which corresponds to the largest
value of g=2.8, Izz

d �� has almost its asymptotic expression
�see Appendix B� that is a step function at the BCS gap �the
integral of ��−�� contribution for large g�. Although the
first energy band still has a finite width �which would go
down to zero as g−1 according to Eq. �B13�� this width is
already significantly smaller than the BCS gap �which scales
as g�. Oppositely for N=64 and g=0.7, despite N being
larger, the small value of g and the still significant relative
width of the subband leads to a nice quantization of the
energy spectrum, resulting in a staircase function with un-
equal steps. In the inset of Fig. 6, the zoom of the lower
energy sector for small g at N=16 is reported, showing the
formation of intermediates steps of unequal contributions
with increasing g.

Finally in Fig. 9, we report Izz
d �� at fixed N=64 and

varying g, rescaling the horizontal axis by the grand-
canonical BCS gap �Eq. �44��. For large g, �GC corresponds
exactly to the energy of the first excited state �and therefore
subband� and all the curves start rising from 1. However for
smaller values of g �in particular for g=0.5�, visible finite-
size effects are present. As already stressed above, the stair-
case structure for small g, smoothly connects to a step func-
tion for large-enough g.

B. Diagonal ŠS+S−
‹ correlator

This correlation function �as well as the corresponding
off-diagonal one� is directly connected with the annihilation
and creation of a Cooper pair. We could imagine, for ex-
ample, an experiment in which a superconducting grain was
contacted on the left and right by two separate bulk super-

FIG. 6. �Color online� Integrated diagonal correlation function
Izz
d �� for N=16 and varying g. The inset is a zoom of the upper left

corner, where the quantization of the energy level is more evident.

FIG. 7. �Color online� Sum rule for the diagonal Gzz
d �� corre-

lation function. Inset: the ground-state contribution. Main Plot:
ground state plus all two-particle states.

FIG. 8. �Color online� Integrated diagonal correlation function
Izz
d �� for three values of N and g, while keeping constant Ng.
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conducting leads, each having their respective order param-
eters, a problem which was studied, for example, in Refs. 33
and 34. The Josephson current in such a system is given by
perturbation theory in the coupling between the leads and the
grain, and its calculation involves computing such correla-
tors as the one above. We will treat this problem in more
detail in a separate publication, concentrating for the moment
on the results for the correlators themselves.

We start by showing the sum rule �cf. Eq. �28�� obtained
from the ground state and all the two-particle states as func-
tion of g at fixed N in Fig. 10. For the ground state, we have
an opposite behavior compared to the Sz correlation: the
value for small g is low and it increases by increasing g, but
never saturating it completely. The missing contribution is
again mostly in the two-particle states, as evident from Fig.
10. For g=0 and g→�, it has been proved analytically in the
previous section that this class of states gives a perfect satu-
ration of the sum rule and hence the full correlation function.
The figure shows that even for intermediate g, a very accu-
rate calculation comes only from two-particle states, and so
in the following we will ignore all the other too small con-
tributions. Notice that the contribution of the leading excita-

tions is even more relevant than for Gzz
d , having always satu-

ration above 99% and that again for large-enough N it
increases while increasing N.

The integrated correlations

I+−
d �� = �

0



d�G+−
d ��� �46�

are reported in Fig. 11 for N=64. In the left panel we report
the small g�1. At very low g, the BCS gap is not yet formed
and the correlation function has a staircase structure with
almost equal steps, as a consequence of the almost perfect
equispacing of the energy level. Increasing g, the levels be-
come incommensurate and the correlation function acquires
a structure that reflects the formation of the BCS gap. In the
right panel we show the same correlation function plotted in
terms of  /�GC with the grand-canonical gap given by Eq.
�44�. For large values of g, the “band structure” of the energy
levels is evident in the formation of two main steps at �GC
and at 2�GC. In the same panel we also show some interme-
diate and small values of g to show the formation of this
two-step structure from the sharpening of the smaller steps.
This is the main signature of mesoscopic effects in the cor-
relation functions. Whereas for the Sz correlations the second
excited band’s contributions were very rapidly suppressed, in
the case at hand, it maintains a very important contribution in
the full regime studied in this paper. Although the selection
rules point out that it no longer contributes at g→� it ap-
pears that the suppression of the S− form factors happens at
much stronger coupling than it does for Sz. This seems to
suggest that corrections to the mean-field BCS results �more
or less equivalent to the g→� limit� could show up in a
wide regime when looking at the previously mentioned Jo-
sepshon current experiments.

C. Off-diagonal correlators

The off-diagonals correlators have properties very similar
to the diagonal ones. For this reason we only shortly present

FIG. 9. �Color online� Integrated diagonal correlation function
Izz
d �� for N=64 and various g. The horizontal axis has been res-

caled by the BCS gap.

FIG. 10. �Color online� Sum rule for the diagonal G+−
d �� cor-

relation function. Inset: the ground-state contribution. Main plot:
ground state plus all two-particle states.

FIG. 11. �Color online� Integrated correlation function I+−�� as
function of  for several couplings g and fixed N=64. Left: small
values of g�1. Right: as function of  /�GC to show the formation
of two steps in the limit of large g.
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them, without an extensive discussion. In Fig. 12, we report
the contribution to the sum rule �cf. Eq. �29�� from the
ground state and from all two-particle states. The ground
state by itself saturates the sum rule for large-enough g,
while for small values the contributions of the two-particle
states are essential. Notice that the saturation of the sum rule
is always above 99.9%, even more than in the diagonal case.
Since the ground state is the strongly dominant contribution
to the correlation, G+−

od will be a � peak at the ground-state
value. Thus this is the less sensitive function to reveal me-
soscopic effects.

In Fig. 13, we report the integrated correlation function

I+−
od �� = �

0



d�G+−
od ��� �47�

for several g and N=64. To make the plot visible we divide
by the off-diagonal order parameter �od as obtained by the
Hellmann-Feynman theorem.12 In the main plot, small g
�1 are reported. As before, for small-enough g we have a

regular staircase behavior, that, however, becomes quickly
flat because the ground-state contribution to the correlation
function is too large. For large values of 2.8�g�3 are re-
ported in the inset of the figure and are zoomed very close to
1. The contribution from two bands at �GC and 2�GC is
evident, but it is visible only because we have an exact so-
lution at hand. It would have been very hard, if not impos-
sible, to see such a small effect in any numerical approach
and in a real experiment.

D. Real-time correlations

It is also interesting to look at these correlation functions
in real time. The presence of incommensurate energy levels
gives indeed a quite complicated structure that greatly sim-
plifies in the best known large and small g behavior. We
show in Fig. 14 the typical evolution of the two diagonal
correlation functions. It is evident that for small g, the func-
tions are almost periodic as a trivial consequence of the al-
most commensurate levels �this is strictly true only at g=0,
but at g=0.1 several periods should pass before the nonexact
commensurability is manifest�. Increasing g, the behavior be-
comes irregular and for very large g, new structure emerges
due to the formation of a well-defined energy subband struc-
ture.

As can be seen on the top right panel, for large-enough g,
we find a peculiar scaling behavior for the norm of the Gzz

d

correlation function. Indeed, dividing time by g�, the dimen-
sionless coupling constant �g�=g /d with d the interlevel
spacing� we find an almost perfect agreement between the
curves for various strong-coupling cases. The specific details
allowing a clear understanding of this regime are presented
in Appendix B where we compute the 1 /g� expansion of
both the energies and the form factors. One should know,
however, that looking independently at the real and imagi-
nary parts of this correlation function they both still show a
rapidly oscillating component associated with the gap fre-
quency. It is only when looking at the norm of the correlation
that this surprising scaling can be found.

The same is not true for the G+−
d correlator shown on the

right two panel of Fig. 14. In this case, even when looking
exclusively at the norm of the correlation a contribution os-
cillating at the very large energy gap frequency remains
present. Due to the time scales plotted, this rapid oscillation
can barely be resolved on the figure for coupling strength
larger than 0.40 but a rescaling of the plots clearly shows that
they remain present.

VI. CONCLUSIONS

We have studied the dynamical correlation functions of
the reduced BCS model in the canonical ensemble by means
of algebraic Bethe Ansatz techniques. We presented analytic
selection rules in the weak- and large-coupling regimes. For
finite values of the coupling and for finite number of par-
ticles, the correlation functions are calculated numerically by
summing over the form factors of the relevant states. We
showed that two-particles states always give saturation of the
sum rules that is above 99% for all g and N considered, in

FIG. 12. �Color online� Sum rule for the global G+−
od �� correla-

tion function. Inset: the ground state contribution. Main plot:
ground state plus all two-particle states.

FIG. 13. �Color online� Integrated diagonal correlation function
I+−
od ��. Main plot: small values of g�1 at step of 0.05 going from

the staircase to the flat regime. Inset: large values of g
=2.8,2.85,2.9,2.95 showing the very small two steps structure.
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stark contrast with other integrable models like spin-chains
and one-dimensional gases. We presented and discussed ex-
tensively the crossover from small to large g, where quantum
fluctuations have a dominant role and lead to a difference
between the canonical and grand-canonical ensemble, and
where a perturbative treatment would provide incorrect re-
sults.

Additionally, we showed unexpected behavior of Sz cor-
relations at half filling. The properties of these correlations
give rise to a scaling law which is the exact opposite of what
one would expect if the properties were dominated by the
energy scale associated to the superconducting gap.

We remind the reader that while we only studied the case
of N nondegenerate equidistant energy levels at half filling
�which is the most interesting model from the condensed
matter point of view3,35�, this is in no way a strict limitation
of our approach, which can be, in principle, applied to any
choice of initial energy-level distribution. The description of
pairing in nuclei is, for example, a situation where other
choices of the parameters �� are more natural.6,36–38 These
could be treated by a simple adaptation of our results.

The correlation functions we have provided have applica-
bility in the phenomenology of many experimental situa-
tions. In further work, we will apply the current results to

transport phenomena through metallic nanograins coupled to
normal and/or superconducting leads.
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APPENDIX A: SOLVING RICHARDSON EQUATIONS

As explained in our previous publications12,19,20 �see also
Refs. 30 and 39–42�, we find the solutions starting from the
trivial g=0 solutions and slowly raising the value of the cou-
pling constant. With a linear regression using the previously
found solutions, one gets an appropriate guess for the new
solution at g+�g. Using a simple Newton algorithm for solv-
ing coupled nonlinear algebraic equations is then sufficient,
provided one makes the necessary change in variables.

Indeed, at any value of the coupling, rapidities are either
real or form complex-conjugate pairs �CCPs� and the pairing

FIG. 14. �Color online� Real-time correlation function with varying g. Left: 4�Gzz
d �t�� /N; at small to intermediate coupling �left panel�; as

a function of rescaled time in the strong-coupling regime �bottom panel�. Right: 2�G+−
d �t�� /N; at small to intermediate coupling �top panel�;

at strong coupling �bottom panel�. These functions have been shifted by an integer to make it easier to read, but they remain bounded
between 0 and 1.
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of two rapidities only occurs at bifurcation points g� at which
they are both exactly worth �c, i.e., one of the single-particle
energy levels. It is also possible, as g is increased, that two
paired rapidities split apart becoming both real again. At a
critical g� where a pair splits or forms, the derivatives

dwi

dg are
not defined making the computation of the necessary Jaco-
bian impossible. This problem is easily circumvented by, in
the vicinity of critical point at which wi=wj =�c, making the
following change in variables:

�+ = wi + wj ,

�− = �wi − wj�2. �A1�

On both sides of g�, those are two real variables and they
have well-defined derivatives even at the bifurcation point.
The fact that g is slowly increased allows us to figure out
beforehand whether given rapidities are about to form �or
break� complex-conjugate pairs. Naturally, it makes the nu-
merical procedure more tedious than it would be if one was
able to guess correctly the structure at the precise value of g
in which we are interested. However the lack of known ana-
lytical results about the solutions to these precise Bethe

equations forces us to use this scanning procedure. Fortu-
nately, for the dynamical correlations we only need a very
restricted set of states in order to get a very accurate descrip-
tion. Since single solutions are addressed one by one inde-
pendently of the dimension of the full Hilbert space, the
problem remains numerically tractable for fairly large system
sizes which matrix diagonalization could not tackle.

In Fig. 15, we show the real part of the Np=16, N=32
rapidities as a function of g for typical single excitation
states. As in the rest of the paper the lowest single-particle
energy level is chosen to be �1=1 and the subsequent are at
��=�.

For the ground state, rapidities form complex-conjugate
pairs in a very simple fashion, the top one pairing with the
next one below and so on. For an odd number of rapidities,
the lowest one would remain real and the other Np−1 form
CCPs in this way.

In the top right panel, we show a state obtained by pro-
moting to level ��Np+1 the highest rapidity �level index
�=Np� from the ground state. We know from the algorithm
presented in Sec. IV C that this state will have a single finite
rapiditiy at strong coupling. Moreover, one sees that the pro-
moted rapidity will simply stay real and remain between ��

and ��−1. Since there is no other rapidity close by, it cannot

FIG. 15. �Color online� Real
part of rapidities for: ground state
�upper left�, promoted top ��
=Np� rapidity �upper right�, rapid-
ity promoted at �=Np+1 right
above the Fermi level �middle
left�, rapidity promoted at �=Np

+1 right above the Fermi level
�middle right�, nontop rapidity
promoted above Np+1 level
�lower left�, nontop rapidity pro-
moted above Np+1 level �lower
right�.
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form a pair to go through the energy level ��−1. Indeed, the
structure of the Richardson equations prevents a single rapid-
ity to be equal to an energy level �c since the diverging term

1
wi−�c

has to be cancelled by a diverging term −2
wi−wj

. The re-
maining rapidities will simply form CCPs as they would for
a Np−1 pairs ground state.

The two figures in the middle are built by promoting a
rapidity with index ��Np to level �=Np+1. In both cases,
we find only a single finite rapidity at strong coupling but we
still have two different scenarios. The top contiguous block
has an even �odd� number of rapidity on the left �right�
panel. For an odd number of rapidities in the top block, the
lowest one from that block will simply stay real and between
��+1 and ��. In the even case, the lowest two rapidities from
the top block will actually form a pair at the energy level
�+1, then split apart into two real rapidities at level �. This
splitting will make one rapidity be above �� where it will
stay until g→� while the other one goes below �� and will
later form a pair with the top rapidity from the block under-
neath.

Finally, the lowest panels which lead to two finite rapidi-
ties at strong coupling behave in a similar way for the lowest
Np−1 rapidities, whereas the promoted one stays finite in the
same way it did in the top right panel. At g→� the state with
one single finite rapidity in between ��−1 and ��, for Np
���N is the deformed version of the g=0 state built by
exciting the ground state’s top rapidity wi=�Np

to level ��.
On the other hand if the finite rapidity is between 1��
�Np and �+1 the state is the deformed version of g=0 state
obtained by promoting the ground state’s rapidity wi=�� to
level �Np+1. The approximative location �between given en-
ergy states� of these strong-coupling finite rapidities was al-
ready know and used in32 to compute nonequilibrium dy-
namics in the related central-spin model. However we here
show how they each correspond to a known g=0 state de-
formed by interactions.

APPENDIX B: STRONG COUPLING SCALING

Hand-waving arguments tend to lead to the idea that the
excitation gap should be the dominant energy scale in this
system at least for strong coupling where one expects the
BCS description to be more or less adequate. We would
therefore expect correlations in time to show strong oscilla-
tions at a frequency given by the gap �i.e., �g in the strong-
coupling limit�. Surprisingly, the SzSz correlations shown in
Fig. 14 actually show the exact opposite behavior. The mag-
nitude of correlations do show scalable behavior but they
happened to be slowed down by an increasing g and there-
fore an increasing gap.

This appendix aims at understanding this peculiar scaling
property. In order to do so, we can rely on the strong-
coupling expansion of the Richardson equations. The follow-
ing analysis will give us “semianalytical” �i.e., getting the
numerical values still needs numerical work� expressions for
both the energies and the form factors needed to understand
this correlator.

We assume a convergent expansion exists around the g
→� point for the values of the rapidities themselves �Fig. 15

shows this assumption to be correct at strong-enough g�.
Keeping only the first relevant corrections, we can write
down, for the three types of states we are interested in: �1�
the ground state

wj = Cj
Npg + Aj + Bj

1

g
∀ j = 1 . . . Np, �B1�

�2� the single finite rapidity states

��k = �k
� + �k

1

g

wj
k = Cj

Np−1g + Aj
k + Bj

k1

g
� ∀ j = 1 . . . Np − 1, �B2�

and �3� states with two finite rapidities

�
�1,k = �1,k

� + �1,k
1

g

�2,k = �2,k
� + �2,k

1

g

wj
k = Cj

Np−2g + Aj�
k + Bj�

k1

g

� ∀ j = 1 . . . Np − 2.

�B3�

In the last two cases we have, respectively, either N−1 or
�Np�2−NpN−N−1 possible values of k each associated with
a different possible solution of the Richardson equations �dif-
ferent possible values of the � rapidities which remain fi-
nite�. In all three cases, Eq. �31� gives the values of the C
constants which define the diverging rapidities in the g→�
limit which are therefore independent of the choice of finite
rapidities values for any given k. One should understand that
g here is considered to be the dimensionless quantity g

d , d
being the interlevel spacing.

1. Energies

The respective energies of these states, obtained by sum-
ming the Np rapidities are therefore simply given by

EGS = 
�
j=1

Np

Cj
Np�g + 
�

j=1

Np

Aj� + 
�
j=1

Np

Bj�1

g
, �B4�

Ek = 
 �
j=1

Np−1

Cj
Np−1�g + 
�k

� + �
j=1

Np−1

Aj
k� + 
�k + �

j=1

Np−1

Bj
k�1

g
,

�B5�

E�1,k,�2,k
= 
 �

j=1

Np−2

Cj
Np−2�g + 
�1,k

� + �2,k
� + �

j=1

Np−2

Aj�
k�

+ 
�1,k + �2,k + �
j=1

Np−2

Bj�
k�1

g
. �B6�

The expansion of the Richardson equations around the
strong-coupling solutions with a single finite rapidity gives
us
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−  j

g
= �

�=1

N
1

1 −
��

 j

− 2 �
j��j

Np−1
 j

 j −  j�
− 2

1

1 −
�k

 j

, �B7�

− Cj
Np−1 − Aj

k1

g
� �N − 2� − 2 �

j��j

Np−1
Cj

Np−1

Cj
Np−1 − Cj�

Np−1

+ �
�
�=1

N

��� − 2�k
��
 1

Cj
Np−1g

�
+ 2 �

j��j

Np−1 �Cj�
Np−1Aj

k − Aj�
k Cj

Np−1�

�Cj
Np−1 − Cj�

Np−1�2

1

g
. �B8�

Which, order by order gives

− Cj
Np−1 = �N − 2� − 2 �

j��j

Np−1
Cj

Np−1

Cj
Np−1 − Cj�

Np−1 , �B9�

− Aj
k = �
�

�=1

N

��� − 2�k
�� 1

Cj
Np−1

+ 2 �
j��j

Np−1 �Cj�
Np−1Aj

k − Aj�
k Cj

Np−1�

�Cj
Np−1 − Cj�

Np−1�2
. �B10�

These equations are defined for any of the Np−1 values of
index j. Summing up the Np−1 �Eq. �B9�� �divided by
Cj

Np−1�, we find

− �Np − 1� = �N − 2��
j

1

Cj
Np−1 , �B11�

while summing up the Eq. �B10� gives us

− �
j

Aj
k = �
�

�=1

N

��� − 2�k
���

j

1

Cj
Np−1 ,

�
j

Aj
k = �
�

�=1

N

��� − 2�k
�� �Np − 1�

�N − 2�
. �B12�

Using this last expression, the energies of every single finite
rapidity state can be written including the lowest correction
in 1

g as

Ek = 
 �
j=1

Np−1

Cj
Np−1�g + ��k

��
N − 2Np

N − 2
+ �

j=1

Np−1

�Bj
k�

1

g
+ O� 1

g2� .

�B13�

This shows that the half-filled case leads to the complete
energy collapse of the first excited band as proven before in
Ref. 27, i.e., lim

g→�

Ek−Ek�=0. The zero bandwidth obtained in

this specific case will be shown to be one of the central
elements in the scaling properties of the Sz operators dynami-
cal correlations.

2. Eigenstates

In order to establish a similar expansion for the states
themselves, one can simply use their representation as a Be-
the state �Eq. �11�� and expand the C operators used to con-
struct them. Keeping terms up to order 1

g for both divergent
�w=Cg+A+ B

g � and finite ��=��+ �
g � rapidities we have

C�w� � �
�=1

N
S�

+

w − ��

=
1

Cg
�
�=1

N

S�
+
1 +

�� − A

C

1

g
�

=
1

Cg

Stot

+ −
1

g

A

C
Stot

+ +
1

g

1

C �
�=1

N

��S�
+� ,

C��� � �
�=1

N

S�
+
 1

�� − ��

−
1

g

�

��� − ���2� . �B14�

By getting rid of the 1
Cg prefactors which, for physical quan-

tities, will always be cancelled by equivalent factors in the
norms, we can therefore write

�GS� � �GSNp� +
1

g
�
�=1

N

G�S�
+�GSNp−1� , �B15�

��k� � �
�=1

N

F�
k S�

+�GSNp−1� +
1

g
�

�,�=1

N

G�,�
k S�

+S�
+�GSNp−2� ,

�B16�

��1,k,�2,k� � �
�,�=1

N

F�,�
k S�

+S�
+�GSNp−2�

+
1

g
�

�,�,�=1

N

G�,�,�
k S�

+S�
+S�

+�GSNp−3� , �B17�

where the states �GSM���Stot
+ �M�0�. The following set of

definitions was also used:

G� �
�
j=1

Np Aj

Cj
Np
� + 
�

j=1

Np 1

Cj
Np
���,

F�
k �

1

�k
� − ��

,

G�,�
k � − 
 �

j�=1

Np−1 Aj�
k

Cj�
Np−1� 1

�k
� − ��

−
�k

��k
� − ���2

+ 
 �
j�=1

Np−1
1

Cj�
Np−1� ��

��k
� − ���2 ,

F�,�
k �

1

�1,k
� − ��

1

�2,k
� − ��

,
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G�,�,�
k � −

�2,k

��2,k
� − ���2

1

�1,k
� − ��

−
�1,k

��1,k
� − ���2

1

�2,k
� − ��

− 
 �
j�=1

Np−2 Aj�
k

Cj�
Np−2� 1

�1,k
� − ��

1

�2,k
� − ��

+ 
 �
j�=1

Np−2
1

Cj�
Np−2� ��

��1,k
� − �����2,k

� − ���
. �B18�

3. Form factors

At g→� it is straightforward to compute value of the
various forms factors. For the ground state it was done pre-

viously �Eq. �39��. Although the first-order correction can
also be obtained in a similar fashion, we will not explicitly
need the coefficients of the expansion and therefore simply
write

	GS�S�
z �GS� �

1

2

� N − 1

Np − 1
� − �N − 1

Np
�� +

1

g
A�

�B19�

with A� an unspecified �although obtainable� constant.
Identically, for single finite rapidity states we can write

	GS�S�
z ��k�g→� = �

�

F�
k 	GSNp�S�

z S�
+�GSNp−1�

= �
���

F�
k 	GSNp��1

2
�↑�,↑�� � �

�1,. . .�Np−2�

� N−2

Np−2
�

�↑�1
. . . ↑�Np−2

�� −
1

2
�↑�,↓�� � �

�1,. . .�Np−1�

� N−2

Np−1
�

�↑�1
. . . ↑�Np−1

���
+ F�

k 1

2
	GSNp���↑�� � �

�1,. . .�Np−1�

� N−1

Np−1
�

�↑�1
. . . ↑�Np−1

��� =
1

2 �
���

F�
k
� N − 2

Np − 2
� − � N − 2

Np − 1
�� +

1

2
F�

k� N − 1

Np − 1
�

=
1

2�
�

F�
k
� N − 2

Np − 2
� − � N − 2

Np − 1
�� +

1

2
F�

k
� N − 1

Np − 1
� − � N − 2

Np − 2
� + � N − 2

Np − 1
�� . �B20�

The orthogonality of these states with the ground state also allows us to write

	GS��k�g→� = �
�

F�
k 	GSNp���↑�� � �

�1,. . .,�Np−1�

� N−1

Np−1
�

�↑�1
. . . ↑�Np−1

��� = � N − 1

Np − 1
�
�

�

F�
k� = 0, �B21�

and therefore, adding the next order term through an un-
specified constant

	GS�S�
z ��k� �

F�
k

2

� N − 1

Np − 1
� − � N − 2

Np − 2
� + � N − 2

Np − 1
�� +

B�
k

g

= F�
k �N − 2�!

�Np − 1�!�N − Np − 1�!
+

B�
k

g
. �B22�

It was also proven in Sec. IV B that at g→� we have
	GS�Sn

z ��1,k ,�2,k�g→�=0 and we therefore have

	GS�S�
z ��1,k,�2,k� �

C�
k

g
. �B23�

Finally one can similarly compute the squared norms of the
ground state and the single rapidity states.

	GS�GS�g→� = � N

Np
� , �B24�

	�k��k�g→� = �
�,�

F�
k �F�

k ��	GSNp−1�S�
−S�

+�GSNp−1�

= �
���

F�
k �F�

k ��� N − 2

Np − 2
� + �

�

�F�
k �2� N − 1

Np − 1
�

= �
�,�

F�
k �F�

k ��� N − 2

Np − 2
� + �

�

�F�
k �2
� N − 1

Np − 1
�

− � N − 2

Np − 2
��

= 0 + �
�

�F�
k �2

�N − 2�!
�Np − 1�!�N − Np − 1�!

. �B25�
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Specializing to the half-filled case, we find

�
�=1

N �	GS�S�
z �GS��2

	GS�GS�	GS�GS�
�

A

g2 , �B26�

�
�=1

N �	GS�S�
z ��k��2

	GS�GS�	�k��k�
� � N

4�N − 1�� + �
�=1

N
2 Re�F�

k B�
k �

g�
�

�F�
k �2

�N/2�!�N/2�!
�N�!

+
B

g2 , �B27�

�
�=1

N �	GS�S�
z ��1,k,�2,k��2

	GS�GS�	�1,k,�2,k��1,k,�2,k�
�

C

g2 . �B28�

At order 0 in 1
g we therefore find that the only N−1 nonzero contributions coming from the form factors �the ones involving

the single finite rapidity states� are actually all equal. At the next leading order the only contributions also come from the same
reduced set of states.

Using Eq. �43� we can write the correlation function by summing over the N−1 possible values of �k. At order 1
g , we have

Gzz
d �� � �

k=1

N−1

�� − Ek + EGS��� N

4�N − 1�� + �
n=1

N
2 Re�Fn

kBn
k�

g�
i

�Fi
k�2

�N/2�!�N/2�!
�N�! � , �B29�

whose Fourier transform gives us

Gzz
d �t� � �

k=1

N−1

e−i�Ek−EGS�t�� N

4�N − 1�� + �
�=1

N
2 Re�F�

k B�
k �

g�
�

�F�
k �2

�N/2�!�N/2�!
�N�! � . �B30�

Looking exclusively at the magnitude of the correlations and therefore at phase-independent properties of this correlator we
have

�Gzz
d �t��2 � �

k,k�=1

N−1

e−i�Ek−Ek��t�� N

4�N − 1��
2

+ � ��N/2�!�2

2�N − 1��N − 1�!�
Re�

�=1
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Since Eq. �B13� tells us that

Ek − Ek� �
�k,k�

g
, �B32�

we can write
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This shows that at strong-enough coupling the dominant
term

� N

4�N − 1��
2

�
k,k�=1

N−1

e−i�k,k��t/g� �B34�

is purely a function of t
g . This fact is only true at half filling

where the ground-state average of any S�
z is zero. Moreover,

half filling also allows fulfillment of the second necessary
condition, the vanishing of width of the first excited band.
The first effect makes the energy scale associated to the BCS
gap irrelevant since only the first band of excited states is
contributing to the correlations. The vanishing width of this
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band is then responsible for the “inverted scaling” by making
the relevant energy differences smaller as g increases.

This very peculiar half-filling scaling property makes it
possible to slow down specific dynamical processes in this
system by making the interaction stronger. Since they are
only related to the spectrum and the condition 	GS�S�

z �GS�
=0, this scaling law would hold at half filling for any pos-
sible correlations of S�

z operators; be they local, global, in-
tralevel or interlevel correlations. The magnitude of any one

of the possible correlations would still follow a similarly
scalable time evolution.

Although clearly valid in the strong g limit where 1
g �1,

we also find through the numerical work carried out in this
paper that this scaling behavior extends to a very broad range
of coupling constants. For g�1.5d with d the interlevel
spacing, we find that 1

g corrections are already strongly sup-
pressed and the scaling behavior is therefore already appar-
ent.
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