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We study, in random sparse networks, finite-size scaling of the spin-glass susceptibility ysg, which is a
proper measure of the de Almeida-Thouless (AT) instability of spin-glass systems. Using a phenomenological
argument regarding the band-edge behavior of the Hessian eigenvalue distribution, we discuss how xsg is
evaluated in infinitely large random sparse networks, which are usually identified with Bethe trees, and how it
should be corrected in finite systems. In the high-temperature region, data of extensive numerical experiments
are generally in good agreement with the theoretical values of ysg determined from the Bethe tree. In the
absence of external fields, the data also show a scaling relation ysg=N'"3F(N'"3|T-T,|/T.), which has been
conjectured in the literature, where 7, is the critical temperature. In the presence of external fields, on the other
hand, the numerical data are not consistent with this scaling relation. A numerical analysis of Hessian eigen-
values implies that strong finite-size corrections of the lower band edge of the eigenvalue distribution, which
seem relevant only in the presence of the fields, are a major source of inconsistency. This may be related to the

known difficulty in using only numerical methods to detect the AT instability.

DOLI: 10.1103/PhysRevB.81.174407

I. INTRODUCTION

The discovery of spontaneous replica symmetry breaking
(RSB) in the low-temperature region of spin-glass (SG)
models' is perhaps the most significant achievement in the
field of statistical mechanics of disordered systems. It was
first found in the analysis of the Sherrington-Kirkpatrick
(SK) model, which is a fully connected mean-field SG
model, by introducing the Parisi ansatz for describing an
RSB state as a relevant saddle point of the replicated free
energy, which is intrinsically replica symmetric. The math-
ematical technicalities of constructing the solution generated
tremendous controversy in the early days of SG research.
However, alternative mean-field approaches>? and math-
ematically rigorous arguments*> now support the correctness
of the Parisi solution. These days, it is commonly accepted
that RSB does occur in a class of mean-field models al-
though the existence of RSB in systems of finite dimension
is still under debate.

In the present situation, SG models on random sparse net-
works play a special role. A random sparse network is con-
structed so that each node is randomly coupled to a finite
number of other nodes. As the random construction guaran-
tees statistical uniformity of the network structure, the ran-
dom sparse model is classified as a mean-field model that
exhibits RSB. At the same time, unlike fully connected mod-
els, a concept of adjacency between nodes is naturally intro-
duced in the random sparse network, which may make it
possible to characterize the RSB transition by using the con-
cept of correlation length (as in the standard analysis of mod-
els in finite dimensions). For very large (possibly infinitely
large) random sparse networks, a solution for the SG model
exists whenever the SG correlation decays fast enough (in
practice, in the replica symmetric phases). This solution is
obtained by assuming equivalence between the random
sparse network and the corresponding Bethe tree.

In SG models that undergo a continuous phase transition
as the temperature decreases, the onset of RSB is signaled by
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the de Almeida—Thouless (AT) instability,” which corre-
sponds to the divergence of the SG susceptibility. The AT
instability naturally defines a critical line T,.(H) in the tem-
perature (T)—external field (H) plane. The shape of this line
in the fully connected SK model is very peculiar: H.(T) di-
verges for T— 0; that is, an RSB phase exists for any value
of the external field. This behavior is rather unusual and can
take place only in models where the coordination number
diverges in the thermodynamic limit. In more realistic situa-
tions, T.(H) should become 0 when the external field reaches
a critical value H,.: SG models on random sparse networks
display this more realistic behavior.

A very interesting (and still largely open) question is how
the AT instability is observed in finite systems. Numerical
studies of the SK model have failed to identify the critical
point with H#0 and have reported very strong finite-size
effects.® For SG models on random sparse networks, much
less is known: there are very few numerical studies’ and a
validation of the finite-size scaling relations is still lacking.
In this paper, we mainly examine how the critical condition
for the AT instability obtained in the thermodynamic limit
should be corrected for finite-sized systems.

A proper measure for detecting the AT instability is the
spin-glass susceptibility defined as!'®

XSG = N_IZ (<S[Sj> - <Si><Sj>)27
i

where N is the number of spins, S; is a spin variable, and
(-++) (respectively, ---) denotes thermal (respectively, con-
figurational or disorder) averages. For T>T.(H), in the infi-
nitely large system limit, a random sparse network can be
accurately approximated by a Bethe tree, thus providing a
direct expression of ysg. On the other hand, for large but
finite systems, that expression for ygg has to be corrected in
an appropriate manner to account for finite-size effects. We
will show that the edge behavior of the eigenvalue distribu-
tion p(\) of the susceptibility matrix plays a key role in
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this correction. That is, when p(\) o (A=A\;,)” holds in the
vicinity of the lower band edge of the distribution, i.e., near
Amin» the finite-size correction amounts to a scaling relation
Xsg=N®F(tN®), where w=(1-7)/(1+7) and t=(T-T,)/T,,
unless A, is significantly influenced by finite-size effects.
In the absence of external fields, the results of random matrix
theory indicate y=1/2, which yields a known relation for
mean-field SG models xg;=N"?F(tN'?3). Data obtained from
extensive numerical experiments confirm that this relation is
fairly accurate. On the other hand, numerical data for N
=2!% show a considerable discrepancy with the same scaling
relation in the presence of external fields even when w is
optimally tuned. Numerical analysis on the Hessian for rela-
tively smaller systems of N=2% indicates that \,;, has
strong finite-size corrections in the presence of fields,
whereas the profile near A\, of the eigenvalue distribution
does not change much, which makes it practically difficult to
identify 7. by using only numerical methods. This may be
the reason why the AT instability is hard to observe in finite-
dimensional models.

This paper is organized as follows. The next section in-
troduces the model to be examined. In Sec. III, we show how
XsG 1s evaluated for infinitely large random sparse networks.
We also derive the finite-size scaling relation on the basis of
phenomenological considerations about the eigenvalue distri-
bution of the susceptibility matrix. In Sec. IV, we discuss the
numerical experiments examining the validity of the results
obtained in Sec. III. The final section is devoted to a sum-
mary.

II. MODEL DEFINITION

We will study SG models defined on C-regular random
graphs in the presence of an external field H. The Hamil-
tonian is given by

H(S) == 2 J;SiS;—HX S, (1)
(ij)eE i

where E is the set of edges in the random graph, which is
chosen uniformly among all graphs of N nodes and M
=NC/2 edges, having exactly C edges per node. Each node
contains an Ising spin S; € {+1,-1} (i=1,...,N) and the cou-
plings are quenched independently and identically distrib-
uted (i.i.d.) random variables extracted from

P(J)= %[5(]— 1)+ 8(J+1)]. (2)

As already mentioned, we denote the thermal averages with
respect to the canonical distribution of inverse temperature
B=T" as (---)=2(---)exp[-BH(S)]/Z(B), where Z(f)
=3gexp[—BH(S)] is the partition function. Configurational
averages with respect to the generation of the couplings and
of the graph are denoted as (---).

III. DE ALMEIDA-THOULESS INSTABILITY
A. Infinitely large systems

Thermal averages are difficult to evaluate computation-
ally. However, when a given graph is free of cycles (i.e., it is
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tree), it is known that the Bethe approximation is exact and
the belief propagation (BP) algorithm provides exact aver-
ages in a practical time.!'""!3 The BP iterative method is as
follows:

uf:lj = tanh_l[tanh(ﬁ],-j)tanh<ﬂH+ > u,@,-)], (3)

ke di\j

where M,Lj represent message variables which are transmit-
ted between nodes, Ji is the set of neighbors of i, and \j
stands for exclusion of j. From the fixed point of Eq. (3), the

thermal average of spin S; is evaluated as

mi=<S,-):tanh[BH+ > MH]. (4)
jedi

The results obtained by the BP algorithm, Eq. (3), are just
an approximation for general lattices with loops. However,
the length of cycles in a random sparse network typically
grows as O(In N) as the size of the graph N tends to infinity.
This implies that for high temperatures, 7>T,, where the
spatial correlations decay fast enough, thermal averages in
sufficiently large random networks can be accurately evalu-
ated by using BP, i.e., as if they were computed on a tree.
This idea is also useful for analyzing the AT instability.

Let us focus on a spin §; in a large random sparse network
and approximate the lattice with a tree rooted at i. A distinc-
tive property of the tree is that any pair of points is linked by
a unique path. Noticing this, we can define a path connecting
i with j, placed at distance G from i, and assign a label g
=0,1,...,G to the nodes along the path from i to j (g=0 and
g=G correspond to i and j, respectively). On this tree, the
two-point correlation between i and j can be exactly com-
puted as

dm; om; duy_y UG_.G-1
(5,5) = (S8 = g1 i g1 i
J ! J (9Hj (9141*)0 (9“2&,1 &Hl
G
om; o, ,,_
: g—g-l (5)

5”1—>0g=1 Ugyi g

Here, the derivative with respect to the field H; acting on j
has been replaced by the one with respect to any BP message
arriving at site j. Statistical uniformity guarantees that the
configurational average of the square of Eq. (5),

G
e [ Im \pp g |\
(<SiSj> - <Si><Sj>)2 = ( ) H ( ) s
aulﬂo g=1 &Mg+l~>g
depends only on G. On the other hand, the number of spins
at a distance G from i is given by C(C—1)¢"! on the tree.
Thus, the spin-glass susceptibility ysg can be evaluated as

xsg=(1—m2)?+ X, C(C-1)5"((SeSc) — (So)(Se))?
G=1

1

T(C- e ™ ©

for T approaching T, from above. The quantity W is the
inverse of the SG correlation length

174407-2



FINITE-SIZE SCALING OF THE DE ALMEIDA-...

¥ =— lim l1n(<SOSG> —(SHSN)?

G—»ooG
G
1 u, ., 2
=— lim —In]] (J—3—1> . (7)
G—» g=1 &ug_*_l*)g

From Eq. (6), we obtain the condition for the divergence of
XSG

(C=De V=1, (8)

giving the AT instability for infinitely large systems.!*!3

Three points are noteworthy. First, unlike the usual criti-
cal phenomena in finite dimensions, the AT instability on
random sparse networks is not accompanied by the diver-
gence of the correlation length: even at the critical point, the
correlation length is finite and equal to é&=W~'=1/In(C-1).
This is because the number of nodes at a distance G from
a fixed node in a random network grows exponentially fast
and proportionally to (C—1), which is not the case in mod-
els of finite dimensions. Second, for H=0, we can obtain
an analytical expression for xsg. Indeed, as long as
(C-1)tanh(B)?>< 1, a unique convergent solution of Eq. (3)
exists and is given by u;,;=0, which in turn implies
((SoS)—(So)(Sc))*=[tanh(B) ¢ and

1 + tanh(B)?

~1-(C-Dtanh(B)?’

XsG )
The above equation yields the critical temperature by setting
(C-1)tanh(B,)*>=1, and it shows that as T— T, from above,
Xsg diverges as O(|tf|™'), where t=(T-T,)/T,, in perfect
agreement with the known AT instability in the absence of an
external field.'®!” Third, one can still numerically assess Eq.
(8) in a practical time even in the presence of an external
field. For this, we utilize a property of BP operating on a
Bethe tree whereby the distributions of the message variables
for typical sample systems can be obtained as a set of solu-
tions of functional equations,

c-1 c-1
mw)=| I1 dulﬂT(u#)ﬁ[M —f(ﬁ],,@H+ > uﬂ> ] ,
u=l p=l

(10)

where f(x,y) =tanh™![tanh(x)tanh(y)]. Equation (10) can be
solved numerically with a sampling method in a reasonable
time.'* This implies that, for given G, a sample of (SyS;)
—(S0){S¢) can be generated by Eq. (5) from the following BP
dynamics:

ugag—lzf(ﬁ‘]g’ug+l~>g+rg)’ (]1)

where g=G,G-1,...,1,and J o and r, represent independent
random numbers, respectively, sampled from Eq. (2) and

from the distribution
c-2 Cc-2
u(r)= Hduﬂﬂ'(uﬂ)5<r—BH—Euﬂ). (12)
p=1 pu=1

Here, r, stands for the sum of messages from C—2 branches
that merge with the gth node on the path. The computational
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TABLE 1. The critical temperatures 7. for fixed connectivity 4
and four different external fields H.

H 0.0 0.1 0.2 0.3
T. 1.51865 1.3053 1.1808 1.0770

cost of this evaluation scales as O(G) per sample, which is
computationally feasible. Therefore, for fixed G, one can nu-
merically evaluate ((SyS¢)—(So){Ss))* by using the sampling
stochastic process of Egs. (11) and (12) many times. Esti-
mates for several G can be then interpolated with an appro-
priate polynomial in 1/G. This makes it possible to practi-
cally compute Eq. (7) by extrapolation of 1/G—0 in the
fitted polynomial. Table I lists estimates of 7, for H=0, 0.1,
0.2, and 0.3 for the case of C=4. The values for H+# 0 were
evaluated by extrapolating fourth-degree polynomials fitted
to data of G=1,2,...,20 that were computed from 107 sam-
plings. T.=1.5187... for H=0 can be obtained by solving
3 tanh?(1/T,)=1. W varies linearly with respect to ¢ around
the critical temperature 7. This implies that ygg scales as
O(t™") close to T, in the limit of N — .

We also checked that the method for computing the AT
line is equivalent to the method based on perturbing the BP
messages and then observing the subsequent evolution of the
perturbation, the critical temperature being defined as the
lowest temperature such that the perturbation does not grow
under BP iteration.'®

Note that although the graph is regular, i.e., all the verti-
ces are equivalent, the presence of a uniform field produces
many heterogeneities and does not allow for the existence of
a factorized solution (and this may eventually lead to larger
fluctuations in finite systems'?). The main effect is that the
two-spin correlation (S;5;)—(S;)(S;) fluctuates a lot between
different pairs of spins separated by the same distance. Fig-
ure 1 plots the rate function Q(v)=G~" In P(v) of the prob-
ability distribution P(v) for the logarithm of the correlation

v= lim In{({S5) ~ (S(S)?].
G-xG
Correlations contributing the most to the assessment of W=
—arg max[Q(v)+v] are marked by dots in Fig. 1 and are
clearly larger than the most probable correlations corre-
sponding to the maximum of {}(v). This means that, as soon
as H+# 0, the long-range order in the model is produced es-
sentially by very few pairs of strongly correlated spins, while
the vast majority of pairs of spins remain uncorrelated.

B. Finite systems

So far, we have reviewed how T for the AT instability can
be evaluated by computing ysg in infinitely large random
sparse networks. However, xsg 1is intrinsically upper
bounded by N and never diverges as long as N is finite.
Therefore, we have to examine how the scenario in the pre-
vious section should be modified in finite systems so that we
can appropriately analyze data from numerical experiments.

A naive correction taking the finiteness of the system into
account can be made by truncating the summation of Eq. (6)
at a finite number G=G,,,,, which leads to
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FIG. 1. (Color online) Profiles of rate function Q(v) at the
AT criticality for several values of external field H in the case
of C=4. Values of the critical temperatures are shown in Table
I. In order to evaluate Q(v»), we first computed W(s)=
—limg_.(1/G)In({SyS5)—{(Sp){S;))* by extrapolating numerical
data for G=1,2,...,20 to G— . Applying a Legendre transforma-
tion to this function yields Q(v) as follows: v=—(d/ds)W¥(s) and
Q=-sv—VY(s), where () has been parametrized by a conjugate vari-
able s. For drawing the profiles shown in the figure, we numerically
evaluated ({(S;S5)—(So){S;))*>* based on 107 samples of Eq. (11)
and varied s in the range of —1 =s5=09. The profiles for H # 0 indi-
cate that the dominant values of v for the AT criticality (dots) are
considerably larger than the most probable values of v (crosses).
The physical implication of this is that the AT instability for H
#0 is induced by a small number of atypically large spin
correlations.

_ 1=[(C = 1)e ]
XsG 1-(C-1)eV ~

since G cannot tend to infinity when the system is finite.
Unfortunately, the following considerations indicate that
such a correction is not appropriate for describing the behav-
ior in the vicinity of T.. The right-hand side of Eq. (13) gives
Gax When the critical condition 1-(C—1)e™"—0 holds.
Gax grows monotonically as N increases. However, the
growth rate is only O(In N) since N ~ C(C—1)%max must hold
for satisfying the constraint concerning the number of nodes.
This rate is obviously too slow since numerical experiments
show that the ygg of finite systems grows as O(N'3) at the
critical condition, at least, for H=0.°

This discrepancy indicates that effects of self-interactions,
which are ignored in the Bethe tree approximation, must be
taken into account when evaluating the dependence of ygg
on the system size N in the vicinity of 7,. Unfortunately,
such an evaluation requires a complicated calculation and
still does not lead to an accurate expression in general.
Therefore, to avoid these technical difficulties, we shall em-
ploy a phenomenological derivation.

Consider the Hessian A=y~!, where y denotes a suscep-
tibility matrix with elements x;;=((S;S;)—(S)XS;)). As a
working hypothesis, we assume that the eigenvalues of A,
N =A,=...=\,, obey a continuous distribution p(\),
which behaves as

(13)

p()\) o ()\ - )\min)y’ (14)

close to the lower band edge A, for 7>T. and N— .

(&
Moreover, we shall assume for the moment that A, is not
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heavily modified by finite corrections. For H=0, an analysis
of random matrices of fixed weights, in conjunction with
Thouless-Anderson-Palmer theory,? implies that the distribu-
tion can be expressed as

1 NHC-DA’ - (A=)
27 CA’—(N=-wp?*C ~

PN AL ) = (15)
using certain parameters A and w,?® which supports y=1/2
for C=3. However, here, we do not exclude the possibility
that y may depend on T and H. Equation (14) provides an-
other expression of ysg,

N

1 -
XsG= _E )\kz_’ f
\

A2 p(N) NV (16)
Nk:l

min
as N—o. Assuming that xgg diverges as O(|¢|™!) at critical-
ity, Nyyin o £77) holds as T approaches 7, from above in the
limit of N— oo,

However, the statistical fluctuations of the eigenvalues are
not negligible around 7. for large but finite N. As a first
approximation, therefore, let us regard \; (k=1,2,...,N) as
ii.d. random variables extracted from p(\). Since \, is the
smallest value among the N i.i.d. random variables, the
theory of extreme value statistics?! indicates that magnitude
of the fluctuation of \; can be evaluated by a simple equa-
tion,

M
Nf d\p(\) ~ O(1), (17)
A

min

which yields a scaling relation \;— N\, N~"/0+),

Replacing \,,;, by its scaling relation in terms of /(=7
Eq. (17) leads to the following expression for the smallest
eigenvalue:

)\1 =A1tl/(l_7)+N_]/(]+y)§1
:N—l/(1+7)[Al(tN(l—y)/(H)’))l/(l—y) +&], (18)

where A; is a constant and &, is a random variable taking
values O(1). This derivation also indicates that A; can be
expressed similarly to Eq. (18) as long as k~ O(1). Accord-
ingly, all contributions to ygg from A\, with k~O(1) can be
summed together in a scaling relation like

1 _
_ E )\22 _ N(l—v)/(1+7)g(tN(1—7)/(1+7)),
NiZow

after being averaged with respect to the &. Here, g(x) is a
well-behaved function which returns O(1) constant for x=0
and decays polynomially as 1/x for x> 1.

The contribution from all larger eigenvalues, \; with k
~O(N), to xsg can be written in an integral form similar to
Eq. (16) by substituting the lower band edge A, With A,
+0(N_1/(1+7)),

= 2 N~ f dN2p()
M +0(N—l/(l+y))

# [ + O/
~ (NI 0y (19)
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In the last relation, we have used again the scaling relation
for Npin» and A(x) is another well-behaved function that is
proportional to x for |x|<<1 and converges to a certain con-
stant as x—o0. Combining the two contributions, we obtain
the finite-size scaling relation of ygg as

XsG = NV g (U= g =1 (o 1=/ (49))
:N(1_7)/(1+7)F(tN(l_W(l+7)), (20)

where F(x)=g(x)+h(x)/x. The properties of g(x) and A(x)
guarantee that F(0) is a finite constant and F(x)~1
+0(x7" for x>1.

For H=0 and C=3, y=1/2 yields the scaling law xgg
=N'"3F(tN'3). This relation was often assumed in earlier
studies on SG models of the mean-field type.”?>?3 However,
as far as the authors know, there has been no numerical vali-
dation of this relation, in particular, for the scaling exponent
with respect to t=|T—T,|/T,, even for the case of H=0. In
addition, there is no theoretical guarantee that y=1/2 always
holds for H>0 case. As there are only few analytical
schemes available for dealing with SG models of finite di-
mension, we need to build up a solid basis for numerical
studies. Circumstantially comparing the results of numerical
experiments and theoretical predictions of Egs. (6) and (20)
for the current system is a great step toward fulfilling this

purpose.
IV. NUMERICAL EXPERIMENTS

In order to verify the above-mentioned behavior around
the AT instability, we performed large numerical experiments
on systems with C=4 and sizes N=2°,2%,...,2!°, using the
replica exchange (parallel tempering) Markov chain Monte
Carlo (MC) method.?*? Apart from some test runs on small
systems with H=0, we ran extensive simulations on fields
H=0.1. 0.2, and 0.3 at, respectively, 33, 34, and 36 different
temperatures distributed around 7. For equilibrating the sys-
tems, we performed 22! MC sweeps (MCSs) and computed
thermal averages from 22! more MCSs after the equilibration
time. Equilibration was tested by comparing the averages
obtained by using half and one quarter of the total MCSs. To
accelerate equilibration, replicas of adjacent temperatures
were exchanged once every 30 MCSs. We simulated 16 000
samples for each size.

Figure 2 shows the results of runs with H=0. The spin-
glass susceptibility rescaled by a factor N™!/3 (corresponding
to y=1/2) nicely crosses at the critical temperature, as pre-
dicted analytically. The inset should show the scaling func-
tion (if finite-size effects were absent) but we can clearly see
that the data collapse is good only in the high temperature
(low B=T"") region.

Next, let us turn to the case of external fields. Expanding
(<SiSj>_<Si><Sj>)2 as

(S:S(SiS ;) = 2(S:SHS)(S;) + (Si)(S;HS:XS )

and using different real replicas for computing different ther-
mal averages at the same time, the above equation becomes

(S1S1S787) = 2(S!S1S7S7) + (S} S7S;S]

iV iPjRiNj [l o R WA

we can write the spin-glass susceptibility xsg as
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FIG. 2. (Color online) Rescaled spin-glass susceptibility xsg
without external field.

Xs = NUgT,) = 2(q12q13) +{q13924))
=N(<CI%2>—2(412Q13>+<6]12>2), (21)

where qab=N‘12§ilS?Sﬁ’ is the overlap between two replicas.
Actually we computed xgg in Eq. (21) by measuring over-
laps from four different replicas a,b=1,2,3,4 evolving in-
dependently, in order to reduce correlations effects and the
noise-to-signal ratio.

Figure 3 compares the susceptibilities ysg measured nu-
merically on systems of sizes N=26.28 210 with the ones
computed analytically on the Bethe tree for H=0.1, 0.2, and
0.3. We see that the numerical data at high temperatures
converge nicely to the theoretical estimates on the Bethe tree.
Note that the diameter of the regular random graph with C
=4 is only In(N)/In(C—-1)==6.3 even for the case of N=2'0,
This indicates that accuracy of the Bethe approximation is
not determined only by the size of the graphs or, more pre-
cisely, by the length of the shortest loops. The relative
strength of the self-interactions compared to the size of the
graphs plays a key role in determining the accuracy. In other
words, even if the graph contains many loops, which may
significantly contribute to self-interaction terms (that are
missing on trees), the lack of correlation in the topology
makes the net contribution of these loops very small. The
final result is that the critical window size for the suscepti-
bilities scales as an inverse power of N rather than 1/In N.

Figure 3 (top) shows the analytical curves corresponding
to H=0 and H=0.1. One can see how the H=0.1 data closely
follow the H=0 curve as long as T=T,(H=0). Only below
T.(H=0) does the data change its curvature and acquire the
correct linear behavior in 7—T,.(H=0.1). Unfortunately, this
change happens at very large values of ysg, and thus, the
asymptotic scaling behavior may be difficult to observe. For
larger fields, H=0.2 and H=0.3, the influence of the H=0
fixed point is weaker and the theoretical susceptibility curves
are qualitatively similar to the H=0 curve, with the linear
part in 7—T, extending over a wider range. Nonetheless, for
these larger fields, the values of xgg are much smaller, and
thus, the asymptotic behavior may be difficult to observe in
this case as well.
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FIG. 3. (Color online) Inverse of the spin-glass susceptibility
versus temperature for fields H=0.1 (top), H=0.2 (middle), and H
=0.3 (bottom).

We tried to identify the critical point, T, from the finite-
size scaling of the numerical data, by using y=1/2 for any
field value. For this, we plotted N~'3yq versus temperature
and looked for a crossing point of data sets having different
N, which should correspond to 7, in the thermodynamic
limit. We see from Fig. 4 that finite-size corrections are
rather large, especially for H=0.1 and H=0.3, and change
sign depending on the value of the field. The insets in Fig. 4
zoom in on the region containing the crossings for all data, to
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FIG. 4. (Color online) Rescaled spin-glass susceptibility (as-
suming y=1/2) versus temperature for fields H=0.1 (top), H=0.2
(middle), and H=0.3 (bottom). Errors are smaller than the symbol
size.

reveal whether or not the crossings move toward the analyti-
cal T, value computed under the tree approximation. The
H=0.1 crossing points move in the right direction but they
do so very slowly; most probably due to the H=0 fixed point
at T.(H=0)=1.52 in the vicinity. The H=0.3 crossing points
also move toward T, and do so faster than those of H=0.1,
although they come from the low-temperature phase. The
H=0.2 crossing points are more complex, because the cross-
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ing point apparently moves leftward, away from the critical
point. The most natural explanation for this behavior is that
for larger system sizes the crossing point moves back again
toward T, as in the case of H=0.3 (where the crossing point
moves rightward).

Clearly in this model (and probably in any spin-glass
model in a field), there are finite-size effects with opposite
signs in competition, whose relative weights depend on the
value of the external field. This makes the extrapolation to
the thermodynamic limit extremely challenging, especially in
cases like the one in Fig. 4 (middle) where any reasonable
extrapolation would predict a critical temperature (if any)
much lower than the true one. This phenomenon must be
taken into account when one wants to exclude any phase
transition because of lack of a crossing point in the scaled
data. See, for example, Refs. 26 and 27 for a recent discus-
sion about this issue for mean-field and nonmean-field spin
glasses in an external field.

Despite the large finite-size effects, we have tried to scale
the data according to Eq. (20). The results are obviously very
poor and have been reported in Fig. 5 for the sake of com-
pleteness. Even optimizing over the choice of the y param-
eter (such as to superimpose the data from largest sizes at the
critical point) we get no data collapse at all (see main panels
in Fig. 5). The tentative scaling with y=1/2 is shown in the
insets of Fig. 5 and it is even worst.

We should note en passant that a much better scaling of
the numerical data can be obtained by using two different
exponents for the rescaling of the x and y axes. This scaling
would imply a divergence of the SG susceptibility in a field
as xsg|t| with a=1.6~1.7. However, given the strong
analytical arguments in favor of a=1, we have to conclude
that such an alternative scaling is only due to finite-size ef-
fects.

In order to examine the reason for the poor consistency
with the scaling law with y=1/2, i.e., xsg=N"3F(tN'?3), we
numerically evaluated the eigenvalues of the Hessian matrix
A= X‘l for systems of N =25 26 27 and 28. The reduction in
the system size is simply due to limited computational re-
sources; the eigenvalue analysis costs much more than the
evaluation of ygg.

Figures 6(a)-6(d) show the cumulative distributions
I g‘dtp(t) at the critical temperature T, which were numeri-
cally computed from data of 2000 sample systems. These
distributions should be proportional to (A\=\ ;) *Y— \!*7 in
the limit of N— o since A, vanishes at criticality. However,
finite-size corrections modify the behavior of the numerical
data in the vicinity of A=0. The envelopes of the cumulative
distributions for various N exhibit reasonable consistency
with the scaling form of y=1/2, which is represented by
straight lines in Fig. 6, for all cases of H=0, 0.1, 0.2, and 0.3.

Another possible source of inconsistency concerning the
finite-size scaling relation of xgg is the finite-size correction
to the lower band edge A ;,. The argument presented in Sec.
III B relies on the assumption that the smallest eigenvalue \,
behaves as ;=\, + NIV g = N"VI+V¢g at T, where &,
is a random variable independent of N. This means that the
distributions of \; for different NV collapse to a single curve
for fixed H after rescaling of \; — N"U+Y\| using an appro-
priate value of . Figure 7(a) shows that this holds to good
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FIG. 5. (Color online) “Tentative” scaling function for the spin-
glass susceptibility for fields H=0.1 (top), H=0.2 (middle), and H
=0.3 (bottom). In the main panels, the parameter y has been opti-
mized such as to superimpose the data from the largest sizes at the
critical point. In the insets, the value y=1/2 is used. Errors are
smaller than the symbol size.

accuracy for H=0 with y=0.598, which is reasonably close
to the theoretical prediction 1/2. However, Figs. 7(b)-7(d)
and Table II indicate that such a clear scaling relation does
not hold for H>0.

This is presumably because, in the presence of an external
field, the lower band edge A,,;, has strong finite-size correc-
tions and a non-negligible dependence on N. The critical
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FIG. 6. (Color online) Cumulative eigenvalue distribution
I ();dtp(t) at the critical temperature T, for (a) H=0, (b) H=0.1, (c)
H=0.2, and (d) H=0.3. From right to left, the curves correspond to
N=25,20 27 and 28. The straight lines stand for a scaling relation
of [Mdrp(t) = \'*7 with y=1/2.

temperature 7, is defined by the condition \;,=0 in the
limit of N— o, but for finite N in the presence of an external
field, it may not vanish due to a positive bias as A.;,
=B N7 even at T.. Such a bias could come out if statistical
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FIG. 7. (Color online) Scaling plots for the cumulative distribu-
tions of the smallest eigenvalue A\ at the critical temperatures 7. for
(a) H=0, (b) H=0.1, (¢) H=0.2, and (d) H=0.3. In each plot, four
curves correspond to N=2°,26,27 and 28. The plots are obtained
by rescaling the horizontal axis of the original ones (insets: N
=252 27 and 2% from right to left) as \; HN”(“”)\I, where
1/(1+ ) is determined on the basis of the arithmetic averages of \,
over 2000 samples. The estimates of 7y are 0.598, 0.545, 0.943, and
0.789 for H=0.0, 0.1, 0.2, and 0.3, respectively. Except for (a), the
data do not collapse to a single curve with good accuracy.
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TABLE II. Values of y estimated from the arithmetic averages
over 2000 samples of \; (\,) and those of A7 (7). Errors represent
the standard errors of the estimates. For H=0, the two estimates
coincide with each other up to the second digit, justifying a scaling
of the form \;=N""+Y¢, where & is a certain random variable
that is independent of N. On the other hand, they differ significantly
for H=0.1, 0.2, and 0.3, which implies that a scaling of that form
does not hold for H>0.

H 0 0.1 0.2 0.3
v (N) 0.598+0.012 0.545+0.010 0.943*+0.014 0.789+0.015
y ()\%) 0.599+0.013 0.589*0.021 1.139+0.001 0.730*=0.033

correlations among the eigenvalues A\;,\,,...,\y are not
negligible. Consequently, the expression for the smallest ei-
genvalue N\ at 7. should be modified at least as

)\1 = BIN_U+ glN_l/(H—’Y),

where random variable &; generally obeys a certain non-
trivial distribution whose mean is not guaranteed to vanish.”
Unless o and 1/(1+1v) are very different (or very similar),
both scaling terms will be needed for appropriately handling
data with N of several hundreds, which are the practical up-
per limits of the system size that we can deal with by stan-
dard computational resources to date. However, estimating
the two exponents simultaneously from data of only few val-
ues of N, is far from trivial in the presence of statistical
fluctuations.

The presence of strong finite-size corrections for A\ ;, and
the practical difficulty of identifying the scaling relation of
the corrections from numerical data mean that accurate nu-
merical evaluation of T, is very difficult in the presence of
external fields. Although we herein examined random sparse
networks, a similar issue should also affect other systems.
This may be a major reason why the AT line has not been
clearly observed in SG models of finite dimensions.

V. SUMMARY

In summary, we have explored a finite-size scaling rela-
tion of the AT instability criticality in random sparse net-
works analytically and numerically. The spin-glass suscepti-
bility ysg is a proper measure for signaling the AT criticality.
On the basis of the similarity between the random sparse
networks and the Bethe trees, we have derived a scheme for
evaluating xgg of infinitely large systems utilizing the belief
propagation algorithm, which makes it possible to evaluate
the critical temperature 7, with a numerically feasible proce-
dure. The singularity at T,, however, cannot be directly ob-
served in finite systems due to finite-size effects. Therefore,
we examined how the finite-size scaling relation is deter-
mined by the lower band-edge behavior of the Hessian ma-
trix.

The validity of the theoretical predictions was examined
in extensive numerical experiments. For sufficiently high
temperatures, the numerically computed values of ysg were
reasonably consistent with the theoretical predictions regard-
less of whether an external field was present. This result

PHYSICAL REVIEW B 81, 174407 (2010)
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FIG. 8. (Color online) Rescaled spin-glass susceptibility (as-
suming y=1/2 as in Fig. 4) versus temperature. The critical line
T.(H) is crossed perpendicularly. The finite-size effects are smaller
than in Fig. 4 (middle) but have the same qualitative behavior.

supports a widely believed equivalence between random
sparse networks and Bethe trees, implying that 7, is the same
in both systems. Accordingly, we investigated the consis-
tency between the numerical data and the theoretically ob-
tained finite-size scaling relation ysg=N“F(N“|t|). In the ab-
sence of an external field, the numerical data are in good
agreement with the scaling relation of w=1/3, as was be-
lieved in earlier studies. On the other hand, the consistency
of the data with respect to the scaling relation becomes very
poor in the presence of a field; the crossing points of
N~3ygg for N=2'° fluctuate around the theoretical values
of T. nonmonotonically with the strength of the field H, and
the data do not fit the scaling relation even if w is tuned.
Upon examining the eigenvalues of the Hessian matrix on
the basis of numerical simulations for N<28, we found that
the lower band edge of the eigenvalue distribution is very
sensitive to H at least for N of several hundreds. This might
be a major reason for the inconsistency with the theoretical
prediction of finite-size scaling.

Reference 9 suggested studying the AT instability along a
path in the (T, H) plane that perpendicularly crosses the criti-
cal line T.(H), which successfully led to accurate estimates
of the criticality based on data of N=2° in the case of C
=0: in this way, the finite-size effect should be reduced. We
followed such a suggestion and analyzed our data along the
path represented by the dashed line in the inset of Fig. 8,
which crosses the critical line (full line in the inset of Fig. 8)
perpendicularly at H=0.2. The resulting susceptibility, scaled
by the factor N3 as in Fig. 4, is shown in the main panel of
Fig. 8 and should be compared with the data reported in Fig.
4 (middle). It is interesting to note that finite-size effects are
indeed much reduced (roughly by a factor 4) but the quali-
tative behavior of the data is exactly the same as in the case
with H fixed. In particular, the crossing temperature moves
away from the critical temperature, thus giving too small a
T,. Certainly for larger sizes, the crossing temperature will
come back to T, but we have no numerical evidence of that
for sizes up to N=2'". The same behavior occurs if the data
is plotted against the field intensity, as in Fig. 4 of Ref. 9.
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In light of the present results on the existence of very
strong finite-size effects, we believe that the outcome of nu-
merical simulations of spin glasses in a field should be taken
with a lot of care. In particular, the observation that rescaled
susceptibilities do not cross in a wide temperature range? or
have a crossing point moving to low temperatures’ should
not be taken as a definite indication for the lack of a spin-
glass phase. In the present work we have shown that even in
mean-field models very strong and possibly nonmonotonic
corrections to finite-size scaling exist. In finite-dimensional
models these corrections are likely to become stronger and

PHYSICAL REVIEW B 81, 174407 (2010)

extrapolation from relatively small system sizes is risky.
Maybe the development of new data analysis methods that
may help to reduce finite-size effects (like the one in Ref. 27)
would be very welcome.
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