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We present a model for the effective magnetic properties of metamaterials composed of gyromagnetic
inclusions in which electromagnetic retardation is accounted for. The formalism is used to derive the effective
permeability tensor of axially magnetized ferromagnetic-metallic wires. The complex size-dependent gyromag-
netic response of a single wire subjected to an external dynamic magnetic field is first obtained and expressed
compactly in terms of renormalized permeability components. We then incorporate this response into an
extended Maxwell-Garnett homogenization procedure to yield the effective permeability tensor of the array. An
effective external susceptibility tensor, which includes dipolar interactions explicitly, is further introduced to
describe the ferromagnetic resonance response of finite-size arrays placed in microwave resonant cavities. We
examine the impact of electromagnetic retardation on the resonance, antiresonance, and linewidth and compare
the magnetic response expected for conducting and insulating magnetic wires. The conditions under which
arrays of ferromagnetic wires may exhibit a region of negative effective permeability are established and are
found to be dependent on both the intrinsic magnetic and size-dependent eddy-current losses, thus providing
useful guidelines for the design of magnetic metamaterials. The proposed formalism is sufficiently general to
be applied or extended to various systems of interest.
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I. INTRODUCTION

Electromagnetic metamaterials consist of effectively ho-
mogeneous artificial composite materials exhibiting response
functions and dispersion relations not readily accessible to
conventional materials. They are typically synthesized by
embedding conducting or high-permittivity subwavelength
inclusions of specific composition and geometry �e.g., size,
shape, spacing, and arrangement� into a host matrix. Their
development has sparked considerable interest in the last de-
cade, owing to the exciting possibilities they bring to micro-
wave and optical technologies.1–4 Recent proposals for the
use of ferromagnetic inclusions exhibiting simultaneous gy-
romagnetic and dispersive intrinsic magnetic responses at
microwave frequencies have opened the way to a new class
of metamaterials with magnetic-field-tunable effective con-
stitutive parameters.5–10 These magnetic metamaterials may
provide significant advantages over first-generation metama-
terials consisting of combined arrays of wires11,12 and split-
ring resonators,13,14 that is, nonmagnetic resonant metallic
inclusions with geometry-dependent parameters and limited
external tunability. In particular, composites based on
ferromagnetic-metallic wires have been the focus of several
studies due to their potential in microwave devices,15–20 elec-
tromagnetic wave absorbers,21,22 magneto-optical
applications,23,24 and as candidates for left-handed materials
with both negative effective permittivity and
permeability.25–30 Likewise, the microwave response of ar-
rays of interacting ferromagnetic nanowires has been studied
extensively and has been shown to support both a uniform
mode of precession31–35 and dipole-exchange spin-wave
excitations.36–39

Exploiting the full technological potential of these effec-
tive magnetic media requires theoretical models able to pre-

dict their macroscopic electromagnetic response. The main
challenge in developing such models consists in properly
incorporating the rich microwave dispersion relation exhib-
ited by ferromagnetic-metallic inclusions, which is governed
primarily by two distinct mechanisms: the gyromagnetic
resonant precession of the magnetization and the skin effect
�SE�. On the one hand, the intrinsic permeability is a gyro-
tropic tensor property with complex diagonal and off-
diagonal components exhibiting a resonant behavior with
frequency and static magnetic field. It is characterized by the
ferromagnetic resonance �FMR�, ferromagnetic antireso-
nance �FMAR�, and by a linewidth due to intrinsic magnetic
losses.40 On the other hand, irrespective of its intrinsic mag-
netic properties, a metallic body subjected to a high-
frequency magnetic field acquires a magnetization, owing to
the generation of eddy currents within the skin depth.41 This
leads to a kia-dependent diamagnetic response accompanied
by resistive losses, where ki is the wave vector inside the
individual inclusions of characteristic size a. In ferromag-
netic metals at microwave frequencies, the gyromagnetic na-
ture of the intrinsic permeability manifests itself in the dis-
persive behavior of ki, which in turn modifies the lossy
diamagnetic response set up by the eddy currents. Ferromag-
netic and metallic dispersions and dissipations �losses� are
thus closely linked, the coupling being strongest when the
FMR frequency approaches the frequency at which the skin
depth is comparable to the size of the inclusions. In this
regime, the scattering response of gyromagnetic-metallic in-
clusions is characterized by size-dependent FMR and FMAR
frequencies and by a linewidth determined by the combined
effect of magnetic and conduction losses.42,43

Several features and complications arising from this dual
ferromagnetic-metallic response have not been fully incorpo-
rated into existing models for the electromagnetic properties
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of magnetic metamaterials. The macroscopic behavior of a
composite material is usually related to the scattering re-
sponse of the individual inclusions by effective constitutive
parameters derived from effective-medium theories, most
notably the Maxwell-Garnett and the Bruggeman
formalisms.44 In their simplest and usual formulations, these
mixing rules are derived within the quasistatic �QS� approxi-
mation, which assumes that the time-varying fields inside the
inclusions are spatially uniform. In this context, various au-
thors have proposed expressions for the effective permeabil-
ity tensor �Jeff of composite materials made of gyromagnetic
inclusions excited in the uniform precession mode.8,16,27,45–47

However, the skin depth in metals may fall below 1 �m at
microwave frequencies, which leads to propagation and at-
tenuation of the fields throughout the volume of the conduc-
tor, thereby invalidating the use of QS theories.

A way to overcome this difficulty was first proposed by
Lewin for the case of a cubic lattice of spherical inclusions
with complex scalar permittivity and permeability.48 Based
on the Mie scattering theory, his work introduces
kia-dependent renormalized expressions for the permittivity
and permeability of the individual inclusions, which account
for retardation effects and yield compact Maxwell-Garnett-
type formulas for the effective electromagnetic properties of
the medium. This approach was subsequently extended by
Khizhnyak to scatterers of arbitrary shape49 and to two-
dimensional arrays of infinite rods50 but has not been gener-
alized to the case of inclusions with anisotropic �e.g., gyro-
tropic� properties. Nevertheless, Lewin’s theory has been
used over the last two decades to yield the effective perme-
ability of various systems formed of magnetic particles,51–60

thus incorporating electromagnetic retardation but neglecting
the gyromagnetic response of the individual inclusions. This
issue has been considered in a recent study of the effective
constitutive parameters of a magnetic metamaterial consist-
ing of insulating ferrimagnetic rods.10 However, although the
authors of Ref. 10 incorporate both the gyromagnetic and
kia-dependent responses of the individual rods, their model
results in an effective scalar permeability, which is restricted
to one specific mode of wave propagation within arrays of
infinite lateral extent. In particular, their implicit assumption
of unbounded samples, which is made in most existing theo-
ries for the electromagnetic response of magnetic composite
materials, prevents a proper account of dipolar interactions
created by surface poles in finite-size samples.

In this work, we propose a multiscale effective-medium
theory that addresses most of the difficulties mentioned
above, arising from the presence of interacting ferromagnetic
inclusions in a composite of finite extent. The formalism is
used to derive the effective permeability tensor �Jeff of arrays
of axially magnetized ferromagnetic-metallic wires, each
characterized by a gyromagnetic permeability tensor, under
circumstances where the skin effect in the individual wires
cannot be neglected. The emphasis is put on the influence of
electromagnetic retardation and of the geometrical param-
eters of the array on the FMR, FMAR, and linewidth of the
effective permeability spectrum. This allows us to study the
conditions leading to a region of negative effective perme-
ability in the interval between the FMR and FMAR, which is
required for left-handed materials. We also examine the

trade-off between the design flexibility permitted by
ferromagnetic-metallic inclusions and the limitations im-
posed by their intrinsic losses.

The paper is structured as follows. Section II establishes
the electromagnetic response of a single ferromagnetic-
metallic wire described by the gyromagnetic permeability
tensor �Jw with diagonal and off-diagonal components � and
�t and intrinsic magnetic losses accounted for by a phenom-
enological Gilbert damping term. We consider the scattering
by an axially magnetized wire of radius a excited by a plane
wave with both its wave vector and magnetic-field compo-
nent oriented transverse to the wire axis. Introducing the
size-dependent external susceptibility tensor �Jw allows us to
express the field scattered by the wire as a two-dimensional
dipolar field. A key result of the paper is Eq. �26� for the
diagonal and off-diagonal components �̃ and �̃t of �Jw, which
have a compact form in terms of kwa-dependent renormal-
ized permeability components �̃ and �̃t, where kw is the
wave vector inside the wire. Our approach thus extends
Lewin’s theory to cylindrical inclusions with a gyromagnetic
permeability tensor and recovers several known results in the
limits of weak and strong skin effect.

In Sec. III, we incorporate our expression for �Jw into the
Maxwell-Garnett homogenization procedure, in order to de-
rive the effective permeability tensor �Jeff of the wire array
�Eq. �50��. Our expression for �Jeff describes the effective
magnetic properties of the array and accounts for the gyro-
tropic and lossy response of the wires, including skin effect,
as well as for the influence of the geometrical parameters on
the intrawire shape demagnetizing and static interwire dipo-
lar interactions. The FMR response of a finite-size array is
obtained next in Sec. IV. There, we introduce the effective
external susceptibility tensor �Jeff, to be distinguished from
the effective permeability �Jeff, along with an effective de-

magnetizing tensor NJeff related to the formalism used in Ref.
35 and based on an explicit account of dipolar interactions.

Section V presents theoretical results of our model and a
discussion of the dependence of the magnetic response of the
wire on kwa, as well as on the dielectric nature of the wire
�conducting or insulating�. The effective permeability of an
array of ferromagnetic wires is also studied, with particular
emphasis on the possibility of obtaining a negative response.
Finally, Sec. VI outlines the significance and limitations of
the present work, suggests some possible extensions of the
theory and summarizes our main results.

II. DYNAMIC RESPONSE OF A SINGLE
FERROMAGNETIC WIRE

The effective magnetic properties of an ensemble of in-
clusions, as derived from the homogenization procedure pre-
sented in Sec. III, is built upon the response of a single
inclusion, which is established in this section. Therefore, we
first consider a single ferromagnetic-metallic wire embedded
in a nonmagnetic dielectric matrix and subjected to a har-
monic electromagnetic plane wave of angular frequency � in
the microwave frequency range. The dynamic magnetization
response of the wire is investigated as a function of the in-
cident microwave magnetic field, under circumstances where

VINCENT BOUCHER AND DAVID MÉNARD PHYSICAL REVIEW B 81, 174404 �2010�

174404-2



electromagnetic retardation inside the wire plays a significant
role, so that the magnetic response exhibits nontrivial size
dependence.

A. Intrinsic electromagnetic response of a single ferromagnetic
wire

The isotropic local permittivity of the wire is given by
�w= i�w /�, where �w is the static Drude conductivity. This
expression thus ignores galvanomagnetic responses, such as
Hall effect and magnetoresistance, neglects displacement
currents compared to conduction currents, and assumes that
the Drude relaxation time ��1 /�. The large and imaginary
dielectric response leads to a finite penetration of the elec-
tromagnetic fields within the wire, which is characterized by
the nonmagnetic skin depth,

	w0 =� 2

��w�0
, �1�

where �0 is the permeability of free space.
Neglecting the exchange interaction and magnetocrystal-

line anisotropy, the intrinsic permeability tensor �Jw of the
wire establishes a local relation between the dynamic mag-
netic field and induction within the wire,

bw = �Jwhw. �2�

To obtain �Jw, we must solve the linearized Landau-Lifshitz-
Gilbert equation of motion for the magnetization Mw=Mw0
+mw of the wire, subject to the internal field Hw=Hw0+hw.
We assume that the dynamic components mw and hw have a
harmonic time dependence of the form e−i�t and are oriented
perpendicular to the static components Mw0=Msẑ and Hw0
=Hw0ẑ, where Ms is the saturation magnetization. This yields
the gyromagnetic permeability tensor40

�Jw = �0�IJ+ 
Jw� = � � − i�t 0

i�t � 0

0 0 �0
� , �3�

where IJ is the identity matrix, 
Jw is the intrinsic susceptibil-
ity tensor of the wire satisfying

mw = 
Jwhw �4�

and

� = �0
�H

� ��H
� + �M� − �2

��H
� �2 − �2 , �t = �0

�M�

��H
� �2 − �2 �5�

are the diagonal and off-diagonal components of �Jw, with

�H
� = �H − i�� = �0���Hw0 − i�� , �6�

�M = �0���Ms. �7�

Here, � is the Gilbert damping constant and −���=−g�B / is
the gyromagnetic ratio, where g is the spectroscopic splitting
factor, �B is the Bohr magneton, and  is the Planck constant
divided by 2�. The effect of neglecting the exchange inter-
action and magnetocrystalline anisotropy will be discussed
and justified in Sec. VI.

The intrinsic tensor �Jw in Eq. �3� yields the magnetic
response of the material to the internal field, regardless of the
shape and size of the sample. The complex components �
and �t depend on the value of the saturation magnetization
Ms and account for magnetic losses via the phenomenologi-
cal Gilbert damping constant �. They exhibit a resonant de-
pendence on frequency and static magnetic field, with a pole
and a zero corresponding to the FMR and FMAR frequen-
cies, respectively. The magnetic response for some particular
experimental configuration is generally obtained by using �Jw
in Maxwell’s equations and by solving the appropriate
boundary-value problem.

B. External magnetic response of a single ferromagnetic wire

Consider now that the ferromagnetic wire is subjected to a
uniform local dynamic magnetic field hloc, such as that pro-
duced in a microwave resonant cavity. In FMR experiments
involving a sufficiently small wire, perturbation theory is as-
sumed to hold.40 In such a case, the quantity proportional to
the measured shifts in resonance frequency and quality factor
due to the response of the sample is the external susceptibil-
ity tensor �Jw,40,61 defined here as

	mw
 = �Jwhloc, �8�

where 	mw
 is the volume average of the nonuniform mag-
netization of the wire and hloc is the uniform local field im-
posed on the wire �e.g., the field of an unperturbed cavity
mode�. Note that the external susceptibility tensor is directly
related to the polarizability tensor �Jw of the wire of volume
Vw and magnetic dipolar moment Vw	mw
=�Jwhloc and thus
corresponds to the magnetic polarizability per unit volume of
the wire.

The external susceptibility tensor depends on the intrinsic
permeability tensor �Jw as well as the shape, size, and orien-
tation of the sample with respect to the exciting field hloc. In
the most general case, a closed-form analytical solution for
�Jw is not possible. However, depending on the importance of
electromagnetic propagation effects inside and outside the
wire, we may obtain approximate solutions, corresponding to
the three regimes of operation illustrated in Fig. 1�a�: QS,
extended quasistatic �EQS�, and SE.

The QS approximation assumes that both the dynamic
fields inside and outside the wire remain uniform over the
scale of its radius,62,63 corresponding to the conditions

�km�a� 1, �9�

�kw�a� 1, �10�

where km and kw are the wave vectors in the matrix and in the
wire of radius a, respectively. The external susceptibility ten-
sor then satisfies Eq. �8� in the limit 	mw
=mw, which cor-
responds to uniform-mode oscillations in small ellipsoidal
samples.40 In this limit, also referred to as the Rayleigh
limit,44 the size-independent dynamic magnetic response is
determined solely by the intrinsic permeability �Jw and by the
shape of the wire,64 the latter being accounted for by the

demagnetizing tensor NJw, defined below in Eq. �31�.
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The condition �km�a�1 is easily satisfied over the ranges
of frequency �1–100 GHz� and wire radius �0.01–100 �m�
considered in this work. Henceforth, we will assume that the
local field hloc imposed on the wire is uniform and thus that
Eq. �9� is always fulfilled. However, Eq. �10�, which implies
a uniform field inside the wire, represents a much more strin-
gent requirement for ferromagnetic-metallic wires. Indeed,
the large imaginary permittivity and the enhancement of the
permeability near the FMR frequency lead to electromag-
netic propagation with �kw�� �km� and to a finite penetration
depth 	w�1 / Im�kw� of the fields. Further, when the skin
depth is such that the condition �kw�a�1 also holds, the dy-
namic fields remain confined at the wire surface and the SE
limit is reached, which is characterized, as the QS limit, by
size-independent FMR parameters. However, there exists a
range for a in which neither �kw�a�1 nor �kw�a�1 are satis-
fied so that the external magnetic response depends nontrivi-
ally on the product kwa and thus on the size of the wire.42,43

This unrestricted case will hereafter be designated as the
EQS regime.65

In this work, the EQS regime represents the most general
situation, which encompasses the QS and SE approximations
as limiting cases. We also emphasize that the extended qua-
sistatic terminology can be misleading, as no restriction is
imposed on the value of �kw�a. It thus constitutes a fully
dynamical calculation of the internal fields, which only as-
sumes that the external field hloc incident on the wire is uni-
form.

C. Plane-wave scattering response in the extended quasistatic
regime

We now treat the scattering of a plane wave by the axially
magnetized ferromagnetic wire embedded in an isotropic
matrix of permittivity �m and permeability �m=�0. The scat-
tering configuration is shown in Fig. 1�b�. The wire of diam-
eter d=2a and length L �assumed to be infinite in the scat-

tering problem� is centered at the origin of both a rectangular
�x ,y ,z� and a cylindrical �� ,� ,z� coordinate systems, with
its axis parallel to the z axis. For a long wire with negligible
axial demagnetizing field, the external static field Hext0
=Hext0ẑ is equal to the internal static field Hw0.

The incident wave travels in the +x direction with angular
frequency � and field components

eloc = eloc0ei�kmx−�t�ẑ , �11�

hloc = −
eloc0

�m
ei�kmx−�t�ŷ = − hloc0ei�kmx−�t�ŷ , �12�

where km=���m�0 and �m=��0 /�m are the wave vector and
wave impedance in the matrix. Upon reaching the wire, the
incident wave is partly reflected and partly transmitted ac-
cording to the boundary conditions imposed by Maxwell’s
equations at the wire surface �=a. The scattered wave has
wave vector km while the transmitted wave propagates radi-
ally inside the wire, perpendicular to the direction of static
magnetization, with wave vector kw and wave impedance �w
given by

kw = ���w�� = �1 + i

	w0
����

�0
, �13�

�w =���

�w
= � 1 − i

�w	w0
����

�0
, �14�

where

�� =
�2 − �t

2

�
= �0

��H
� + �M�2 − �2

�H
� ��H

� + �M� − �2 �15�

is the effective scalar permeability corresponding to this
magnetic mode. The scattered and transmitted magnetic
fields are both polarized transverse to the wire axis and can
be written as infinite sums of orthogonal cylindrical modes
with amplitude coefficients an and bn, respectively. The treat-
ment which yields an and bn is straightforward and is pre-
sented in Appendix A. Our analysis of the scattering problem
draws from earlier studies of FMR in wires under conditions
of arbitrary skin effect,42,43 which we expand by deriving
compact and explicit expressions for the diagonal and off-
diagonal components of the external susceptibility tensor �Jw
of the wire.

Under our assumption that �km�a�1 holds the coefficients
of orders n=0 and �1 dominate the scattering response42 so
that the main contribution to the scattered wave is the in-
duced dipolar response of the wire. The relative importance
of the corresponding modes n=0 and n=�1 is governed by
the experimental configuration of the exciting field hloc.

43

In the context of FMR cavity measurements with the wire
located at a point of zero electric field and at a maximum of
the microwave magnetic field, which is linearly polarized
transverse to the wire axis, the mode n=�1 is excited pre-
dominantly so that only the coefficients a�1 and b�1 need to
be retained. In contrast, when the wire axis is parallel to the
microwave electric field, in a region of zero magnetic field,
the mode n=0 is excited by the circumferential magnetic

(a)

φ

ρ
y

x

a z

Scattered wave

Incident plane waveeloc

hloc

escat

hscat

hw

ew

Transmitted
wave kw

km

Wire

Matrix

(b)

km

Ms,

δw

εw

d = 2a

µ0

εm

|km| a � 1
All cases

Hext0

µw
↔

|kw| a � 1
SE limit

QS limit
|kw| a � 1

EQS regime
|kw| a
unrestricted

FIG. 1. �a� Schematic representation of the different levels of
approximation describing the response of a ferromagnetic wire sub-
jected to a uniform ��km�a�1� time-varying magnetic field: QS
limit with �kw�a�1, EQS regime with �kw�a unrestricted, and SE
limit with �kw�a�1. �b� Definition of the coordinate systems and
field parameters related to the problem of the scattering of a plane
wave by a ferromagnetic-metallic wire.
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field induced by the resulting electric current. This corre-
sponds to the longitudinal magnetoimpedance
configuration.66 Finally, when the magnetic mode propagates
in a transmission line configuration in which the electric and
magnetic fields imposed on the wire are simultaneously non-
zero, then both the n=0 and n=�1 modes are required in a
proper electromagnetic analysis.

D. Dynamic response to a transverse magnetic field:
Mode n= ±1

In this section, we derive the external susceptibility tensor
�Jw in the mode n=�1 of transverse magnetic excitation,
which describes the dipolar response of the wire with equiva-
lent magnetic dipole per unit volume 	mw
. It also constitutes
the relevant mode in the derivation of the effective
permeability,67 as presented in Sec. III for an array of ferro-
magnetic wires. Our goal is to express the components of �Jw
compactly in a form identical to that valid in the QS
limit.40,68 The procedure will consist in defining the
kwa-dependent renormalized permeability components �̃ and
�̃t, then substituting them in place of � and �t, wherever
these appear in the QS results.

Outside the wire, the field in the matrix has wave vector
km and is a superposition of the incident and scattered fields

hm = hloc + hscat. �16�

In the limits �km���1 and �km�a�1, all Bessel and Hankel
functions and their derivatives in Eqs. �A3� and �A5� with
n=�1 and argument km� or kma may be replaced by their
series expansions given in Appendix A, leading to approxi-
mate expressions for the incident and scattered fields.

First, the incident field acting on the wire reduces to

hloc = − hloc0e−i�tŷ = − hlocŷ , �17�

where the time dependence is now absorbed into hloc
=hloc0e−i�t. As expected, this mode corresponds to a uniform
local field, linearly polarized transverse to the wire axis,
which could have been obtained directly by setting km=0 in
Eq. �12�.

Second, the scattered field excited by hloc becomes

hscat =
2

��km��2 ��a1ei� − a−1e−i���̂ − i�a1ei� + a−1e−i���̂�hloc,

�18�

where the scattering coefficients

a�1 = i�� kma

2
�2 �̃2 − ��̃t��0�2

��̃ + �0�2 − �̃t
2 � �19�

are expressed compactly in terms of renormalized permeabil-
ity components, modified from their intrinsic values due to
electromagnetic retardation. We define these as

�̃ = � �1 − �2�G�kwa�
1 − �2G2�kwa� � , �20a�

�̃t = �t �1 − �2�G2�kwa�
1 − �2G2�kwa� � = �̃�G�kwa� , �20b�

where �=�t /�,

G�kwa� =
F�kwa�

1 − F�kwa�
, �21�

F�kwa� =
J1�kwa�

kwaJ0�kwa�
, �22�

and J0�kwa� and J1�kwa� are Bessel functions of the first kind.
The significance of �̃ and �̃t will become apparent below,
when we derive our expression for �Jw. As in Eq. �15�, we
may define the permeability component

�̃� =
�̃2 − �̃t

2

�̃
= ��G�kwa� , �23�

which has a simpler form than �̃ and �̃t since it is �� that
enters kw and �w, and thus that governs wave propagation
inside the wire.

Now, based on the fact that the local field excites a dipolar
response from the wire,65,69 the EQS scattered field in Eq.
�18� can also be written as the two-dimensional dipolar field
generated by a point dipole at the origin, with equivalent
magnetic moment per unit volume 	mw
. This yields

hscat =
a2

2�2 �2�	mw
 · �̂��̂ − 	mw
�

=
a2

2�2 �2��Jwhloc · �̂��̂ − �Jwhloc� . �24�

The second line of Eq. �24� follows from Eq. �8� and indi-
cates that the scattered field is related to the incident field
hloc by the external susceptibility tensor �Jw.

Finally, by rearranging Eq. �18� in a form identical to Eq.
�24�, we find by identification the external susceptibility ten-
sor of the wire,

�Jw = � �̃ − i�̃t 0

i�̃t �̃ 0

0 0 0
� , �25�

which is a gyrotropic tensor with diagonal and off-diagonal
components expressed in terms of the renormalized perme-
ability components �̃ and �̃t as

�̃ =
2��̃2 − �̃t

2 − �0
2�

��̃ + �0�2 − �̃t
2 , �̃t =

4�0�̃t

��̃ + �0�2 − �̃t
2 . �26�

Equations �25� and �26� constitute an important result of
this work. They describe the complex and tensorial
kwa-dependent magnetization response of an axially magne-
tized metallic wire subjected to a transverse and uniform
time-varying magnetic field. The treatment of electromag-
netic retardation effects in the EQS regime is greatly simpli-
fied by our definitions for �̃ and �̃t, which yield compact
expressions for �̃ and �̃t, identical in form to the results valid
in the QS limit �see Eq. �28��. The derivation of the external
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susceptibility tensor �Jw is also a key step of our homogeni-
zation procedure, which leads to the effective permeability
tensor �Jeff, as derived in Sec. III.

The renormalized permeability components �̃ and �̃t in-
corporate, through the kwa-dependent factor G�kwa�, all elec-
tromagnetic propagation, attenuation, and size effects inside
the wire. Consequently, the EQS response of the wire, char-
acterized by the positions of the FMR and FMAR, as well as
by the width, shape, and amplitude of the absorption curve,
exhibits a nontrivial dependence on the product kwa and
hence will generally not follow conventional FMR relations.
In particular, the different contributions to the resonance
linewidth of �Jw are not easily distinguished in the EQS re-
gime since �̃ and �̃t depend explicitly on the complex wave
vector kw. In ferromagnetic metals, kw obeys a rather com-
plicated dispersion relation that accounts for both the reso-
nant behavior of the complex permeability �Jw and the skin
effect associated with the large conductivity �w. As a result,
the observed linewidth reflects both the intrinsic magnetic
losses due to Gilbert damping and those related to the eddy
currents generated within the skin depth.

E. Validation of the model in the quasistatic and skin effect
limits

In order to validate the general results presented in Sec.
II D, we show how Eq. �26� allows us to recover various
relations, which apply in the limits of weak and strong skin
effect.

1. Quasistatic limit

In the QS approximation, uniform-mode magnetization
oscillations are excited inside the wire and the fulfillment of
Eq. �10� leads to F�kwa��1 /2 and G�kwa��1. In such a
case, we have �̃=� and �̃t=�t so that we recover the known
QS size-independent expression for the external susceptibil-
ity tensor,68

mw = �Jwhloc = � � − i�t 0

i�t � 0

0 0 0
�hloc �27�

with components

� =
2��2 − �t

2 − �0
2�

�� + �0�2 − �t
2 =

�M��H
� + �M/2�

��H
� + �M/2�2 − �2 , �28a�

�t =
4�0�t

�� + �0�2 − �t
2 =

�M�

��H
� + �M/2�2 − �2 , �28b�

which, in the low-damping limit ��1, have a pole at

�r = �H +
�M

2
, �29�

corresponding to the uniform-mode FMR frequency pre-
dicted by Kittel’s formula for an axially magnetized infinite
cylinder.40 In the QS approximation, � and �t retain the
Lorentzian profile of � and �t and have a linewidth deter-

mined solely by the intrinsic magnetic losses due to Gilbert
damping.

An explicit tensorial relation between 
Jw and �Jw can be
established by working directly in the magnetostatic limit. In
such a case, the field inside the wire can be expressed as40

hw = hloc − NJwmw, �30�

where the demagnetizing field −NJwmw is due to the shape of
the wire and includes the demagnetizing tensor

NJw = �NIP
w 0 0

0 NIP
w 0

0 0 NOP
w � , �31�

with in-plane �IP� and out-of-plane �OP� demagnetizing fac-
tors NIP

w and NOP
w satisfying 2NIP

w +NOP
w =1.70 Note that the IP

and OP directions are defined in relation with the plane of a
wire array, as considered in Sec. III.

Then, using Eqs. �4� and �27�, we make the substitutions
hw=
Jw

−1mw and hloc=�Jw
−1mw in Eq. �30� and recover the

known QS tensorial relation between the intrinsic and exter-
nal susceptibility tensors,40

�Jw
−1 = 
Jw

−1 + NJw. �32�

Equation �32� indicates that the QS external response of the
wire is size-independent and determined entirely by its in-

trinsic properties 
Jw and shape NJw. It may be used to yield
Eqs. �28a� and �28b� for the external susceptibility tensor
components of a long wire with NIP

w =1 /2 and NOP
w =0. Fi-

nally, we note that the QS regime correctly describes the
FMR behavior expected for ferromagnetic-metallic nano-
wires with a�100 nm.31,35

2. Skin effect limit

In the opposite limit of strong skin effect, the condition
�kw�a�1 holds and the ratio of Bessel functions
J1�kwa� /J0�kwa� tends asymptotically to i. As a result, the
renormalization factors F�kwa� and G�kwa� reduce to i /kwa
so that their real and imaginary parts are both much smaller
than 1. The renormalized permeability components are then
well approximated by

�̃�
i��1 − �2�

kwa
=

i��

kwa
, �33a�

�̃t �
− �t�1 − �2�

�kwa�2 = −
���

�kwa�2 , �33b�

where ��=��1−�2� follows from Eq. �15�. Equations �33a�
and �33b� yield �̃t��i� /kwa��̃, from which we deduce that
�̃��̃t. Hence, the inequality �̃��̃t also holds so that the
tensor �Jw essentially reduces to the scalar quantity �̃. From
Eq. �26�, we find

�̃�
2��̃ − �0�
��̃ + �0�

� − 2�1 − 2
�̃

�0
� , �34�

where the condition �̃��0 was invoked to yield the right-
hand side of Eq. �34�. Equation �13� can be then used to
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write Eq. �33a� in terms of 	w0, which we substitute into Eq.
�34� to yield

�̃� − 21 − �1 + i�
	w0

a
���

�0
� , �35�

where the second term on the right-hand side is much
smaller than 1. Note that for a nonmagnetic cylindrical con-
ductor, we have ��=�0 and Eq. �35� simplifies to the known
result �̃�−2�1− �1+ i�	w0 /a���−1/2 �e.g., see Ref. 41�.

Alternatively, combining Eqs. �13� and �14� allows us to
express �̃ in Eq. �33a� as �̃= i�w /�a. Inserting this result
into Eq. �34�, we recover the SE expression for �̃ derived in
Ref. 42,

�̃� − 2�1 −
2i

kma

�w

�m
� . �36�

Equation �36� shows that the magnetization response in the
SE limit essentially follows that of the wire surface imped-
ance �w, which in our case can be written as

�w =���

�w
=��0

�w
 ��H

� + �M�2 − �2

�H
� ��H

� + �M� − �2�1/2

�37�

and corresponds to an intrinsic, size-independent quantity.
The SE limit applies well to the study of metallic microwires
with radius on the order of 100 �m.71 The pole and zero of
�w coincide with the FMR and FMAR frequencies of �̃, re-
spectively. In the limit ��1, we find

�r = ��H��H + �M� , �38�

�ar = �H + �M . �39�

In the SE limit, the FMR frequency �r thus corresponds to
that of parallel resonance in metals in which the wave vector
is perpendicular to the direction of steady magnetization.40

Equation �36� also exhibits the FMAR phenomenon at
�ar, where the real part of the surface impedance �w reaches
a minimum, corresponding to a vanishing average magnetic
induction within the wire. Following Faraday’s and Ohm’s
laws, the induced eddy currents and corresponding losses
will then be strongly reduced, leading to a significant en-
hancement of the skin depth and to a minimum in the ab-
sorption, governed by Im��̃�. Note that the FMAR is not
observed in the QS limit since in this case the skin depth is
always larger than the wire radius. Consequently, eddy-
current losses remain negligible in all cases and the absorp-
tion curve does not exhibit a local minimum.

For a perfectly conducting wire ��w→��, the surface im-
pedance �w tends to 0 and the SE external susceptibility fur-
ther reduces to �̃=−2. In this case, a conducting wire placed
in a high-frequency magnetic field behaves as a perfectly
diamagnetic �i.e., superconducting� body with a static perme-
ability of zero subjected to a steady magnetic field.41 Indeed,
substituting �=0 �along with �t=0� into Eq. �28a� yields
�=−2 for the QS external susceptibility of a superconduct-
ing wire placed in a transverse magnetic field, which is iden-
tical to the perfectly conducting SE limit of Eq. �36�.

In summary, the QS and SE limits of the general EQS
response are characterized by size-independent FMR param-
eters. In particular, while the linewidth of the external sus-
ceptibility is governed by the Gilbert parameter � in the QS
case �smaller diameters�, it is essentially related to the real
part of the surface impedance �w in the SE limit �larger di-
ameters�. Between these two limiting cases, the general EQS
expressions must be used and lead to size-dependent FMR
properties.

III. DYNAMIC RESPONSE OF AN ARRAY OF
FERROMAGNETIC WIRES

In this section, we present our derivation of the EQS ef-
fective permeability tensor �Jeff of arrays of axially magne-
tized ferromagnetic wires, incorporating both the gyromag-
netic and kwa-dependent responses of the individual wires.
Our multiscale theoretical approach has so far considered
two hierarchical levels �i.e., intrinsic and external� to de-
scribe the response of a single wire. Each level was associ-
ated with a susceptibility tensor connecting the dynamic
magnetization of the wire to a specific magnetic field. The
intrinsic susceptibility 
Jw depends on the wire composition
and accounts for the response of the wire magnetization to
the internal field �Eq. �4��. The intrinsic response was then
incorporated into the scattering problem to derive the EQS
external susceptibility tensor �Jw of an axially magnetized
metallic wire of given size and shape, in order to relate the
average magnetization response to the magnetic field of the
incident wave �Eq. �8��.

In the following, we extend the distinction between intrin-
sic and external responses to an array of wires by introduc-
ing, in addition to the usual Maxwell-Garnett effective sus-
ceptibility tensor 
Jeff �Eq. �53��, the effective external
susceptibility tensor �Jeff �Eq. �58��. The former will be de-
rived in this section and represents an intrinsic bulk property
relating the average magnetization and field inside the ho-
mogenized wire array, whereas the latter will be considered
in Sec. IV to describe uniform-mode magnetization oscilla-
tions in finite-size arrays. The susceptibility tensors and cor-
responding constitutive relations related to the four hierarchi-
cal levels considered in this paper are summarized in Table I.

A. Preliminary considerations

The interaction of electromagnetic waves with heteroge-
neous materials is commonly studied within the framework
of effective-medium theories. When the length of the wave
propagating within the composite material is much larger

TABLE I. Definition of the susceptibility tensors and associated
constitutive relations.

Susceptibility tensor Constitutive relation

Intrinsic 
Jw mw=
Jwhw

External �Jw 	mw
=�Jwhloc

Effective 
Jeff 	m
=
Jeff	h

Effective external �Jeff 	m
=�Jeffhext
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than the characteristic size a and separation D of the inclu-
sions, the medium can be treated as homogeneous and be
characterized by effective permeability and permittivity ten-
sors relating the average fields and inductions inside the ma-
terial,

	b
 = �Jeff	h
 , �40�

	d
 = �Jeff	e
 , �41�

where angular brackets denote appropriately defined spatial
averages of alternating field quantities.

The tensors �Jeff and �Jeff must be interpreted as intrinsic
properties of the composite material, which play the same
roles as those of �Jw and �Jw in the context of homogeneous
media. Inside the composite, the propagation of a plane wave
of the form ei�keff·r−�t� is then governed by macroscopic Max-
well’s equations, expressed in terms of �Jeff and �Jeff as

keff� 	h
 = − ��Jeff	e
 , �42a�

keff� 	e
 = ��Jeff	h
 , �42b�

where keff is the effective wave vector. Note that our defini-
tion for �Jeff includes the effective conductivity tensor of the
composite material. Combining the two Maxwell’s equations
leads to the dispersion relation ��keff� of the composite ma-
terial, the solutions of which are the wave vectors of the
propagating waves, expressed in terms of the components of
the effective permeability and permittivity tensors. These
may then be inserted into the appropriate boundary condi-
tions to relate the fields eext and hext of an incident wave to
the fields 	e
 and 	h
 inside the composite and to extract the
electromagnetic parameters of interest.

In the following, we derive analytical expressions for the
diagonal and off-diagonal components of �Jeff in the limits
�keff�D�1 and �keff�a�1. The main result is expressed in
terms of the EQS external susceptibility tensor �Jw of the
individual wires obtained in Sec. II, therefore incorporating
both their gyromagnetic and kwa-dependent responses. A
similar derivation for the effective permittivity �Jeff of arrays
of ferromagnetic wires will be presented elsewhere.

B. Effective permeability tensor

Consider an array of axially magnetized ferromagnetic-
metallic wires of diameter d=2a, length L�d, and interwire
distance D, embedded in the pores of a dielectric thin-film
matrix of permittivity �m, permeability �m=�0, thickness L,
and lateral extent 2R. The wires occupy a volume fraction
f = f0��a2 /D2� of the array, where f0 is a constant depending
on the spatial arrangement of the pores. To simplify the cal-
culations and with no loss of generality, we henceforth as-
sume that f0=1, corresponding to a square network of wires.
The magnetic response of the individual wires is accounted
for by the external susceptibility tensor �Jw given in Eq. �25�.
The axis of the wires and the plane of the array correspond to
the OP and IP directions, respectively. Schematic representa-
tions of the array and of the unit cell of size D containing a
wire of radius a at its center are shown in Figs. 2�a� and 2�b�,
respectively.

We wish to derive �Jeff in the general electromagnetic re-
gime, for which wave propagation is allowed inside the array
and no restriction is imposed on the value of �keff�R. First, we
suppose that the square unit cell in Fig. 2�b� may be replaced
by the equivalent circular unit cell shown in Fig. 2�c�, con-
sisting of a wire of radius a coated by a layer of matrix
material of outer radius b=D /�� so that the volume fraction
f =a2 /b2=�a2 /D2 remains unchanged. The wire axis defines
the z axis of both a rectangular �x ,y ,z� and a cylindrical
�� ,� ,z� coordinate systems. Further, we assume that this
equivalent unit cell is immersed into an effective medium
defined by the constitutive relation 	b
=�Jeff	h
 �Eq. �40��,
from which we aim to determine �Jeff. Introducing the circu-
lar unit cell allows us to simplify the analytical calculations
but requires that its field distribution does not differ signifi-
cantly from that of the square cell. This approach based on
an equivalent unit cell has been followed in recent studies to
yield the scalar effective EQS response of various magneto-
dielectric composites72 and photonic crystals10,73 within the
coherent-potential approximation.74

Here, an expression for the gyrotropic tensor �Jeff in terms
of �Jw will be obtained. Our homogenization procedure is
based on the satisfaction of the appropriate boundary condi-
tions on the magnetic field and induction at the interface �
=b between the equivalent unit cell and the effective me-
dium. Considering the cylindrical symmetry of the problem,
this implies that the conditions

	h
 · �̂ = hm · �̂ , �43a�

	b
 · �̂ = bm · �̂ �43b�

hold at �=b, where hm and bm are the field and induction in
the outer matrix layer of the equivalent unit cell, respec-
tively.

L

2R

(a)

(b) (c)|km|D � 1

Matrix

L

d = 2a

D

µm = µ0

bm = µ0hma

Wire a

b =
D√
π

D

z

y

x

ρ

φ

µw
↔

〈b〉 = µeff 〈h〉↔

Effective medium

↔µw

FIG. 2. �a� Schematic representation of the ferromagnetic wire
array and definition of the relevant geometrical parameters. �b�
Definition of the square unit cell of side D containing a wire of
radius a at its center. �c� Definition of the equivalent circular unit
cell of radius b=D /�� embedded in the effective medium and in-
troduced to derive the effective permeability tensor �Jeff. Note that
the origin of the coordinate systems in �c� coincides with the center
of the wire.
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Our procedure will consist in applying Eqs. �43a� and
�43b� at �=b and for different values of �, in order to ex-
press 	h
 and 	b
 in terms of the local field hloc acting on the
wire at the center of the unit cell �Eq. �17��. The resulting
expressions for 	h
 and 	b
 will then be substituted in Eq.
�40� to yield �Jeff.

The first step of the homogenization problem thus re-
quires one to relate the fields hm and bm in the matrix to the
local field hloc. In the limit �km�D�1, we may substitute Eqs.
�17� and �24� into Eq. �16� to yield the magnetic field in the
outer layer of matrix material

hm = hloc +
a2

2�2 �2��Jwhloc · �̂��̂ − �Jwhloc�

=hloc +
a2

2�2 �2��̂ � �̂� − IJ��Jwhloc, �44�

where the components of �Jw are given by Eq. �26� and
�̂ � �̂ corresponds to the dyadic product of �̂=cos �x̂
+sin �ŷ with itself. This leads to

�2��̂ � �̂� − IJ� = �cos 2� sin 2�

sin 2� − cos 2�
� , �45�

which can be substituted into Eq. �44� to yield explicit ex-
pressions for the x and y components of hm=hm,x�� ,��x̂
+hm,y�� ,��ŷ in terms of hloc=−hlocŷ. The magnetic induc-
tion in the matrix follows directly from bm=�0hm.

Then, we relate hm and bm to the average fields 	h
 and
	b
 by satisfying the boundary conditions for the continuity
of the tangential component of the magnetic field �Eq. �43a��
and the normal component of the magnetic induction �Eq.
�43b��. These requirements imply that the y component of
the magnetic field and the x component of the magnetic in-
duction are continuous at ��=b , �=0,��, leading to

	hy
 = hm,y = − �1 −
f�̃

2
�hloc, �46a�

	bx
 = bm,x = i�0� f�̃t

2
�hloc. �46b�

Likewise, at ��=b , �=�� /2�, the x component of the
magnetic field and the y component of the magnetic induc-
tion are continuous, which yields

	hx
 = hm,x = − i� f�̃t

2
�hloc, �47a�

	by
 = bm,y = − �0�1 +
f�̃

2
�hloc. �47b�

We must emphasize that the volume fraction f =a2 /b2 is in-
troduced into the boundary conditions by evaluating the term
a2 /�2 in hm and bm at �=b �see Eq. �44��.

Next, we combine Eqs. �46� and �47� to yield tensorial
expressions relating the average field 	h
 and induction 	b

to the local field hloc exciting the individual wires in the
array,

	h
 = �IJ− fNJw�Jw�hloc, �48�

	b
 = �0�IJ+ f�IJ− NJw��Jw�hloc, �49�

where NJw is given by Eq. �31� and has in-plane components
NIP

w =1 /2. Finally, substituting Eq. �48� into Eq. �40� and
comparing with Eq. �49� yield a Maxwell-Garnett-type ex-
pression for the EQS effective permeability tensor

�Jeff

�0
= IJ+ f��Jw

−1 − fNJw�−1. �50�

Straightforward calculations demonstrate that �Jeff retains the
gyrotropic nature of �Jw and can be put in the form

�Jeff = �0�IJ+ 
Jeff� = � �̃eff − i�̃eff,t 0

i�̃eff,t �̃eff 0

0 0 �0
� , �51�

with diagonal and off-diagonal components

�̃eff

�0
= 1 + 2f 2�̃ − f��̃2 − �̃t

2�
�f�̃ − 2�2 − �f�̃t�2� , �52a�

�̃eff,t

�0
=

4f�̃t

�f�̃ − 2�2 − �f�̃t�2 . �52b�

In Eq. �51�, we introduced the effective susceptibility tensor

Jeff, which satisfies

	m
 = 
Jeff	h
 = f��Jw
−1 − fNJw�−1	h
 �53�

and thus relates the average dynamic magnetic field 	h
 to
the average dynamic magnetization of the array 	m

= f	mw
, which is equal to the volume fraction times the
average magnetization of the individual wires.

The effective gyrotropic permeability tensor �Jeff accounts
for the EQS external susceptibility tensor �Jw of the wires,
including magnetic damping and electromagnetic retarda-

tion, as well as their shape NJw and volume fraction f . The
response also depends on the static magnetic field inside the
wires, which in an array has contributions from both the
external field Hext0 and dipolar interactions.35

C. Recovery of various expressions for the effective
permeability as particular cases

Our general result for �Jeff allows us to recover several
limiting results as particular cases. In Ref. 10, a model de-
scribing the EQS effective electromagnetic response of a
composite material consisting of insulating ferrimagnetic
rods described by the gyromagnetic permeability tensor of
Eqs. �3� and �5� was developed and lead to an effective iso-
tropic permeability, which can be recovered from our Eq.
�52� as follows:

�̃eff� =
�̃eff

2 − �̃eff,t
2

�̃eff

= �0
�f�̃ + 2�2 − �f�̃t�2

4 − f2��̃2 − �̃t
2�

. �54�

Direct calculations show that Eq. �54� corresponds exactly to
Eq. �13b� of Ref. 10. The effective permeability �̃eff� con-

EFFECTIVE MAGNETIC PROPERTIES OF ARRAYS OF… PHYSICAL REVIEW B 81, 174404 �2010�

174404-9



stitutes a particular combination of the components of �Jeff,
which characterizes wave propagation in the plane of an un-
bounded array of axially magnetized wires. However, in the
context of guided waves propagating in bounded
structures75,76 or FMR cavity measurements in finite-size ar-
rays �treated in Sec. IV�, one must consider the full gyrotro-
pic form of �Jeff in order to yield a complete description of
the magnetic response.

For wires with an isotropic permeability �, the external
susceptibility �̃=2��̃−�0� / ��̃+�0� reduces to a scalar quan-
tity with �̃=�G�kwa�. Then, Eq. �50� simplifies to

�̃eff

�0
=

2 + f�̃

2 − f�̃
=
�̃�1 + f� + �0�1 − f�
�̃�1 − f� + �0�1 + f�

�55�

and one recovers the EQS effective permeability of an array
of isotropic wires excited by a transverse dynamic magnetic
field,55,72,77,78 which was initially established in Ref. 50.

In the QS limit, the components of �Jw are given by Eqs.
�28a� and �28b�. Hence, using Eqs. �3� and �32�, allows us to
recover the known expression8,44,47

�Jeff

�0
= IJ+ f��Jw

�0
− IJ�−1

+ �1 − f�NJw�−1

. �56�

Finally, for isotropic wires in the QS limit, we find that
�̃=�=2��−�0� / ��+�0� and �̃eff=�eff so that Eq. �50� re-
duces to

�eff − �0

�eff + �0
= f
� − �0

� + �0
=

f�

2
�57�

and corresponds to the conventional forms of the Maxwell-
Garnett and Clausius-Mossotti formulas.

IV. EFFECTIVE EXTERNAL RESPONSE AND DIPOLAR
INTERACTIONS

Homogenization procedures leading to effective constitu-
tive parameters, such as described in Sec. III, assume that the
composite material is unbounded. The effect of surface poles
in finite-size samples is thus not yet accounted for. In the
most general situation, the effective permeability tensor �Jeff
defined in Eqs. �50�–�52� would enter the macroscopic Max-
well’s equations to describe the propagation of electromag-
netic waves of the form ei�keff·r−�t� inside the wire array, sub-
jected to the appropriate boundary conditions. Following up
on our multiscale approach, we could further define an effec-
tive external susceptibility tensor �Jeff, which would describe
the response of finite-size samples to an external �i.e., experi-
mentally controlled� uniform dynamic magnetic field. In-
deed, in such a case, the treatment of the general electromag-
netic problem simplifies considerably since the condition
�keff�R�1 holds and uniform oscillations of 	m
 are excited
in the composite. These requirements are usually fulfilled in
uniform-mode FMR measurements involving sufficiently
small wire arrays. Such experiments have proved extremely
useful in studying the effect of the interwire dipolar interac-
tions on the microwave response of arrays of ferromagnetic-
metallic nanowires.31–35

In this section, we demonstrate how the measured FMR
response can be properly characterized by the effective ex-
ternal susceptibility tensor �Jeff, along with an effective de-
magnetizing tensor. We also clarify the relations between de-
magnetizing tensors used in different FMR theories and
show how they arise in our formalism based on �Jeff.

A. Effective external susceptibility tensor

We consider the wire array of diameter 2R, thickness
L�R, and effective susceptibility tensor 
Jeff, as shown in
Fig. 2�a�. The array is subjected to a uniform time-varying
field hext, which excites uniform oscillations of the magneti-
zation 	m
 according to the constitutive relation

	m
 = �Jeffhext = � �̃eff − i�̃eff,t 0

i�̃eff,t �̃eff 0

0 0 0
�hext, �58�

where the effective external susceptibility �Jeff is a gyrotropic
tensor with diagonal and off-diagonal components �̃eff and
�̃eff,t, which connects the dynamic magnetization of the array
to the external field. We wish to establish a relation between
the effective external susceptibility �Jeff and the effective sus-
ceptibility 
Jeff derived in Sec. III. To do so, let us introduce

the effective demagnetizing tensor NJeff, such that Eq. �30�
can be generalized to the case of composite materials as

	h
 = hext − NJeff	m
 . �59�

This provides a link between the uniform time-varying field

	h
 inside the array and the external field hext. The tensor NJeff
accounts for surface poles at the boundaries of the finite-size
array and thus can be interpreted as a shape demagnetizing
tensor for the homogenized composite material. In Sec.
IV B, we will use dipolar interactions to derive an explicit

expression for NJeff and we will show how it is related to the
shape demagnetizing tensor of a thin disk of radius R and

thickness L. For the time being, let us just assume that NJeff
exists and fulfills Eq. �59�. Then, in a manner similar to the
derivation of Eq. �32�, we use Eqs. �53� and �58� to make the
substitutions 	h
=
Jeff

−1	m
 and hext=�Jeff
−1	m
 into Eq. �59�, re-

sulting in

�Jeff
−1 = 
Jeff

−1 + NJeff. �60�

This effective external susceptibility tensor constitutes the
relevant response function in uniform-mode FMR experi-
ments. Equation �60� emphasizes the importance to distin-
guish between 
Jeff and �Jeff. The former corresponds to the
magnetization response of the composite to the average in-
ternal field, regardless of the size and shape of the sample,
and enters the macroscopic Maxwell’s equations to describe
propagation of electromagnetic waves within the homog-
enized material. The latter represents the response to an ex-
ternal field in the limit �keff�R�1 and depends on the shape

of the specimen through the tensor NJeff. In particular, it is the
pole of �Jeff, rather than that of 
Jeff, that determines the FMR
parameters measured in microwave cavity experiments.
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B. Dipolar interactions

An expression for NJeff can be obtained by linking the
FMR response of the array of interacting wires to that of a
single wire, calculated in Sec. II. This requires an expression
for �Jeff in terms of �Jw, which we establish by combining
Eqs. �53� and �60� to yield

��Jeff

f
�−1

= �Jw
−1 + f�NJeff − NJw� , �61�

where the term f�NJeff−NJw� corresponds to the dynamic dipo-
lar interactions between the wires, as demonstrated below.
Since we are in the limit �keff�R�1, the local field hloc acting
on a given wire in the array is the sum the external field hext
and the dipolar interaction field hint created by all the other
wires. It can be written as

hloc = hext + hint = hext − NJ int	mw
 , �62�

where NJ int is the interaction tensor used in Ref. 35 to model
the QS angle-dependent FMR response of nanowire arrays,
including both intrawire and interwire dipolar interactions.

The out-of-plane �axial� component of NJ int is given by

NOP
int = f�

n=1

�
ns

�n2 + s2�3/2 , �63�

where s=L /2D is a normalized length parameter. The sum in
Eq. �63� depends on geometrical parameters only and tends
asymptotically to unity in the monopolar regime, defined by
the condition L�D. In such a case, NOP

int reduces to f and the
two in-plane components NIP

int tends to −f /2 since the inter-
action tensor has a trace of zero.35,79

Using Eqs. �8� and �58� to replace hloc=�Jw
−1	mw
 and

hext=�Jeff
−1	m
= f�Jeff

−1	mw
 in Eq. �62�, we obtain

��Jeff

f
�−1

= �Jw
−1 + NJ int. �64�

Equation �64� shows the effect of interwire dipolar interac-
tions in modifying the FMR response of an array of interact-
ing wires. Neglecting interwire interactions is equivalent to

setting NJ int=0 in Eq. �64�, which leads to the dilute response
�Jeff= f�Jw. In such a case, one would conclude that the FMR
frequency of the composite material is the same as that of the
individual inclusions. This is correct for dilute magnetic
composites.45 However, for relatively dense composite
materials,35 the interwire dipolar interactions will signifi-
cantly modify the FMR response and cannot be neglected.

Now, comparing Eqs. �61� and �64� leads to a definition
for the effective demagnetizing tensor of the array

NJeff = NJw + f−1NJ int �65�

in terms of the geometry-dependent internal tensors NJw and

NJ int. However, the form of Eqs. �59� and �60� suggests that

NJeff also represents the shape demagnetizing tensor of the
wire array. Hence, it is relevant to examine how Eq. �65� for

NJeff compares with the demagnetizing tensor NJd of a homo-

geneously magnetized disk with the shape of the wire array.
The OP demagnetizing factor NOP

d at the center of a circular
disk of radius R and thickness L is80

NOP
d = 1 −

l

�1 + l2�1/2 , �66�

where l=L /2R is the aspect ratio of the disk. The IP compo-
nents NIP

d can be obtained from the trace relation 2NIP
d

+NOP
d =1. Further, for a disk of infinite lateral extent, l tends

to 0, leading to NOP
d �1 and NIP

d �0, as expected for an infi-
nitely thin circular plate.40

Let us now demonstrate that for long wires �L�d� in the
monopolar regime �L�D�, Eq. �65� reduces simply to Eq.

�66�, that is, NJw+ f−1NJ int coincides with the shape demagne-

tizing tensor NJd of a thin disk with uniform average magne-
tization 	m
. First, for long wires, the shape demagnetizing

tensor NJw has IP and OP components NIP
w and NOP

w equal to
1/2 and 0, respectively. Then, for a finite wire array, the OP
component of the interaction tensor can be written as Eq.
�63� for the infinite case, minus the contribution from the
wires lying outside the finite array of radius R. At the center
of the array, this yields

NOP
int = �

n=1

�
fns

�n2 + s2�3/2 − �
n=nmax

�
fns

�n2 + s2�3/2 , �67�

where nmax=R /D is the number of wires on a line going
from the center to the edge of the array. In the monopolar
regime, the first term reduces to the porosity f . Further, we
assume that the wires beyond R are located sufficiently far
from the center of the array to be treated as continuous mag-
netization distribution. Then, we can transform the second
sum over n into an integral and obtain

NOP
int = f1 − �

nmax

� ns

�n2 + s2�3/2dn� = f1 −
l

�1 + l2�1/2� ,

�68�

where l=s /nmax=L /2R. For long wires with NOP
w =0, it fol-

lows that

NOP
eff = NOP

w + f−1NOP
int = 1 −

l

�1 + l2�1/2 , �69�

which, as expected, coincides with Eq. �66� for the OP de-
magnetizing factor at the center of a thin disk of radius R and
thickness L. The relation is also satisfied for the IP compo-
nents NIP

eff, which follow from the trace relations 2NIP
w +NOP

w

=1 and 2NIP
int+NOP

int =0. Likewise, for an infinite array, Eq.
�63� yields NOP

int = f and thus NIP
int=−f /2. This leads to NOP

eff

=1 and NIP
eff=0, which also coincide with the shape demag-

netizing factors NOP
d and NIP

d of an infinite thin disk.
Hence, in the limits L�d and L�D, Eq. �69� indicates

that our more general approach, which includes dipolar in-
teractions and leads to the effective demagnetizing tensor

NJeff of Eq. �65�, indeed reduces to a simple macroscopic
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formulation based on the shape demagnetizing tensor NJd of
Eq. �66�. In such a case, the FMR behavior of wire arrays

can be alternatively described by NJeff or NJd.

C. Quasistatic regime and effective demagnetizing tensors

Ferromagnetic resonance studies of nanowire arrays usu-
ally fall in the limit �kw�a�1, corresponding to a QS re-
sponse of the individual wires.31–35 In this case, the compo-
nents of �Jeff reduce to �eff and �eff,t. Explicit expressions for
these can be obtained in the monopolar regime by substitut-
ing Eqs. �28a� and �28b� into Eq. �64�, resulting in

�eff =
f�M��H

� + �1 − f��M/2�
��H

� + �1 − f��M/2�2 − �2 , �70a�

�eff,t =
f�M�

��H
� + �1 − f��M/2�2 − �2 . �70b�

In the low-damping limit, these components have a pole at

�r,eff = �H +
�M

2
�1 − f� = �0 +

�M

2
�1 − 3f� , �71�

corresponding to the uniform-mode FMR frequency of an
ensemble of interacting wires in the QS limit. In Eq. �71�,
�H=�0− f�M is the static field inside the wires in units of
angular frequency, where �0=�0���Hext0 accounts for the ex-
ternally applied field and −f�M represents the axial interwire
dipolar field. This result was initially proposed in Ref. 31,
based on phenomenological arguments, and subsequently re-
covered from a formal expression for interwire
interactions.35

In Ref. 35, the total demagnetizing tensor NJ of the array,

including the interaction tensor NJ int, was expressed as

NJ = NJw + NJ int, �72�

implying that locally, the field hw inside the individual wires
differs from the external field hext imposed on the array due
to the intrawire and interwire dipolar interactions accounted

for by the tensors NJw and NJ int, respectively. Then, substitut-
ing Eq. �32� into Eq. �64� yields

��Jeff

f
�−1

= 
Jw
−1 + NJ , �73�

thereby indicating that in the QS limit, it is the demagnetiz-

ing tensor NJ that connects the intrinsic susceptibility 
Jw of
the individual wires to the effective external response �Jeff of
an array of interacting wires.

Alternatively, assuming that NJeff=NJd holds and combin-
ing Eqs. �65� and �72�, we obtain

NJ = �1 − f�NJw + fNJd, �74�

where the tensor NJ is now interpreted as a simple linear

interpolation between NJw and NJd, corresponding to a dilute
ensemble of noninteracting wires �when f =0� and to a ho-
mogeneously magnetized thin disk with the shape of the ar-
ray �when f =1�, respectively. In particular, at f =1 /3 we

have NJ= IJ/3 and Eq. �73� predicts an isotropic FMR re-
sponse of the array.31

Equation �74� was initially established in Ref. 81 within a
mean-field approach based on magnetostatic energy consid-
erations, in order to study FMR in particulate magnetic re-
cording tapes. This model has subsequently been applied or
extended to study various magnetic heterostructures.82–86

Again, when the length L of the wires is much larger than

both their diameter d and separation D �i.e., when NJeff=NJd�,
the macroscopic formulation for NJ leading to Eq. �74� be-
comes rigorously equivalent to our interaction approach, re-
sulting in Eq. �72�.

V. APPLICATION OF THE MODEL AND DISCUSSION

Having established the general formalism for the effective
magnetic response of composite materials based on ferro-
magnetic wires, we are now in a position to study how elec-
tromagnetic size effects associated with retardation modify
the magnetic properties of single and arrays of wires, as well
as to clarify the conditions for which the latter display a
region of negative effective permeability. The results of our
model are applied to Ni wires with representative intrinsic
properties, as given in Table II ��0 is the permittivity of free
space�. Unless otherwise stated, these parameters are used in
all the calculations presented below. Table II also provides
the properties of insulating yttrium iron garnet �YIG� wires,
which will be used in Sec. V B.

TABLE II. Intrinsic properties of Ni and YIG wires used in the calculations.

Property Symbol �units�

Wire material

Ni YIG

Saturation magnetization Ms �kA/m� 460 140

Spectroscopic splitting factor g 2.2 2

Gilbert damping constant � 0.03 0.005

Drude conductivity �w ��−1 m−1� 1.5�107

Relative intrinsic permittivity �w /�0 i�w /��0 15�1+0.001i�
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A. Influence of electromagnetic size effects on the FMR
parameters of a single Ni wire

Electromagnetic size effects associated with the screening
and damping of eddy currents can significantly modify the
dispersion and dissipation characteristics of ferromagnetic-
metallic wires. To illustrate this, we first consider a Ni wire
of radius a located in free space, brought to saturation by an
axial static magnetic field Hext0, and subjected to a transverse
dynamic magnetic field hloc with a frequency of � /2�
=24 GHz �corresponding to a nonmagnetic skin depth 	w0
=0.84 �m�. The microwave magnetic field excites the wire
in the mode n=�1, leading to a magnetization response
	mw
=�Jwhloc governed by Eqs. �25� and �26�. Experimen-
tally, this is realized by placing the wire in a resonant cavity
with its axis perpendicular to the linearly polarized micro-
wave magnetic field of an unperturbed cavity mode and by
measuring the power absorbed by the sample as a function of
the applied static field.42,43,87 In this configuration and as-
suming that perturbation theory holds, the measured complex
frequency shift of the cavity is proportional to the diagonal
component �̃ of the external susceptibility tensor,40 the
imaginary part of which reflects the absorption of electro-
magnetic waves by the sample.

Figure 3 shows the imaginary part of �̃, calculated using
Eq. �26�, as a function of the applied static magnetic field
�100–700 kA/m� for a single Ni wire of varied radius ranging
from 10 nm to 100 �m. The theoretical spectra illustrate
how skin effect modifies the FMR and FMAR conditions, as
well as the width, shape, and amplitude of the absorption
curve �note that the scale for Im��̃� is logarithmic�. The gen-
eral trends are further summarized in Fig. 4, which shows the
dependence of the main FMR parameters on the normalized
radius a /	w0, extending between the size-independent limits
of weak �a /	w0�0.1� and strong �a /	w0�50� skin effect.

In the QS limit, the incident magnetic field penetrates the
entire wire and excites uniform oscillations of the magneti-

zation. The external susceptibility reduces to � given by Eq.
�28a� so that the FMR field satisfies Eq. �29� and no local
minimum is observed at the FMAR field. The resonance line-
width does not vary with a /	w0 and increases linearly with
the value of the Gilbert damping parameter, as shown in
Figs. 4�c� and 4�d�, respectively. In the SE limit, the screen-
ing effect due to eddy currents confines the interior fields
within the skin depth 	w�a. The external susceptibility �̃
reduces to Eq. �36� so that it is directly related to the surface
impedance �w of Eq. �37�, which accounts for both the me-
tallic and gyrotropic natures of the wire intrinsic properties.
In particular, the FMR and FMAR conditions satisfy Eqs.
�38� and �39�, respectively, while the absorption and line-
width are governed by the real part of �w.

Increasing a /	w0 in the intermediate regime between the
QS and SE limits progressively transforms the uniform reso-
nance mode into a surface mode, thereby introducing a non-
trivial kwa dependence to �̃, which strongly modifies the
FMR parameters. First, the absorption curve loses its sym-
metrical Lorentzian line shape and exhibits a strong reduc-
tion in amplitude �Fig. 3�. Then, as illustrated in Figs. 4�a�
and 4�b�, the FMR field increases from the uniform-mode
value of an axially magnetized cylinder to that of parallel
resonance in metals �Eqs. �29� and �38�, respectively� while
the FMAR manifests itself as a minimum in the absorption
curve, beginning at a /	w0�0.5 and rapidly increasing to the
field value satisfying Eq. �39�. Likewise, Fig. 3 shows that
the FMAR becomes clearly noticeable in the absorption
curve for a�10 �m. Further, the curves in Figs. 4�c� and
4�d� indicate that the linewidth reaches its maximum value
when 1�a /	w0�10, owing to the significant damping pro-
duced by the eddy currents generated inside the skin depth.
This contribution does not arise in the QS and SE limits. In
the former, the damping is governed by the intrinsic mag-

FIG. 3. Imaginary part of the diagonal component �̃ of the
external susceptibility tensor of the wire as a function of the applied
magnetic field, at 24 GHz, for a single Ni wire of varied radius
ranging from 10 nm to 100 �m. The curves are calculated using
Eq. �26� with the parameters given in Table II. The vertical dotted
lines indicate the fields satisfying the FMR condition in the QS
limit �Eq. �29�� and the FMR and FMAR conditions in the SE limit
�Eqs. �38� and �39�, respectively�.

FIG. 4. Dependence of the FMR parameters on the normalized
radius a /	w0 for a Ni wire at 24 GHz �	w0=0.84 �m�. �a� FMR
field, �b� FMAR field, and �c� resonance linewidth. Results are cal-
culated using Eq. �26� with the parameters given in Table II. The
values expected in the size-independent QS and SE limits are indi-
cated by the horizontal dotted lines. �d� The same as �c� but for four
different values of the Gilbert damping parameter �.
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netic losses and the screening effect of eddy currents is neg-
ligible while in the latter, the incident field hardly penetrates
into the volume of the conductor so that bulk eddy currents
are not involved in the absorption of electromagnetic
energy.88

The behavior of the FMR parameters in the transition re-
gime 1�a /	w0�10 can be interpreted on the basis that the
EQS external susceptibility �̃ becomes a complex
kwa-dependent function arising from the strong coupling be-
tween a volume mode and a surface mode, which have dif-
ferent FMR parameters but comparable and interrelated con-
tributions to the linewidth. As a result, the FMR parameters
also display some irregularities in the transition region, as
shown in Fig. 4 by the slight drop in the otherwise mono-
tonic increase in the FMR and FMAR fields and by the
double-peak structure in the linewidth, which was also pre-
dicted in Ref. 42. Finally, we must emphasize that the exact
values chosen for the properties Ms, g, �, and �w do not
significantly influence the general features of the external
susceptibility spectra, shown in Fig. 3.

B. Renormalized permeability of magnetic wires:
Comparison between conductors and insulators

Our general formalism, which has so far focused on con-
ducting wires, applies equally well to gyromagnetic insula-
tors �e.g., ferrites�, characterized by a permittivity �w and a
wave vector kw that are mostly real at microwave frequen-
cies. In this case, as will be examined below, the
kwa-dependent renormalized permeability exhibits a resonant
behavior and may become negative in certain frequency
ranges due to the excitation of magnetic dipole resonances
inside the individual wires. Recently, several
studies67,72,78,89–94 have proposed that such localized dipole
resonances in arrays of subwavelength high-permittivity in-
clusions may provide a route to achieve negative index
metamaterials with negative effective constitutive param-
eters. In this section, we examine the influence of the per-
mittivity �w on the kwa-dependent gyromagnetic response, by
comparing the renormalized permeability �̃�=��G�kwa�
�Eq. �23�� of two materials with similar gyromagnetic re-
sponses, but very distinct dielectric properties.

We consider a conducting Ni �a=2 �m� and an insulat-
ing YIG �a=2 mm� magnetic wires with intrinsic param-
eters given in Table II. For these parameters, the frequency at
which �kw�a�1 is close to the FMR frequency of �� �Eq.
�38�� for both materials. This results in a strong interaction
between the gyromagnetic and kwa-dependent responses and
thus in a substantial modification of �̃� compared to ��.
Figure 5 compares the frequency dependence �1–40 GHz� of
various permeability response functions of single Ni �left
panel� and YIG �right panel� wires at constant static mag-
netic field Hext0= 1

2 Ms applied parallel to the wire axis. First,
we show in Fig. 5�a� the spectra of the relative intrinsic
permeability component �� /�0 �Eq. �15��. The influence of
the wire intrinsic permittivity alone on the renormalized per-
meability is then examined in Fig. 5�b�, which shows
G�kw0a� for nonmagnetic wires with dielectric properties
identical to those of Ni and YIG. This is achieved by setting

��=�0 in Eqs. �13� and �23� so that �̃�=�0G�kw0a�, where
kw0=���w�0 is the nonmagnetic wave vector. Hence,
G�kw0a�= �̃� /�0 shown in Fig. 5�b� corresponds to the rela-
tive kw0a-dependent renormalized permeability of a nonmag-
netic wire. Finally, Fig. 5�c� shows �̃� /�0, which illustrates
the combined gyromagnetic and kwa-dependent responses of
single Ni and YIG wires.

We find that both intrinsic magnetic responses exhibit a
Lorentzian profile with position, width, and amplitude deter-
mined by the applied field Hext0 and the magnetic properties
�Ms, g, and �� of Ni and YIG �Fig. 5�a��. As � tends to 0, we
note that �� /�0�1+Ms /Hext0=3 for both Ni and YIG,
which follows from Eq. �15� with �=0 and �H=�0. How-
ever, while the intrinsic permeability �� has the same dis-
persive behavior for the two materials, their respective
kw0a-dependent response G�kw0a� differs significantly, as
shown in Fig. 5�b�. In the left panel, the metallic wire, with
wave vector kw0= �1+ i� /	w0, exhibits a relaxationlike behav-
ior. The screening effect of eddy currents leads to a mono-
tonic decrease in the real part of G�kw0a� in the transition
regime 	w0�a, which is reduced from 1 at low frequencies
�dielectriclike behavior� to 0 at high frequencies �supercon-
ductinglike behavior�. Likewise, eddy-current damping is ac-

FIG. 5. Frequency dependence of various permeability response
functions of single Ni �a=2 �m, left panel� and YIG �a=2 mm,
right panel� wires with intrinsic parameters given in Table II. �a�
Relative intrinsic permeability component �� /�0 at constant static
magnetic field Hext0= 1

2 Ms applied along the wire axis. �b� Renor-
malization factor G�kw0a� for nonmagnetic wires with dielectric
properties identical to those of Ni and YIG. �c� Relative renormal-
ized permeability component �̃� /�0 at constant static magnetic
field Hext0= 1

2 Ms applied along the wire axis. Real and imaginary
parts are denoted by solid and dashed lines, respectively.
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counted for by the imaginary part of G�kw0a�, which van-
ishes for �=0, increases as �a /	w0�2�� at low frequencies,
reaches a maximum when 	w0�a, and decreases as
�a /	w0�−1��−1/2 at high frequencies. In the right panel, the
response G�kw0a� of the insulating wire displays a multireso-
nant character, owing to the excitation of magnetic dipole
resonances �Mie-type resonances� inside the cylindrical wire.
The resonance frequencies correspond to the poles of
G�kw0a�, which occur whenever the condition kw0aJ0�kw0a�
=J1�kw0a� is fulfilled for �kw0�a�1. These dimensional reso-
nances are accompanied by a maximum of Im�G�kw0a�� and
a change in sign of Re�G�kw0a��. The latter thus becomes
negative in a small frequency range on the high-frequency
side of each pole. The strength and width of the resonances
are controlled by dielectric losses so that increasing Im��w�
damps out the resonant behavior of G�kw0a� and ultimately
restricts Re�G�kw0a�� to positive values. Further, when the
condition �Im��w��� �Re��w�� is reached, the spectrum of
G�kw0a� transforms to that of a conducting wire, which
shows no resonant character at 	w0�a.

As expected, these �w-dependent features are also present
in the renormalized gyromagnetic response, as shown in Fig.
5�c�. In the left panel, the intrinsic gyromagnetic response of
Ni remains apparent in the renormalized permeability but
eddy currents bring significant modifications to the spectrum
of �̃� /�0 compared to that of �� /�0. The diamagnetic
screening reduces the real part of �̃� /�0 considerably with
increasing frequency so that the permeability level remains
smaller than 1 �even near the FMR� and decreases toward 0
at high frequency. Likewise, eddy-current losses lead to a
new peak in the imaginary part of �̃� /�0 and to an overall
broadening and decrease in amplitude of the FMR peak. In
the right panel, the renormalized permeability of the YIG
wire consists essentially in the intrinsic gyromagnetic re-
sponse, on which is superimposed the series of magnetic
dipole resonances of the single wire at frequencies satisfying
the condition kwaJ0�kwa�=J1�kwa�. The response thus exhib-
its several regions of negative renormalized permeability, the
spectral positions of which can be controlled, to a certain
extent, by varying the static magnetic field.

In the context of studies of metamaterials with a negative
refractive index, ensembles of insulating ferrimagnetic wires
have been predicted to display a magnetic-field-tunable
range of negative effective permeability at microwave
frequencies.9,10 However, it must be emphasized that in order
to support magnetic dipole resonances in the frequency range
where the intrinsic permeability also exhibits a resonant
character, the condition �kw�a�1 must be fulfilled at micro-
wave frequencies. This generally requires ferrimagnetic
wires with a fairly large radius �i.e., a�1 mm� so that the
homogeneity assumption �km�a�1 may not be strictly re-
spected in such composite materials. In contrast, using arrays
of submicron wires of ferromagnetic metals ensures that
�km�a�1 is rigorously satisfied while permitting higher oper-
ating frequencies and still minimizing eddy-current losses.

C. Arrays of wires and negative effective permeability

In addition to the limitations imposed by electromagnetic
retardation inside the individual wires, the effective magnetic

response �Jeff of an ensemble of interacting wires is also re-
duced due to the effect of diluting the wires in the host me-
dium. This may eventually prevent the real part of the effec-
tive permeability from becoming negative, which is essential
for the development of left-handed metamaterials. We now
address this issue. Consider an array of axially magnetized
Ni wires with properties given in Table II, filling the pores of
a dielectric thin-film matrix of permittivity �m=10�0, perme-
ability �m=�0, and infinite lateral extent. The wires occupy a
volume fraction f =0.20 of the array and are brought to satu-
ration by an axial static magnetic field Hext0= 1

2 Ms. The total
static field Hw0 inside the individual wires includes an addi-
tional contribution from the static dipolar interaction field so
that Hw0=Hext0− fMs �monopolar regime� and thus �H=�0
− f�M, as in Sec. IV C.

We consider a wave propagating in the plane of the array
with its electric and magnetic fields oriented along and trans-
verse to the wire axis, respectively. In the case of an infinite
array, this mode is characterized by the effective scalar per-
meability �̃eff� of Eq. �54� with �̃ and �̃t calculated using
Eq. �26�. We emphasize that using �̃eff� is rigorously valid
only in the case of unbounded arrays. For guided waves
propagating in a finite-size structure �e.g., a transmission
line�, �̃eff� cannot be used directly as the characteristic per-
meability that enters the propagation constant of the structure
so that the full expression for �Jeff may be required.76,95 Fur-
ther, even for infinite arrays, �̃eff� applies to this mode of
propagation only so that other configurations may involve
the explicit expressions of the diagonal and off-diagonal
components of �Jeff.

The frequency dependence of the real and imaginary parts
of �̃eff� /�0 is illustrated in Fig. 6 for an array of Ni wires of
various radii. In Fig. 6�a�, a=100 nm and the QS approxi-
mation holds so that �̃ and �̃t are given by Eq. �28�. In this

FIG. 6. Real and imaginary parts of the relative effective per-
meability component �̃eff� /�0 as a function of frequency for an
array of Ni wires of radius �a� 100 nm, �b� 500 nm, �c� 1 �m, and
�d� 10 �m. The spectra correspond to theoretical calculations using
Eq. �54� with Hext0= 1

2 Ms, f =0.20, and the Ni wire parameters given
in Table II. Real and imaginary parts are denoted by solid and
dashed lines, respectively.
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case, �̃eff� has a Lorentzian profile characterized by the
FMR and FMAR frequencies, between which the real part
becomes negative. As the size of the wires is increased, the
response of the individual wires falls in the EQS regime so
that the FMR gradually shifts to lower frequency and the
absorption curve progressively broadens, decreases in ampli-
tude, and becomes asymmetrical. In this regime, the fre-
quency behavior of the FMR parameters of �̃eff� becomes a
complicated function of the intrinsic properties of the wires,
the geometrical parameters of the array, and the applied static
magnetic field. In the case of strong skin effect ��w→��, the
wires behave as perfect diamagnets with �̃�−2 and �̃t�0
so that Eq. �54� reduces to the material-independent value
�̃eff� /�0= �1− f� / �1+ f��0.67, which decreases with f and
accounts for the fact that the average magnetic induction is
completely excluded from the interior of the wires.

We observe that when the radius of the wires exceeds a
certain value �between a=500 nm and 1 �m in the present
case�, the effective damping acting on the wires becomes
sufficiently strong to restrict the real part of �̃eff� to positive
values in the whole frequency range. Hence, the transition to
the EQS regime at a /	w0�1 not only invalidates the as-
sumption of uniform-mode oscillations inside the individual
wires but also prevents the effective permeability from be-
coming negative, regardless of the intrinsic magnetic losses
�. Therefore, several studies25–28 investigating negative re-
fraction in arrays of ferromagnetic-metallic wires with a
�1 �m were developed within the unjustified QS approxi-
mation.

In cases where the value of a /	w0 does not a priori forbid
negative permeability, there exists a critical value �̃c for the
Gilbert damping parameter, above which the real part of
�̃eff� remains positive at all frequencies. This is illustrated in
Fig. 7, which shows the dependence of �̃c on a /	w0 for an
array of Ni wires with parameters of Table II and 	w0
=0.84 �m �nonmagnetic skin depth of Ni at 24 GHz�. The
critical damping was extracted from spectra of �̃eff� calcu-
lated using Eq. �54�. In Fig. 7�a�, Hext0 /Ms=0.50 and the
volume fraction f ranges between 0.05 and 0.40 while in Fig.
7�b�, f =0.20 and Hext0 /Ms extends from 0.25 to 1.00. The
curves indicate that the value of �̃c increases with increasing

f and decreasing Hext0 /Ms so that negative effective perme-
ability is favored in dense nanowire arrays that can be satu-
rated at fairly low applied fields. As discussed above, when
a /	w0�1, the effective permeability never becomes nega-
tive, even in the idealized case of a dense array of lossless
wires �i.e., f =0.40 and �=0�.

It does not seem possible to determine a general analytical
expression for the critical damping �̃c of �̃eff� in the EQS
regime. However, in the QS limit, �̃c reduces to the size-
independent value �c and it can be shown �see Appendix B�
that

�c = �c0 − ��c0
2 − 1, �75�

where

�c0 =
2

f
Hext0

Ms
+

�1 − 2f�
2

� . �76�

The QS critical damping depends on f and Hext0 /Ms only and
corresponds to the size-independent portion of the curves
shown in Fig. 7. Equation �75� thus yields an intrinsic thresh-
old value for �c, below which negative effective permeabil-
ity is theoretically possible in infinite arrays of ferromagnetic
wires. For example, a fairly dense nanowire array �e.g., f
=0.30� subjected to a relatively small applied field �e.g.,
Hext0 /Ms=0.25� yields the critical value �c�0.17, which is
larger than the typical values of � expected for ferromagnetic
metals �i.e., with � in the range 0.001–0.05, see Ref. 40�.
This indicates that arrays of axially magnetized metallic
nanowires with realistic parameters may exhibit a negative
magnetic response between the FMR and FMAR frequencies
of the effective permeability.

VI. FURTHER DISCUSSION AND SUMMARY

This work establishes a model for the effective permeabil-
ity tensor of arrays of axially magnetized ferromagnetic
wires. The model begins by considering the intrinsic proper-
ties of a single wire and proceeds to the effective external
response of a finite-size array of interacting wires. It employs
a multiscale approach, which effectively connects four hier-
archical levels, summarized in Table I. This hierarchical
structure establishes the influence of the various parameters
and hypotheses involved at each step of the derivation,
thereby allowing one to introduce modifications at all levels.
For instance, owing to the symmetry of Maxwell’s equations,
the method can readily be adapted to yield the kwa-dependent
effective permittivity tensor �Jeff of arrays of axially magne-
tized wires having an intrinsic gyroelectric permittivity ten-
sor �Jw and being subjected to a dynamic electric field polar-
ized perpendicular to their axis. Such a result could be
applied to the study of the magneto-optical response of fer-
romagnetic nanowire arrays.23,24

Another direct extension of the model would be the inclu-
sion of different types of magnetocrystalline anisotropy as an

effective demagnetizing tensor NJmca in the equation of mo-
tion for the magnetization40 in order to yield more general
expressions for the components of the intrinsic permeability
tensor �Jw. Further, in the QS limit, magnetocrystalline aniso-

FIG. 7. Critical damping parameter �̃c of a Ni wire array as a
function of the normalized wire radius a /	w0. �a� Hext0 /Ms=0.50
and f ranges between 0.05 and 0.40. �b� f =0.20 and Hext0 /Ms

ranges between 0.25 and 1.00. The Ni wire parameters are given in
Table II and 	w0 refers here to the nonmagnetic skin depth of Ni at
24 GHz. The critical damping �̃c corresponds to the maximum
value for � allowing the real part of �̃eff� to become negative
between the FMR and FMAR frequencies.
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tropy can be accounted for simply by replacing the shape

demagnetizing tensor NJw by NJw+NJmca, whenever it appears
in the QS equations �e.g., Eqs. �32�, �56�, and �73��. Like-
wise, the gyromagnetic external susceptibility tensor �Jw of a
single wire embedded in a host medium, which is the main
parameter entering the Maxwell-Garnett mixing rule, could
alternatively be used in the Bruggeman formalism.44 How-
ever, in this latter case, the self-consistent homogenization
condition would not yield compact and explicit expressions
for the components of the effective permeability tensor.

An important simplifying assumption made throughout
the present work is that the exchange interaction and, conse-
quently, exchange-conductivity effects are neglected. These
effects may arise in ferromagnetic metals due to the excita-
tion of spin waves by the strongly nonuniform dynamic mag-
netic field inside the skin depth, which leads to a nonlocal
�i.e., wave-vector-dependent� intrinsic permeability, as well
as to a broadening and shift of the FMR absorption curve.96

A general theory of FMR in thin metallic wires based on the
simultaneous solution of Maxwell’s equations and the equa-
tion of motion for the magnetization including the exchange
interaction was proposed by Kraus.43 He derived fairly com-
plex expressions for the surface impedance and relative ab-
sorption of the individual resonance modes �including the
mode n=�1� and studied the size dependence of the FMR
parameters. His approach thus fully incorporates the effect of
the exchange interaction on the response of a single ferro-
magnetic wire. However, due to the nonlocal response and
the resulting additional boundary conditions on the magneti-
zation, his model does not readily lend itself to the derivation
of an external susceptibility tensor �Jw in terms of renormal-
ized permeability components �̃ and �̃t, which would ac-
count for the exchange interaction. Then, Eq. �50� could not
be used directly for the determination of �Jeff in terms of �Jw
and the treatment of arrays of wires.

Our neglect of the exchange interaction in the equation of
motion for the magnetization may be justified as follows. In
the QS limit, the skin depth remains much larger than the
wire radius and uniform oscillations of the magnetization are
excited so that exchange-conductivity effects are obviously
absent. Less intuitive is their neglect in the regime of strong
skin effect. It was shown, in relation to the modeling of giant
magnetoimpedance in microwires and ribbons, that such
exchange-conductivity effects become significant only at
subgigahertz frequencies.71,97 As the present work focuses
primarily on the kwa dependence of �Jw induced by the elec-
tromagnetic skin effect in the range 1–100 GHz, we decided
to avoid the analytical complexity introduced by the ex-
change interaction in the electromagnetic behavior of ferro-
magnetic metals. Therefore, excitation of exchange-spin and
magnetostatic modes in the individual wires is implicitly ex-
cluded from the present study. Further, generalizing our ex-
pression for �Jw in order to include the magnetostatic modes
of an axially magnetized cylinder98 or exchange-conductivity
effects is possible a priori but not straightforward. In this
respect, a starting point to incorporate the exchange-
conductivity mechanism as a correction factor to our renor-
malization procedure may be found in Ref. 71 �see Eqs. �91�
and �92� therein�. Likewise, spin-wave excitations in arrays

of ferromagnetic nanowires studied by Brillouin light
scattering37,39 could alternatively be explained by extending
our formalism for �Jeff.

Another simplification of the model is the requirement
that the static field and magnetization lie parallel to the axis
of the wires and perpendicular to the radial wave vector kw.
This symmetrical configuration allows one to use the method
of separation of variables in cylindrical coordinates in the
scattering problem that must be solved to yield �Jw. Gener-
alization of our formalism based on deriving renormalized
permeability components �̃ and �̃t to other inclusion shapes,
such as arrays of spherical inclusions,51–54,57–60 poses signifi-
cant challenges. Indeed, the scattering of a plane electromag-
netic wave by a gyrotropic sphere has not been solved in
closed analytical form because Maxwell’s equations are then
no longer separable.99 Likewise, extending our EQS ap-
proach to static fields at arbitrary angles to the wire axis
suffers from similar difficulties. However, we must empha-
size that in the QS limit, Eq. �32� for �Jw remains valid irre-
spective of the static field orientation, provided the appropri-

ate rotation matrix is used to express 
Jw and NJw in the same
coordinate system.

In summary, we have proposed a theory for the effective
magnetic response of saturated arrays of axially magnetized
ferromagnetic-metallic wires. We have established compact
renormalized expressions for the components of the wire ex-
ternal susceptibility tensor �Jw, which include both the gyro-
magnetic and kwa-dependent natures of the individual wire
response and account for the influence of eddy currents and
skin effect on the FMR parameters. The model then incorpo-
rates �Jw into a Maxwell-Garnett homogenization procedure
to yield the diagonal and off-diagonal components of the
effective permeability tensor �Jeff. Our work thus generalizes
to gyromagnetic cylindrical inclusions the isotropic EQS for-
malism of Lewin, which constitutes one of the earliest at-
tempts to incorporate electromagnetic retardation into the
Maxwell-Garnett mixing rule. Further, the formalism extends
and bridges existing theories of the electromagnetic response
of ferromagnetic composite materials, which have derived
for �Jeff either tensorial relations restricted to the QS regime
or scalar expressions including retardation within the mag-
netic inclusions but neglecting the gyrotropic nature of their
permeability. Introducing the effective external susceptibility
tensor �Jeff, along with the effective demagnetizing tensor

NJeff, allows one to treat the FMR response of finite-size ar-
rays in which static and dynamic dipolar interactions cannot
be neglected.

The present work applies equally well to magnetic insu-
lators and thus yields valuable insights into the modeling of
negative permeability metamaterials based on the excitation
of dimensional magnetic dipole resonances in ensembles of
insulating ferrimagnetic rods. Moreover, we have provided
physical guidelines for designing metamaterials with a nega-
tive effective permeability based on arrays of ferromagnetic-
metallic wires and have established intrinsic limitations re-
lated to the size of the wire and to Gilbert damping, which
prevent the effective permeability from becoming negative.
Finally, the present theory is relevant to the understanding
and modeling of composite materials based on gyromagnetic
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inclusions in the presence of retardation effects and is suffi-
ciently general to be applied or extended to various systems
of interest.
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APPENDIX A: SCATTERING OF AN ELECTROMAGNETIC
PLANE WAVE BY AN INFINITE GYROMAGNETIC

CYLINDER

Based on the scattering geometry, it is convenient to ex-
press the incident fields in Eqs. �11� and �12� in terms of the
elementary functions of the cylindrical coordinate system
�� ,� ,z�. Using the Jacobi-Anger identity100

eiu cos � = �
n=−�

�

inJn�u�ein� �A1�

with u cos �=km� cos �=kmx, we obtain

eloc = eloc �
n=−�

�

inJn�km��ein�ẑ , �A2�

hloc = hloc �
n=−�

�

inn
Jn�km��

km�
�̂ + iJn��km���̂�ein�, �A3�

where the time dependence is absorbed into eloc=eloc0e−i�t

and hloc=hloc0e−i�t, Jn�u� are Bessel functions of the first
kind, and the prime denotes derivative with respect to the
argument. The scattered fields must correspond to a wave
that travels outward and vanishes at infinity. They are ex-
pressed in terms of Hankel functions of the first kind Hn

�1��u�

escat = eloc �
n=−�

�

inanHn
�1��km��ein�ẑ , �A4�

hscat = hloc �
n=−�

�

inann
Hn

�1��km��
km�

�̂ + iHn
�1���km���̂�ein�,

�A5�

where an are the amplitude coefficients of the scattered wave.
For the assumed incident electric field and scalar permittivity
of the wire, the electric field ew=ew�� ,��ẑ transmitted inside
the wire remains strictly axial and satisfies the wave equation

�� ��Jw
−1��� ew�� − �2�wew = 0 , �A6�

where �Jw
−1 is the inverse of the permeability tensor of Eq. �3�.

Equation �A6� can then be written as a two-dimensional
Poisson’s equation in polar coordinates,

�2ew

��2 +
1

�

�ew

��
+

1

�2

�2ew

��2 + kwew = 0, �A7�

where kw is given by Eq. �13�. The method of separation of
variables allows us to express ew as an infinite sum of cylin-
drical modes

ew = ew��,��ẑ = eloc �
n=−�

�

inbnJn�kw��ein�ẑ , �A8�

where bn are the amplitude coefficients of the transmitted
wave. The transmitted magnetic field is then obtained using
the Maxwell-Faraday equation

hw = −
i

�
�Jw

−1��� ew�

=hloc
�m

�w
�

n=−�

�

inbn�Cn
��kw���̂ + iCn

��kw���̂�ein�, �A9�

where the wave impedance �w is given by Eq. �14� and the
coefficients Cn

��kw�� and Cn
��kw�� are defined as

Cn
��kw�� = n

Jn�kw��
kw�

− �Jn��kw�� , �A10�

Cn
��kw�� = Jn��kw�� − n�

Jn�kw��
kw�

, �A11�

where �=�t /�. Determining the unknown amplitude coeffi-
cients an and bn requires one to satisfy the electromagnetic
boundary conditions at the surface of the wire ��=a� for the
continuity of ez and h�. Using the orthogonality of the cylin-
drical modes n, we get

Jn�kma� + anHn
�1��kma� = bnJn�kwa� , �A12a�

Jn��kma� + anHn
�1���kma� =

�m

�w
bnCn

��kwa� . �A12b�

Solving Eqs. �A12a� and �A12b� for an and bn yields

an =
�mCn

��kwa�Jn�kma� − �wJn�kwa�Jn��kma�
�wJn�kwa�Hn

�1���kma� − �mCn
��kwa�Hn

�1��kma�
,

�A13�

bn =
2i�w/�kma

�wJn�kwa�Hn
�1���kma� − �mCn

��kwa�Hn
�1��kma�

,

�A14�

where the Bessel function Wronskian

Jn�kma�Hn
�1���kma� − Jn��kma�Hn

�1��kma� =
2i

�kma
�A15�

was used to simplify the numerator of bn. Note that when
�=0, the coefficients an and bn reduce, as expected, to the
expressions valid for the scattering of a plane wave by an
isotropic cylinder.101
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Under the conditions �km���1 and �km�a�1, we may re-
place all Bessel and Hankel functions and their derivatives
with argument km� or kma in Eqs. �A2�–�A14� by their series
expansions given in Table III in which �E�0.5772 denotes
Euler’s constant.

APPENDIX B: CRITICAL DAMPING

We consider the effective permeability component �̃eff�

in the QS limit, that is, �̃eff�=�eff�. We wish to determine
the critical value �c for the Gilbert damping parameter, be-
low which the effective permeability �eff� exhibits a nega-
tive real part between the FMR and FMAR frequencies. In
the QS approximation, the EQS components of �Jw reduce to
� and �t given by Eqs. �28a� and �28b�, respectively, where
�H

� =�H− i�� and �H=�0− f�M. Substituting � and �t into
Eq. �54� yields

�eff�

�0
=

��r,eff
� + f�M�2 − �2

�r,eff
� ��r,eff

� + f�M� − �2 , �B1�

where �r,eff
� =�r,eff− i�� and �r,eff is given by Eq. �71�.

When the Gilbert damping parameter is sufficiently small,
the condition Re��eff��=0 is fulfilled at two frequencies
given by

�� =
���r,eff + f�M���1 − �2��2�r,eff + f�M�����

�2�1 + �2�
,

�B2�

where

�� = ���1 − �2�f�M�2 − 16�2�r,eff��r,eff + f�M� �B3�

accounts for the separation between the FMR ��−� and
FMAR ��+� frequencies. The frequencies merge at ��=0,
corresponding to a critical Gilbert damping parameter

�c = �c0 − ��c0
2 − 1, �B4�

where

�c0 =
2

f
Hext0

Ms
+

�1 − 2f�
2

� �B5�

is controlled by the applied field Hext0, the saturation magne-
tization Ms, and the volume fraction f . When � �c, the real
part of the effective permeability �eff� exhibits a region
where it becomes negative between the FMR and FMAR
frequencies. However, when ���c, the real part of �eff� is
always positive so that negative effective permeability is not
observed.

*vincent.boucher@polymtl.ca
†david.menard@polymtl.ca

1 C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmis-
sion Line Theory and Microwave Applications �Wiley, New
York, 2005�.

2 Metamaterials: Physics and Engineering Explorations, edited by
N. Engheta and R. W. Ziolkowski �Wiley, New York, 2006�.

3 A. K. Sarychev and V. M. Shalaev, Electrodynamics of Metama-
terials �World Scientific, Singapore, 2007�.

4 Metamaterials Handbook, edited by F. Capolino �CRC Press,
Boca Raton, 2009�.

5 S. T. Chui and L. Hu, Phys. Rev. B 65, 144407 �2002�.
6 O. Reynet, A.-L. Adenot, S. Deprot, O. Acher, and M. Latrach,

Phys. Rev. B 66, 094412 �2002�.
7 D. P. Makhnovskiy and L. V. Panina, J. Appl. Phys. 93, 4120

�2003�.
8 V. Boucher and D. Ménard, J. Appl. Phys. 103, 07E720 �2008�.
9 S. Liu, W. Chen, J. Du, Z. Lin, S. T. Chui, and C. T. Chan, Phys.

Rev. Lett. 101, 157407 �2008�.
10 J. Jin, S. Liu, Z. Lin, and S. T. Chui, Phys. Rev. B 80, 115101

�2009�.
11 W. Rotman, IRE Trans. Antennas Propag. 10, 82 �1962�.
12 J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, Phys.

Rev. Lett. 76, 4773 �1996�.

13 S. A. Schelkunoff and H. T. Friis, Antennas: Theory and Practice
�Wiley, New York, 1952�.

14 J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart,
IEEE Trans. Microwave Theory Tech. 47, 2075 �1999�.

15 A. Encinas, M. Demand, L. Vila, L. Piraux, and I. Huynen, Appl.
Phys. Lett. 81, 2032 �2002�.

16 A. Saib, D. Vanhoenacker-Janvier, I. Huynen, A. Encinas,
L. Piraux, E. Ferain, and R. Legras, Appl. Phys. Lett. 83, 2378
�2003�.

17 A. Saib, M. Darques, L. Piraux, D. Vanhoenacker-Janvier, and I.
Huynen, IEEE Trans. Microwave Theory Tech. 53, 2043 �2005�.

18 B. Ye, F. Li, D. Cimpoesu, J. B. Wiley, J.-S. Jung, A. Stancu, and
L. Spinu, J. Magn. Magn. Mater. 316, e56 �2007�.

19 B. K. Kuanr, V. Veerakumar, R. L. Marson, S. R. Mishra, R. E.
Camley, and Z. Celinski, Appl. Phys. Lett. 94, 202505 �2009�.

20 L.-P. Carignan, T. Kodera, A. Yelon, D. Ménard, and C. Caloz,
Proceedings of the 39th European Microwave Conference, Rome
�IEEE Press, Piscataway, NJ, 2009�, pp. 743–746.

21 J.-R. Liu, M. Itoh, M. Terada, T. Horikawa, and K.-I. Machida,
Appl. Phys. Lett. 91, 093101 �2007�.

22 L. Qiao, X. Han, B. Gao, J. Wang, F. Wen, and F. Li, J. Appl.
Phys. 105, 053911 �2009�.

23 S. Melle, J. L. Menéndez, G. Armelles, D. Navas, M. Vázquez,
K. Nielsch, R. B. Wehrspohn, and U. Gösele, Appl. Phys. Lett.

TABLE III. Small-argument expansions of Bessel and Hankel
functions and their derivatives of orders 0 and �1.

Function Expansion Derivative Expansion

J0�u� 1 J0��u� − u
2

J�1�u� �
u
2 J�1� �u� �

1
2

H0
�1��u� 1+ 2i

� �ln� u
2 �+�E� H0

�1���u� − u
2 + 2i

�u

H�1
�1� �u� �� u

2 − 2i
�u � H�1

�1���u� �� 1
2 + 2i

�u2 �

EFFECTIVE MAGNETIC PROPERTIES OF ARRAYS OF… PHYSICAL REVIEW B 81, 174404 �2010�

174404-19

http://dx.doi.org/10.1103/PhysRevB.65.144407
http://dx.doi.org/10.1103/PhysRevB.66.094412
http://dx.doi.org/10.1063/1.1557780
http://dx.doi.org/10.1063/1.1557780
http://dx.doi.org/10.1063/1.2834241
http://dx.doi.org/10.1103/PhysRevLett.101.157407
http://dx.doi.org/10.1103/PhysRevLett.101.157407
http://dx.doi.org/10.1103/PhysRevB.80.115101
http://dx.doi.org/10.1103/PhysRevB.80.115101
http://dx.doi.org/10.1109/TAP.1962.1137809
http://dx.doi.org/10.1103/PhysRevLett.76.4773
http://dx.doi.org/10.1103/PhysRevLett.76.4773
http://dx.doi.org/10.1109/22.798002
http://dx.doi.org/10.1063/1.1507610
http://dx.doi.org/10.1063/1.1507610
http://dx.doi.org/10.1063/1.1610798
http://dx.doi.org/10.1063/1.1610798
http://dx.doi.org/10.1109/TMTT.2005.848818
http://dx.doi.org/10.1016/j.jmmm.2007.02.026
http://dx.doi.org/10.1063/1.3124657
http://dx.doi.org/10.1063/1.2775804
http://dx.doi.org/10.1063/1.3081649
http://dx.doi.org/10.1063/1.3081649
http://dx.doi.org/10.1063/1.1630840


83, 4547 �2003�.
24 J. González-Díaz, A. García-Martín, G. Armelles, D. Navas,

M. Vázquez, K. Nielsch, R. Wehrspohn, and U. Gösele, Adv.
Mater. 19, 2643 �2007�.

25 N. García and E. V. Ponizovskaia, Phys. Rev. E 71, 046611
�2005�.

26 Y.-S. Zhou, B.-Y. Gu, and F.-H. Whang, Europhys. Lett. 75, 737
�2006�.

27 J. Chen, D. Tang, B. Zhang, Y. Yang, M. Lu, H. Lu, F. Lu, and
W. Xu, J. Appl. Phys. 102, 023106 �2007�.

28 E. Demirel, A. C. Basaran, and B. Aktas, Eur. Phys. J. B 69, 173
�2009�.

29 H. García-Miquel, J. Carbonell, V. E. Boria, and J. Sánchez-
Dehesa, Appl. Phys. Lett. 94, 054103 �2009�.

30 J. Carbonell, H. García-Miquel, and J. Sánchez-Dehesa, Phys.
Rev. B 81, 024401 �2010�.

31 A. Encinas-Oropesa, M. Demand, L. Piraux, I. Huynen, and
U. Ebels, Phys. Rev. B 63, 104415 �2001�.

32 M. Demand, A. Encinas-Oropesa, S. Kenane, U. Ebels,
I. Huynen, and L. Piraux, J. Magn. Magn. Mater. 249, 228
�2002�.

33 C. A. Ramos, E. Vassallo Brigneti, and M. Vázquez, Physica B
354, 195 �2004�.

34 I. Dumitru, F. Li, J. B. Wiley, D. Cimpoesu, A. Stancu, and
L. Spinu, IEEE Trans. Magn. 41, 3361 �2005�.

35 L.-P. Carignan, C. Lacroix, A. Ouimet, M. Ciureanu, A. Yelon,
and D. Ménard, J. Appl. Phys. 102, 023905 �2007�.

36 R. Arias and D. L. Mills, Phys. Rev. B 63, 134439 �2001�.
37 Z. K. Wang, M. H. Kuok, S. C. Ng, D. J. Lockwood, M. G.

Cottam, K. Nielsch, R. B. Wehrspohn, and U. Gösele, Phys. Rev.
Lett. 89, 027201 �2002�.

38 R. Arias and D. L. Mills, Phys. Rev. B 67, 094423 �2003�.
39 A. A. Stashkevich et al., Phys. Rev. B 80, 144406 �2009�.
40 A. G. Gurevich and G. A. Melkov, Magnetization Oscillations

and Waves �CRC Press, Boca Raton, 1996�.
41 L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous

Media, 1st ed. �Pergamon, Oxford, 1960�.
42 M. Maryško, Phys. Status Solidi A 47, 277 �1978�.
43 L. Kraus, Czech. J. Phys., Sect. B 32, 1264 �1982�.
44 A. Sihvola, Electromagnetic Mixing Formulas and Applications

�Institution of Electrical Engineers, London, 1999�.
45 V. B. Bregar and M. Pavlin, J. Appl. Phys. 95, 6289 �2004�.
46 V. B. Bregar, Phys. Rev. B 71, 174418 �2005�.
47 J. Ramprecht and D. Sjöberg, J. Phys. D 41, 135005 �2008�.
48 L. Lewin, Proc. Inst. Electr. Eng. 94, 65 �1947�.
49 N. A. Khizhnyak, Sov. Phys. Tech. Phys. 27, 2006 �1957�.
50 N. A. Khizhnyak, Sov. Phys. Tech. Phys. 29, 604 �1959�.
51 C. A. Grimes and D. M. Grimes, Phys. Rev. B 43, 10780 �1991�.
52 D. Rousselle, A. Berthault, O. Acher, J. P. Bouchaud, and P. G.

Zérah, J. Appl. Phys. 74, 475 �1993�.
53 L. Olmedo, G. Chateau, C. Deleuze, and J. L. Forveille, J. Appl.

Phys. 73, 6992 �1993�.
54 R. G. Geyer, J. Mantese, and J. Baker-Jarvis, NIST Tech. Note

1371 �1994�.
55 E. Matagne, IEEE Trans. Magn. 31, 1464 �1995�.
56 A. K. Sarychev, R. C. McPhedran, and V. M. Shalaev, Phys.

Rev. B 62, 8531 �2000�.
57 R. Ramprasad, P. Zurcher, M. Petras, M. Miller, and P. Renaud,

J. Appl. Phys. 96, 519 �2004�.
58 L. Z. Wu, J. Ding, H. B. Jiang, C. P. Neo, L. F. Chen, and C. K.

Ong, J. Appl. Phys. 99, 083905 �2006�.
59 O. Acher and S. Dubourg, Phys. Rev. B 77, 104440 �2008�.
60 A. N. Lagarkov and K. N. Rozanov, J. Magn. Magn. Mater. 321,

2082 �2009�.
61 O. Klein, S. Donovan, M. Dressel, and G. Grüner, Int. J. Infrared

Millim. Waves 14, 2423 �1993�.
62 R. C. Jones, Phys. Rev. 68, 93 �1945�.
63 A. D. Berk and B. A. Lengyel, Proc. IRE 43, 1587 �1955�.
64 C. Kittel, Phys. Rev. 73, 155 �1948�.
65 M. E. Brodwin and M. K. Parsons, J. Appl. Phys. 36, 494

�1965�.
66 D. Ménard, M. Britel, P. Ciureanu, and A. Yelon, J. Appl. Phys.

84, 2805 �1998�.
67 M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, Phys. Rev. B

72, 193103 �2005�.
68 R. A. Waldron, Br. J. Appl. Phys. 14, 700 �1963�.
69 N. Bloembergen, J. Appl. Phys. 23, 1383 �1952�.
70 J. A. Osborn, Phys. Rev. 67, 351 �1945�.
71 D. Ménard and A. Yelon, J. Appl. Phys. 88, 379 �2000�.
72 Y. Wu, J. Li, Z.-Q. Zhang, and C. T. Chan, Phys. Rev. B 74,

085111 �2006�.
73 X. Hu, C. T. Chan, J. Zi, M. Li, and K.-M. Ho, Phys. Rev. Lett.

96, 223901 �2006�.
74 P. Sheng, Introduction to Wave Scattering, Localization, and Me-

soscopic Phenomena �Academic, San Diego, 1995�.
75 L.-P. Carignan, V. Boucher, T. Kodera, C. Caloz, A. Yelon, and

D. Ménard, Appl. Phys. Lett. 95, 062504 �2009�.
76 V. Boucher, L.-P. Carignan, T. Kodera, C. Caloz, A. Yelon, and

D. Ménard, Phys. Rev. B 80, 224402 �2009�.
77 A. K. Sarychev and V. M. Shalaev, Phys. Rep. 335, 275 �2000�.
78 R.-L. Chern and Y.-T. Chen, Phys. Rev. B 80, 075118 �2009�.
79 A. J. Newell, W. Williams, and D. J. Dunlop, J. Geophys. Res.

98, 9551 �1993�.
80 J. R. Eshbach, J. Appl. Phys. 34, 1298 �1963�.
81 U. Netzelmann, J. Appl. Phys. 68, 1800 �1990�.
82 J. Dubowik, Phys. Rev. B 54, 1088 �1996�.
83 G. N. Kakazei, A. F. Kravets, N. A. Lesnik, M. M. Pereira de

Azevedo, Y. G. Pogorelov, and J. B. Sousa, J. Appl. Phys. 85,
5654 �1999�.

84 I. Dumitru, D. D. Sandu, and C. G. Verdes, Phys. Rev. B 66,
104432 �2002�.

85 D. S. Schmool, R. Rocha, J. B. Sousa, J. A. M. Santos, G. N.
Kakazei, J. S. Garitaonandia, and L. Lezama, J. Appl. Phys.
101, 103907 �2007�.

86 R. Skomski, G. C. Hadjipanayis, and D. J. Sellmyer, IEEE Trans.
Magn. 43, 2956 �2007�.

87 S. E. Lofland, H. García-Miquel, M. Vázquez, and S. M. Bhagat,
J. Appl. Phys. 92, 2058 �2002�.

88 J. Lam, J. Appl. Phys. 60, 4230 �1986�.
89 C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos,

IEEE Trans. Antennas Propag. 51, 2596 �2003�.
90 L. Jylhä, I. Kolmakov, S. Maslovski, and S. Tretyakov, J. Appl.

Phys. 99, 043102 �2006�.
91 J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, Phys.

Rev. Lett. 99, 107401 �2007�.
92 L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M.

Grzegorczyk, Phys. Rev. Lett. 98, 157403 �2007�.
93 Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li,

J. Zhou, and L. Li, Phys. Rev. Lett. 101, 027402 �2008�.
94 F. Zhang, Q. Zhao, L. Kang, J. Zhou, and D. Lippens, Phys. Rev.

VINCENT BOUCHER AND DAVID MÉNARD PHYSICAL REVIEW B 81, 174404 �2010�

174404-20

http://dx.doi.org/10.1063/1.1630840
http://dx.doi.org/10.1002/adma.200602938
http://dx.doi.org/10.1002/adma.200602938
http://dx.doi.org/10.1103/PhysRevE.71.046611
http://dx.doi.org/10.1103/PhysRevE.71.046611
http://dx.doi.org/10.1209/epl/i2006-10164-y
http://dx.doi.org/10.1209/epl/i2006-10164-y
http://dx.doi.org/10.1063/1.2759180
http://dx.doi.org/10.1140/epjb/e2009-00134-3
http://dx.doi.org/10.1140/epjb/e2009-00134-3
http://dx.doi.org/10.1063/1.3079673
http://dx.doi.org/10.1103/PhysRevB.81.024401
http://dx.doi.org/10.1103/PhysRevB.81.024401
http://dx.doi.org/10.1103/PhysRevB.63.104415
http://dx.doi.org/10.1016/S0304-8853(02)00535-8
http://dx.doi.org/10.1016/S0304-8853(02)00535-8
http://dx.doi.org/10.1016/j.physb.2004.09.047
http://dx.doi.org/10.1016/j.physb.2004.09.047
http://dx.doi.org/10.1109/TMAG.2005.854707
http://dx.doi.org/10.1063/1.2756522
http://dx.doi.org/10.1103/PhysRevB.63.134439
http://dx.doi.org/10.1103/PhysRevLett.89.027201
http://dx.doi.org/10.1103/PhysRevLett.89.027201
http://dx.doi.org/10.1103/PhysRevB.67.094423
http://dx.doi.org/10.1103/PhysRevB.80.144406
http://dx.doi.org/10.1002/pssa.2210470133
http://dx.doi.org/10.1007/BF01597425
http://dx.doi.org/10.1063/1.1713042
http://dx.doi.org/10.1103/PhysRevB.71.174418
http://dx.doi.org/10.1088/0022-3727/41/13/135005
http://dx.doi.org/10.1103/PhysRevB.43.10780
http://dx.doi.org/10.1063/1.355256
http://dx.doi.org/10.1063/1.352408
http://dx.doi.org/10.1063/1.352408
http://dx.doi.org/10.1109/20.376305
http://dx.doi.org/10.1103/PhysRevB.62.8531
http://dx.doi.org/10.1103/PhysRevB.62.8531
http://dx.doi.org/10.1063/1.1759073
http://dx.doi.org/10.1063/1.2190719
http://dx.doi.org/10.1103/PhysRevB.77.104440
http://dx.doi.org/10.1016/j.jmmm.2008.08.099
http://dx.doi.org/10.1016/j.jmmm.2008.08.099
http://dx.doi.org/10.1007/BF02086216
http://dx.doi.org/10.1007/BF02086216
http://dx.doi.org/10.1103/PhysRev.68.93
http://dx.doi.org/10.1109/JRPROC.1955.277984
http://dx.doi.org/10.1103/PhysRev.73.155
http://dx.doi.org/10.1063/1.1714017
http://dx.doi.org/10.1063/1.1714017
http://dx.doi.org/10.1063/1.368421
http://dx.doi.org/10.1063/1.368421
http://dx.doi.org/10.1103/PhysRevB.72.193103
http://dx.doi.org/10.1103/PhysRevB.72.193103
http://dx.doi.org/10.1088/0508-3443/14/10/327
http://dx.doi.org/10.1063/1.1702079
http://dx.doi.org/10.1103/PhysRev.67.351
http://dx.doi.org/10.1063/1.373671
http://dx.doi.org/10.1103/PhysRevB.74.085111
http://dx.doi.org/10.1103/PhysRevB.74.085111
http://dx.doi.org/10.1103/PhysRevLett.96.223901
http://dx.doi.org/10.1103/PhysRevLett.96.223901
http://dx.doi.org/10.1063/1.3194296
http://dx.doi.org/10.1103/PhysRevB.80.224402
http://dx.doi.org/10.1016/S0370-1573(99)00118-0
http://dx.doi.org/10.1103/PhysRevB.80.075118
http://dx.doi.org/10.1029/93JB00694
http://dx.doi.org/10.1029/93JB00694
http://dx.doi.org/10.1063/1.1729481
http://dx.doi.org/10.1063/1.346613
http://dx.doi.org/10.1103/PhysRevB.54.1088
http://dx.doi.org/10.1063/1.369830
http://dx.doi.org/10.1063/1.369830
http://dx.doi.org/10.1103/PhysRevB.66.104432
http://dx.doi.org/10.1103/PhysRevB.66.104432
http://dx.doi.org/10.1063/1.2733630
http://dx.doi.org/10.1063/1.2733630
http://dx.doi.org/10.1109/TMAG.2007.893798
http://dx.doi.org/10.1109/TMAG.2007.893798
http://dx.doi.org/10.1063/1.1494847
http://dx.doi.org/10.1063/1.337460
http://dx.doi.org/10.1109/TAP.2003.817563
http://dx.doi.org/10.1063/1.2173309
http://dx.doi.org/10.1063/1.2173309
http://dx.doi.org/10.1103/PhysRevLett.99.107401
http://dx.doi.org/10.1103/PhysRevLett.99.107401
http://dx.doi.org/10.1103/PhysRevLett.98.157403
http://dx.doi.org/10.1103/PhysRevLett.101.027402
http://dx.doi.org/10.1103/PhysRevB.80.195119


B 80, 195119 �2009�.
95 E. Schloemann, J. Magn. Magn. Mater. 209, 15 �2000�.
96 W. S. Ament and G. T. Rado, Phys. Rev. 97, 1558 �1955�.
97 L. Kraus, J. Magn. Magn. Mater. 195, 764 �1999�.
98 R. I. Joseph and E. Schlömann, J. Appl. Phys. 32, 1001 �1961�.
99 S. Rajagopalan and J. K. Furdyna, Phys. Rev. B 39, 2532

�1989�.
100 C. D. Cantrell, Modern Mathematical Methods for Physicists

and Engineers �Cambridge University Press, Cambridge, 2000�.
101 H. C. van de Hulst, Light Scattering by Small Particles �Wiley,

New York, 1957�.

EFFECTIVE MAGNETIC PROPERTIES OF ARRAYS OF… PHYSICAL REVIEW B 81, 174404 �2010�

174404-21

http://dx.doi.org/10.1103/PhysRevB.80.195119
http://dx.doi.org/10.1016/S0304-8853(99)00635-6
http://dx.doi.org/10.1103/PhysRev.97.1558
http://dx.doi.org/10.1016/S0304-8853(99)00286-3
http://dx.doi.org/10.1063/1.1736149
http://dx.doi.org/10.1103/PhysRevB.39.2532
http://dx.doi.org/10.1103/PhysRevB.39.2532

