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Phase-change materials �PCMs� are the subject of considerable interest because they have been recognized
as potential active layers for nonvolatile memory devices, known as phase-change random access memories.
By analyzing first-principles molecular-dynamics simulations we develop a method for the enumeration of
mechanical constraints in the amorphous phase and show that the phase diagram of the most popular system
�Ge-Sb-Te� can be split into two compositional regions having a well-defined mechanical character: a tellurium
rich flexible phase and a stressed rigid phase that encompasses the known PCMs. This sound atomic scale
insight should open new avenues for the understanding of PCMs and other complex amorphous materials from
the viewpoint of rigidity.
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I. INTRODUCTION

Driven by applications in data storage �rewritable DVDs
and nonvolatile memories�1–3 fundamental and applied stud-
ies of tellurides using groups III, IV, and V elements are
rapidly developing. The most studied phase-change materials
�PCMs� belong to the ternary Ge-Sb-Te system with particu-
lar compositions such as Ge2Sb2Te5 �Ref. 4� used at present
in industrial data storage applications.5 These alloys can sus-
tain a large number of transformation cycles produced either
by laser-light pulses or electrical current that allow for a fast
switching between a crystalline and an amorphous phase
with a high contrast in resistivity or optical reflectivity. A key
issue in this context is the understanding of the underlying
changes in the atomic structure. This has led to a series of
investigations of the structure of both amorphous and crys-
talline phases using experimental as well as computer simu-
lation techniques �for a review, see Ref. 3�. It has been sug-
gested that the origin of the contrast lies in the local
environment of the germanium atoms that switch from an
octahedral environment in the crystalline state,6 with six
neighbors and bond angles around 90°, to a tetrahedral one
with four neighbors and angles around 109°. Support to this
model has been given by numerical simulations on crystal-
line structures.7 This focus on the contrast has somehow
overshadowed the study of other intrinsic properties of the
amorphous phase and of their consequences on the practical
use of PCMs. Here, we investigate the mechanical properties
of a class of amorphous alloys �GexSbyTe1−x−y�, and show
that PCMs are characterized by common specific features in
terms of the network rigidity and topology given by bonding
characteristics.

By contrast with lighter chalcogenides for which the so
called octet or “8-N” rule �N is the number of s and p elec-
trons� results from the ionocovalent nature of the bonding, its
applicability to the heavier and less ionic tellurides is cer-
tainly challenging. In parent systems where the 8-N rule
holds, particularly sulfur and selenium-based amorphous net-

works, rigidity theory offers a practical computational
scheme using topology, namely, the Maxwell counting pro-
cedure, and has been central to many contemporary investi-
gations on noncrystalline solids.8–13 It has led to the recog-
nition of a rigidity transition,11 which separates flexible
glasses, having internal degrees of freedom that allow for
local deformations, from stressed rigid glasses which are
“locked” by their high bond connectivity. Mathematically,
this transition is reached when the number of mechanical
constraints per atom nc equals the number of degrees of free-
dom, which is three in three dimensions.

What happens if these elements are replaced by heavier
elements such as tellurium which would lead to more com-
plicated local structures, as highlighted both from
experiments6,14 and simulations?15–18 Does the counting pro-
cedure still hold? Attempts in this direction have been made
on a heuristic basis19 but they seem to contrast with experi-
mental findings and observations. A firm ground for the
Maxwell constraint counting is therefore very much desir-
able: this is the purpose of the present study which develops
a precise enumeration algorithm for constraints arising from
bond-stretching �BS� and bond-bending �BB� interactions,
based on the analysis of atomic scale trajectories from first-
principles molecular-dynamics simulations �FPMD�. Com-
bined with rigidity theory, this opens an interesting perspec-
tive to study amorphous phase-change materials in much the
same fashion as network glasses.

As a result, we show that the phase diagram of the Ge-
Sb-Te system can be separated into two compositional re-
gions having a well-defined mechanical character derived
from rigidity theory: a flexible Te-rich phase and a �Sb,Ge�-
rich phase that is stressed rigid. The most commonly used
Ge-Sb-Te �GST� phase-change materials belong to this sec-
ond category. While this result may be considered as trivial
since underconstrained Te alloyed with cross-linking over-
constrained elements �Ge,Sb� will inevitably lead to two
phases, flexible and stressed rigid, it proves to be highly
complex and nontrivial. In fact, the location of the rigidity
transition line and the constraint map are found to be sub-
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stantially modified with respect to isochemical compounds
�e.g., Ge-As-Se� for which the 8-N rule holds.

The paper is organized as follows: in Sec. II, we describe
the method introduced, i.e., how trajectories from first-
principles molecular-dynamics simulations can be used to
investigate the neighborhood of a given atom and how the
angular motion can be split in relevant and nonrelevant con-
tributions to bonding constraints. We first apply the method
to the benchmark system GeSe2 for which the direct Max-
well constraint counting is straightforward. In Sec. III, we
move to amorphous GST materials and compute for seven
selected compositions in the Ge-Sb-Te system bond-
stretching and bond-bending constraints. Having in hand the
latter, we show in Sec. IV that a rigidity transition can be
found. Finally, Sec. V summarizes our results and some per-
spectives are drawn.

II. FROM TRAJECTORIES TO BONDING CONSTRAINTS

A. Simulation details

The calculations on benchmark system GeSe2 �see results
below� were performed at constant volume on a system con-
sisting of 40 germanium and 80 selenium atoms. A periodi-
cally repeated cubic cell of size 15.7 Å was used to match
the measured experimental density.20 The system was first
relaxed for 20 ps at 1373 K and then 60 ps at 1050 K �see
Ref. 21� prior to a quench at room temperature �300 K�. The
electronic structure was calculated within a density-
functional theory �DFT� approximation coupled to a Car-
Parrinello algorithm for the ionic motion.22 The exchange-
correlation functional Becke, Lee, Yang and Parr �BLYP�23

in a general gradient approximation �GGA� was used, and
valence electrons have been treated explicitly to account for
core-valence interactions. The wave functions have been ex-
panded at the � point of the supercell on a plane-wave basis
set defined by an energy cutoff Ec=20 Ry. We used a ficti-
tious electron mass of �=600 a.u. �in units of mea0

2, where
me is the electronic mass and a0 is the Bohr radius� and a
time step of t=0.1 fs to integrate the equations of motion.
Temperature control is implemented for both ionic and elec-
tronic degrees of freedom by using Nosé-Hoover
thermostats.24 The amorphous phase was obtained by
quenching the 1050 K down to 300 K by steps of 100 K with
at least 2 ps equilibration at each step. Statistics in the amor-
phous state were finally accumulated over a set of 30 ps.

The seven compounds of the GST triangle have been
simulated using the VASP software package25 using projector
augmented wave �PAW� potentials26 for GeTe and ultrasoft
pseudopotentials27 for the other compounds together with the
Perdew-Wang �PW91� GGA.28 The electronic structure was
computed within DFT and expanded on a plane wave basis.
The energy cutoff for the plane-wave expansion was 10.56
Ry �Sb2Te3 and Sb2Te�, 12.79 Ry �GeSb6, Ge1Sb2Te4, and
Ge2Sb2Te5�, and 18.38 Ry �GeTe and GeTe6�. Such a large
cutoff was needed to reproduce the fine details of the amor-
phous structures, as it was the case for crystalline GeTe.29

This is due to the extremely flat potential valley around the
minimum �distorted� energy structure. The amorphous struc-
tures were generated using Born-Oppenheimer molecular dy-

namics at the � point with a 3 fs integration time step. The
temperature was controlled through a Nosé thermostat24 with
a 3 a.u. fictitious mass. The atoms �125 for Sb2Te3, 178 for
Ge1Sb2Te4, 162 for Ge2Sb2Te5, 210 atoms for Sb2Te and
GeTe, and 216 for GeSb6 and GeTe6, respectively� were ini-
tially set in a NaCl arrangement at the experimental amor-
phous density. The system was then heated for more than 10
ps at 3000 K, followed by 10–20 ps equilibration at the ex-
perimental melting temperature. It was then quenched down
to 100 K in 50 K steps, with at least 2 ps equilibration at
each step. This total quench time of 20–60 ps is significantly
faster than the real quench and this essentially results in the
limited possibility to alter the chemical order by atomic dif-
fusion during the quench. Our simulations thus rely on the
assumption that the chemical order is similar in both amor-
phous and liquid phases.

B. Estimate of constraints: General setting

At the heart of the rigidity concept is the identification of
relevant interatomic forces between atoms in a manner simi-
lar to what Maxwell pioneered for trusses and macroscopic
structures.30 In mechanical engineering, the stability of such
structures depends on the balance between forces acting on
the node of a truss �i.e., the number of bar tensions connect-
ing the node that is the number of Lagrangian constraints31�
and its number of degrees of freedom. When applied to co-
valent amorphous networks and once the forces acting as
constraints are identified �BS and BB forces�, a similar
analysis can be performed leading to the Phillips-Thorpe ri-
gidity transition,11 which separates flexible �undercon-
strained� networks from stressed rigid �overconstrained�
networks.8–13 At the transition, a vanishing of the number of
low-frequency modes �floppy modes� f is obtained,11 where f
represents internal degrees of freedom which permit local
deformations of the network.

As in standard mechanics, however, instead of treating
forces and querying about motion, one can ask the opposite
question and try to relate motion to the absence of a restoring
force. This is done in the present approach from FPMD. We
generate atomic scale trajectories of various amorphous sys-
tems at low temperature using the aforementioned electronic
models and apply a structural analysis in relation with rigid-
ity theory. The statistical analysis is performed by averaging
over space �structure average� and time �trajectories�.

1. Neighbor distributions

Since we are dealing with octahedral and possibly tetra-
hedral structures, around each atom in a given structure, we
consider at least the six first neighbors i that are sorted ac-
cording to their distance and we analyze the distribution hi�r�
of these distances, as first done in Ref. 15, the sum of which
yields the pair correlation function g�r�. The actual number
of neighbors r, and hence the number of BS constraints, is
calculated here by integrating the radial distribution function
up to its first minimum. According to the constraint enumera-
tion, one has r /2 BS constraints for a r-coordinated atom.11

2. Partial bond angle distributions

To estimate the number of bond-bending constraints we
analyze partial bond angle distributions �PBADs� defined as
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follows. For each type of central atom 0, the six first neigh-
bors i are selected and sorted according to their distances and
the PBADs P��ij� of the 15 corresponding angles i0j �i
=1, . . . ,5, j=2, . . . ,6� are calculated, i.e., 102, 103, 203, etc.
�Fig. 1�. The choice of looking up to j=6 is motivated by the
fact that in telluride systems octahedral local structures with
six neighbors around a central atom are expected in both the
crystalline6 and amorphous phases.18 Reduction to a lower
number of possible neighbor or angles in, e.g., the case of
purely tetrahedral systems, is straightforward, as noticed be-
low from the angle number assignment.

The standard deviation ��ij
of P��ij� �or full width at half

maximum in case of a regular distribution� provides a quan-
titative estimate of the angular excursion around the mean

value �̄ij of angle i0j, thus measuring the strength of the
bond-bending restoring force. An angle displaying a wide
��ij

corresponds to a broken BB constraint as there is a weak
interaction to maintain the angle fixed. In an opposite way,
sharp bond angle distributions lead to intact constraints. This
way of analyzing the results of FPMD simulations provides a
firm basis for the enumeration of BS and BB constraints in
complex materials.

We have also checked for system size effects for selected
compositions. Of course, realistically probing the effect of
system size on the neighbor distributions and PBAD’s would
require a significant change in the box sizes, on all seven
alloy compositions studied, certainly beyond the standard
computational capabilities. We already used large boxes, up
to �200 atoms, which are comparable to other studies in the
field.16,17 One can reasonably estimate that if the pair corre-
lation is correct up to a distance equal to half of the smallest
cell dimension �in the present case, this is approximately
equal to 8 Å�, the angular distribution between first neigh-
bors �bonds smaller than typically 3.2 Å� angle are also very
well converged. As a test, we have compared the partial pair
distribution functions �PDFs� and PBADs of the Sb2Te3 sys-
tem, which has been simulated with the same thermal history

using two different box sizes �125 and 210 atoms�. Agree-
ment between the PDF’s obtained with the different box
sizes is quasiperfect, and while PBAD’s have small differ-
ences in shape, the extracted second moment �standard de-
viations� of the distributions are nearly identical.

C. Benchmark case GeSe2

In order to check this method, we first apply it to the
benchmark case GeSe2, for which application of constraint
counting algorithms is straightforward.11 According to the
Phillips-Thorpe enumeration, one has for a r-coordinated
atom, respectively, r /2 and 2r–3 BS and BB constraints.
Thus a fourfold Ge atom has two BS and five BB constraints
whereas the twofold selenium atom has one BS and one BB
constraint leading to an overall number of constraints per
atom, nc, equal to 3.67.11

We have computed the Ge- and Se-centered pair distribu-
tion functions and the neighbor distributions �Fig. 2�. These
pair distribution functions reproduce very well the experi-
mental data from Salmon and co-workers.32 At short dis-
tances, and up to r=3.5–4 Å, the sum of all neighbors dis-
tributions also agree well with experiments. It can be clearly
seen from Fig. 2�a� that Ge has r=4 neighbors contributing
to the first peak, well separated from the other neighbors
�which leads to the minimum observed in gGeSe+gGeGe
around 2.75 Å�. Integration of the first peak up to the mini-
mum at 2.75 Å �respectively, 2.78 Å for selenium� leads to
similar values �respectively, 4.01 and 1.97 for Ge and Se�.
Since the number of BS constraints is equal to r /2, it leads to
a respective number of BS constraints of two and one for Ge
and Se atoms.

We furthermore find that ��ij
can vary between 10° and

40° depending on the different angles i0j considered �Fig. 3�.

FIG. 1. A schematic picture for the calculation of partial bond
angle distributions �PBADs�: N closest neighbors �open circles� are
selected around a central atom 0 �filled circle�, which define corre-
sponding angles �the marked one corresponds to angle 203�. The
angle number assignment can be found in Figs. 3 and 9. See text for
details
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FIG. 2. �Color online� �a� Experimental Ge-centered pair distri-
bution function gGeGe+gGeSe �circles, data from Petri et al. �Ref.
32�� together with the distribution of neighbors �first four neighbors
in red, others in green� and the total contribution of neighbors
�black solid line�. �b� Experimental Se-centered pair distribution
function gSeGe+gSeSe �circles� together with the distribution of
neighbors �first two neighbors in red, others in green� and the total
contribution of neighbors �solid line�.
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For the Ge-centered atoms, six standard deviations ��ij
are

found to be on the order of 10° –15°, clearly separated by a
gap of about 20° from all others for which ��ij

�40°. How-
ever, there is one redundant constraint that needs to be re-
moved because it can be determined from the five other
angles. This leaves the estimate with five independent BB
constraints for the Ge atom. For the Se atom, a single low
��ij

�i.e., a single BB constraint� is found �12°� around the

mean value �̄ij =100°, in agreement with experiment.33 We
thus show that the constraint computation from FPMD
matches exactly the direct counting from Ref. 11.

III. AMORPHOUS GE-SB-TE MATERIALS

A. Structural results

As shown in Fig. 4 for amorphous GeTe and Ge2Sb2Te5
the structure factors obtained from the simulations compare
favorably with the available experimental S�q� obtained by
x-ray scattering.34 All peaks �and especially the first ones
found around 2, 3.2, and 5 Å−1� are reasonably well repro-
duced in height and position.

Turning to real space properties, we first stress that our
amorphous Ge2Sb2Te5 structure is very close to that obtained
separately by Akola and Jones,16 and by Caravati et al.,17

which use the same DFT scheme and a similar simulation
box size. Our results differ slightly from those obtained in an
elongated cell, in which the smallest dimension is only on
the order of three to four interatomic bonds.35 It suggests that
the shape of the simulation box may affect results on coor-

dination numbers. However, we have checked that the
present results were robust in terms of size effects by com-
paring simulations on cubic boxes with 125 and 210 atoms.
The Ge-Te and Sb-Te distances are, respectively, found at
2.78 and 2.93 Å, close to experimental findings from x-ray
diffraction and extended x-ray absorption fine structure
�EXAFS�.6,36 A full structural analysis of the seven alloys
investigated is not the purpose of this paper, and will be
given elsewhere.

In order to avoid a cumbersome presentation, we focus on
the most interesting histograms hi�r� �i=1, . . . ,6� of the six
first neighbors contributions around selected atomic species
calculated from the trajectories obtained by FPMD on Ge-
Sb-Te alloys in the amorphous phase. They are presented in
Figs. 5–7. Noteworthy at a first glance is the fact that the Ge
environment is very different in these materials, when com-
pared to GeSe2, as emphasized by the absence of a clear gap
between the first and second shells of neighbors �2.75 Å in
GeSe2, see Fig. 2�a��. Furthermore, GeTe6 �106�, Ge1Sb2Te4
�124�, and Ge2Sb2Te5 �225� display a bimodal distribution
for the fourth neighbor distribution �Fig. 5� around Ge atoms.
These two contributions arise from the mixture of �distorted�
octahedral and tetrahedral environments �see Ref. 37 for a
detailed analysis�. A closer examination of the structure al-
lows the determination of the fraction �4 of tetrahedral Ge
species used below.

The present findings contrast with those found in absence
of tellurium as in GeSb6, shown in Fig. 6: around Ge atoms,
a clear separation is found between the first four equivalent
neighbors and the remaining fifth and sixth neighbors. These
features are indicative of a tetrahedral environment also evi-
denced by the angular analysis �see below�.

In systems without germanium, e.g., Sb2Te �Fig. 7�, an
intermediate fourth neighboring atom can be found between
the first shell �i=1, . . . ,3� and the second shell of neighbors
�i=5,6� around a central Sb atom. Similarly, the coordina-
tion number of Te is here obviously larger than two, as h3�r�
will be found close to the location of the minimum of the
Te-centered pair distribution function.

By integrating the properly weighted partial radial distri-
bution functions, the number of neighbors ni�r� around each
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FIG. 3. �Color online� �a� Ge-centered partial bond angle bond
angle distributions �PBADs, up to 15� for various triplets of atoms
i0j �i=1, . . . ,6, j=2, . . . ,5� in amorphous GeSe2. The six colored
distributions have a low standard deviation �typically 10° –20°, see
panel �b��. The angle number assignments �1, . . . ,15� displayed in
the Ge panel are valid for all other angular studies. �b� Standard
deviation ��ij

of the distributions as a function of the angle number
in amorphous GeSe2: Ge- �red� and Se- �blue� centered angles.
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atomic species as a function of the integration distance can
be obtained. This allows us to extract a coordination number
ri �i=Ge,Sb,Te� to be used as input for the count of BS

constraints. Figure 8 shows this quantity ni�r� as a function
of the radial distance. We used the most commonly accepted
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FIG. 5. �Color online� Histograms hi�r� of the six first neighbors
contributions around Ge species in amorphous GeTe6 �101, top�,
Ge1Sb2Te4 �124�, and Ge2Sb2Te5 �225, bottom� alloys. Full black
lines correspond to the short bonds contributing to the first peak in
pair distribution functions �PDFs�, while dashed blue lines corre-
spond to neighbors lying beyond the first minimum of the PDF
�second neighbor shell�. Red lines correspond to the fourth neighbor
distribution, spanning these two shells. The bimodal character of the
first shell indicates that distorted octahedral and tetrahedral environ-
ments for Ge atoms coexist.

FIG. 6. �Color online� Histograms hi�r� of the six first neighbors
contributions around Ge species in amorphous GeSb6 �160�. Black
curves are assigned to the first four neighbors, while dotted blue
curves are assigned to neighbors 5 and 6.
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FIG. 7. �Color online� Histograms hi�r� of the six first neighbors
contributions around Sb �top� and Te �bottom� species in amorphous
Sb2Te �021�. Black curves are assigned to the first neighbors, red
curves to the neighbor distribution located at the g�r� minimum,
while dotted blue curves are assigned to neighbors 5 and 6.
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rule by integrating the radial distribution function up to its
first minimum and we checked the influence of reasonable
changes in the location of this minimum. The maximum er-
ror on the number of neighbors is �0.3, and half of it on the

BS contribution to the constraint. For additional check, we
quenched the liquid configurations of the Ge1Sb2Te4 alloy,
obtained at three densities18 and checked that the correspond-
ing changes in number of neighbors remained within these
error bars.

B. Stretching and bending constraints

Having shown that this method was able to reproduce the
Maxwell constraint count for GeSe2, we now turn to the
amorphous Ge-Sb-Te system and focus on the constraint
analysis of the seven particular compositions, namely,
Ge1Sb2Te4 �124�, Ge2Sb2Te5 �225�, GeTe �101�, GeTe6
�106�, GeSb6 �160�, Sb2Te �021�, and Sb2Te3 �023� �see also
Fig. 14�. We determine �Table I� the BS constraints from the
coordination numbers extracted from Fig. 8. The coordina-
tion number of Ge and Sb is nearly equal to r=4, with a
preference for heteropolar bonding with Te atoms, which
have a coordination number between 2.1 and 2.9, larger than
the 8-N value �r=2� as seen from the particular example of
Sb2Te �Fig. 7�.

The Ge-, Sb-, and Te-centered PBADs P��ij� for the 124
compound are displayed in Fig. 9. Some specific angles

clearly display a limited motion around their mean value �̄ij.
Figures 10–12 show the 15 different mean angles �first mo-
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FIG. 8. �Color online� Integrated number of neighbors ni�r�
around Ge, Sb, and Te atomic species in selected amorphous Ge-
Sb-Te systems. The vertical bar indicates the distance cutoff chosen
to calculate the number of first neighbors ri, and hence the BS
constraints.

TABLE I. Coordination number ri of the atomic species, giving
the number of BS constraints �ri /2�, number of BB constraints ni

BB

computed from the standard deviations of the PBADs P��ij�, and
total number of constraints nc in the seven different Ge-Sb-Te com-
pounds. Cutoff distances to calculate ri are 3.17, 3.22, and 3.17 Å
for Ge, Sb, and Te, respectively. Error bars on ri are calculated
using cutoff values of �0.08 Å. BB constraints, corresponding to a
number of rigid angles, are integer values for Sb and Te. Since Ge
may display two different environments, with three BB constraints
for distorted octahedral, and five for tetrahedral, a weighted average
is taken, with error bars arising from the tetrahedral fraction ��4�
estimate. See text for details.

Compound Atom ri ni
BB nc

GeTe6 Ge 4.0�0.2 3.3�0.1 2.73�0.16

Te 2.6�0.3 1.0

GeTe Ge 4.2�0.3 3.1�0.1 3.87�0.17

Te 3.1�0.2 1.0

Ge1Sb2Te4 Ge 3.7�0.3 3.4�0.1 3.42�0.14

Sb 3.7�0.3 3.0

Te 2.5�0.2 1.0

Ge2Sb2Te5 Ge 4.1�0.2 3.2�0.1 3.57�0.12

Sb 3.9�0.2 3.0

Te 2.7�0.2 1.0

GeSb6 Ge 4.2�0.1 5.0 5.26�0.14

Sb 3.9�0.3 3.0

Sb2Te Sb 3.8�0.2 3.0 4.00�0.10

Te 2.4�0.2 1.0

Sb2Te3 Sb 3.7�0.3 3.0 3.23�0.12

Te 2.3�0.2 1.0
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ments� �̄ij and the standard deviations ��ij
for the composi-

tions 124, 225, and 160, leading to the determination of cor-
responding BB constraints for Ge, Sb and Te atoms.
Compared to the benchmark system GeSe2, we notice that
��ij

is more scattered for large angle number n �i.e., n�6�,
which suggests an increased orientational disorder when
more distant neighbors are considered.

In the ternary compositions 124 and 225, only three stan-
dard deviations are on the order of ��ij

�10° –15° for the Ge

and Sb atoms, associated with well-defined angles at �̄ij

=90° –100°, which define the equatorial plane of the octa-
hedra and are reminiscent of the distorted octahedral-like
rocksalt cubic phase.6,7 All Te-containing systems display a
clear splitting between low ��ij

for intact bond angle con-
straints and larger standard deviations ���ij

=30° –40°�.
Those are the cleanest situations when the separation be-
tween low and high standard deviations have a significant
gap �typically ���ij

=10° –15°�. However, with an increased
number of constraints �as highlighted by the GeSb6 system
of Fig. 12 for which nc=5.26�, this gap tends to decrease
because the very large network connectedness now
strengthen weaker forces �e.g., torsional forces� and reduce
possible second-neighbor motions.

C. Discussion

The present results contrast with the view that would fol-
low the standard enumeration of constraints, directly derived
from coordination numbers obeying the 8-N rule. In fact, a
threefold Sb would give rise to 1.5 BS and 3 BB
constraints.11 Here, Sb has an additional neighbor that in-
creases the number of BS constraints to 2, but it does not
give rise to two additional BB constraints �Figs. 10 and 11�.
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FIG. 9. �Color online� Ge-, Sb-, and Te-centered bond angle
distribution in the Ge1Sb2Te4 �124� amorphous system. The curves
in color correspond to distributions with a low standard deviation
��ij

considered as having intact BB constraints. The peaks around
50° correspond to the steric hindrance �hard-core repulsion between
neighboring atoms�.
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FIG. 10. �Color online� Mean angle �̄ij and angular standard
deviation ��ij

of the PBADs of Ge1Sb2Te4 �124� amorphous sys-
tems as a function of angle number for Ge- �black�, Sb- �red�, and
Te- �blue� centered atoms. The correspondence between angle num-
ber �x axis� and angles �i0j�, with 0 as the central atom and i and j
as the neighbors, is given in Figs. 3 and 9. Only three Ge and Sb
�one Te� angles have a low ��ij

, corresponding to intact BB
constraints.
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FIG. 11. �Color online� Mean angle �̄ij and angular standard
deviation ��ij

of the PBADs of Ge2Sb2Te5 �225� amorphous sys-
tems as a function of angle number for Ge- �black�, Sb- �red�, and
Te- �blue� centered atoms. The correspondence between angle num-
ber �x axis� and angles �i0j�, with 0 as the central atom and i and j
as the neighbors, is given in Figs. 3 and 9. Only three Ge and Sb
�one Te� angles have a low ��ij

, corresponding to intact BB
constraints.
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In 124 and 225, only three Sb angles have a standard devia-

tion of 10° –15° corresponding to mean angles �̄ij =95°.
Although tellurium has more than two neighbors �rTe

�2�, as shown in Fig. 7 for alloy 021, it has only one angu-

lar constraint �Fig. 10, ��ij
=12° in the 124 and �̄ij �95°, also

seen from Fig. 9�, the two other possible angles �angle num-
ber 2: 103 and 6: 203� being much more flexible ���ij =27°
and 29°�. On the basis of this enumeration, and using results
of Table I and of Figs. 10–12, a Maxwell estimate for the
number of BS and BB constraints of GexSbyTe1−x−y is given
by

nc =
1

2
�x�rGe − rTe� + y�rSb − rTe� + rTe�

+ �x�nGe
BB − nTe

BB� + y�nSb
BB − nTe

BB� + nTe
BB� , �1�

where the square brackets are used to separate BS from BB
contributions. Results for nc from Eq. �1� are given in Table
I.

In order to obtain a counting that takes into account dif-
ferent local topologies, a more subtle analysis is needed to
compute the number of constraints in the ternary alloys in-
volving both germanium and tellurium atoms. In fact, two
local environments can be found for fourfold Ge in the pres-
ence of tellurium as emphasized by Fig. 5: a majority of
distorted octahedral sites having three constraints for the

angles �̄ij =90° –100° �see average result in Figs. 10 and 11�,
and a minority �with fraction �4� of tetrahedral Ge �calcu-
lated to be, respectively, �4=0.1 and �4=0.2 in the 225 and
124, also found in Refs. 16 and 17�, which have 5 BB con-
straints as in GeSe2. The determination of BB constraints can
be generalized to mixed environments without any ambiguity
as seen for Ge1Sb2Te4 �Fig. 13�. For instance, after the iden-
tification of tetrahedra in Ge1Sb2Te4, it is possible to obtain

the standard deviation ��ij
depending on the local structure,

tetrahedral or octahedral. It appears clearly �Fig. 13� that the
tetrahedral Ge sites have six rigid angles, corresponding to
five BB constraints as in the GeSe2 benchmark, while the
distorted octahedral ones have only three rigid angles and
BB constraints. This means that the average number of ger-
manium BB constraints is nGe

BB=5�4+3�1−�4�=3+2�4 and
gives for the Maxwell estimate,

nc = �rGe
x

2
+ rSb

y

2
+ �1 − x − y�rTe

1

2
�

+ x�3 + 2�4� + 3y + �1 − x − y� �2�

and finally to nc
124=3.42 and nc

225=3.57, with rTe being cal-
culated for each composition using Table I. One can thus
conclude that 124 and 225 are stressed rigid, i.e., they have
more constraints than degrees of freedom �three in three di-
mensions�. The present results contrast with a constraint enu-
meration based on EXAFS measurements, and with the re-
ported assumption that GST materials are perfect glasses,19

but they agree with the obvious observation that, apart the
106 alloy,38 which is found flexible, but close to the optimal
nc=3, none of the alloys studied can form bulk glasses.

Again, we note that the GeSb6 compound behaves very
differently from tellurium containing alloys, as already em-
phasized in Fig. 6. Integration of the first peak of the pair
distribution functions gGeGe+gGeSb and gSbSb+gSbGe leads to
a coordination number for Ge and Sb which is, respectively,
4.15 and 3.70. However, the origin of a nearly similar coor-
dination number for both species is quite different. One has
indeed an octahedral distorted structure for the Sb atom as
manifested by three angles close to a mean angle of 95° �Fig.
12�, whereas the closest angles for the Ge atom are indicative
of a tetrahedral environment �109°�. Corresponding con-
straints are intact, i.e., they show a low standard deviation,
on the order of 15° –20°. In this respect, it appears that from
the viewpoint of rigidity Sb is close to what is obtained in
ternary telluride compounds while Ge is tetrahedral and be-
haves similarly to what is obtained for GeSe2.

IV. RIGIDITY TRANSITION IN TELLURIDES

Using these elements, we now determine an approximate
flexible to rigid transition composition11 from the Maxwell
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FIG. 12. �Color online� Mean angle �̄ij and angular standard
deviation ��ij

of the PBADs of GeSb6 �160� amorphous systems as
a function of angle number for Ge- �black� and Sb- �red� centered
atoms. The correspondence between angle number �x axis� and
angles �i0j�, with 0 as the central atom and i and j as the neighbors,
is given in Figs. 3 and 9.
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estimate corresponding to nc=3. Considering the numbers
given in Table I, we make simple assumptions: Ge has four
neighbors �rGe=4� with a fraction �4 of tetrahedral sites, Sb
has rSb=3.8 neighbors in a distorted octahedral geometry
�nSb

BB=3�, and Te has rTe=2.6 neighbors and one BB con-
straint. Pure amorphous Ge is known to be a tetrahedral net-
work and in GeSb6 all Ge are tetrahedral ��4=1, Figs. 6 and
12� and the addition of Te effectively lowers the fraction �4
of tetrahedral Ge. For the sake of simplicity, we assume that
�4=x+y. Inserting these numbers into Eq. �2� and requesting
nc=3, one finally obtains a parameter-free rigidity transition
line relating the compositions x and y,

y �
7

26 + 20x
− x . �3�

The Maxwell line, defined by Eq. �3�, is found to be close
to the compositional join GeTe4-SbTe4 or, e.g., to the
GeSbTe8 alloy on the GexSbxTe1−2x tie line �Fig. 14�. Equa-
tion �3� defines two regions in the GST triangle. In the
tellurium-rich region the system has not enough Ge or Sb
cross links to ensure rigidity and local deformations are al-
lowed. In the second region, where usual PCMs are found,
the amorphous phases are stressed rigid. Bulk glass forma-
tion seems to be only possible in the flexible phase as shown
from experimental data.39 This behavior clearly contrasts
with sulfide and selenide analogs, and the origin of this dif-
ference in glass-forming ability will need additional studies
to be fully understood. Undoubtedly, answers should be pro-
vided by a detailed study of the liquid phase, and we conjec-
ture that the increase in the Te coordination number �thus in

the number of constraints� with temperature40 is playing a
key role, a feature that is not observed in sulfur and selenium
liquids.

The location of the transition line in the compositional
triangle �Fig. 14� appears also to be different from what is
known in corresponding group IV-V selenides.8 In the Ge-
As-Se system where the 8-N rule holds, a Maxwell transition
line is found along the As2Se3-GeSe4 join as evidenced from
isocoordination rule studies.41 Compared to As2Se3, the shift
of the transition to the chalcogen-rich compositions along the
group V telluride axis can be understood from the present
results. Since As has 4.5 constraints �1.5 BS and 3 BB� and
Se has two constraints, whereas Sb has 4.85–4.9 constraints
and Te has 2.15–2.20 constraints �Table I�, the fulfillment of
nc=3 in tellurides will need less cross-linking �Sb� elements,
and will therefore shift the transition line to the chalcogen-
rich region.

Although the mechanical properties of the amorphous
phase probably play a role in the recrystallization process,
the most important direct application of the present analysis
concerns the aging of the amorphous structure, and conse-
quently the drift of its electrical resistivity with time. As
aging has been found to be very small in optimally con-
strained glasses,13 we expect small drifts for alloy composi-
tions yielding a number of constraints close to the rigidity
transition �nc=3�. Because of the need to have both an amor-
phous and a �meta�stable crystalline phase with the same
global composition, not all the stoichiometries in the Ge-
Sb-Te ternary can be considered for phase-change applica-
tions. However, doping an established PC material with ele-
ments contributing to a lowering of the constraints should
lead to improved properties as far as the aging is concerned.
This technologically important issue should obviously be ad-
dressed experimentally.

V. CONCLUSION

We have developed a constraint counting algorithm appli-
cable to tellurides for which a simple counting based on the
8-N �octet� rule does not apply in a straightforward manner.
We show that atomic scale trajectories obtained from first-
principles molecular-dynamics simulations can be appropri-
ately used for bond-stretching �BS� and bond-bending �BB�
constraint counting and applied to the GST phase-change
system, a family of huge technological interest. The results
show that amorphous systems lying on the popular
Sb2Te3-GeTe tie line in the GST compositional triangle be-
long to a stressed rigid phase, whereas an isostatic stress-free
Phillips-Thorpe rigidity transition line is obtained close to
the SbTe4-GeTe4 join. We have sketched here the very gen-
eral behavior and more detailed experimental and theoretical
studies �e.g., along the GexSbxTe1−2x line shown in Fig. 14�
close to the threshold are certainly welcome to fully charac-
terize the transition. On the other hand, since it has been
found in amorphous selenides and sulphides that composi-
tions around this transition line display some remarkable
properties such as absence of aging, stress-free character and
space-filling tendencies,9 one may wonder to what extent
these properties can be observed in tellurides as well, and
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FIG. 14. �Color online� Contour map of the number of con-
straints nc in the ternary GexSbyTe1−x−y phase diagram. The red and
green lines correspond, respectively, to the stressed rigid and flex-
ible phase. Blue circles represent the compositions studied by
FPMD. The thick black line represents the rigidity transition line
defined by Eq. �2� and separates the flexible �Te rich� from the
stressed rigid phase where most PCMs can be found, especially on
the GeTe-Sb2Te3 tie line �black line�. Small green dots in the flex-
ible phase represent bulk glass compositions obtained experimen-
tally �Ref. 39�.
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how these properties, once being observed, could be used in
close future to design phase-change materials with the corre-
sponding functionality.
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