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We investigated the diffusion of arsenic �As� in �100�-uniaxially compressive and tensile stressed silicon
with density functional simulations, for stress values up to 1.8 GPa. At a temperature of 1000 °C, the diffusion
coefficient of the most prevalent As vacancy pair �As-V� was found to be up to eight times higher in com-
pressively strained silicon than in the unstrained case. Under tensile strain, the diffusion coefficient was found
to be changed by a factor of maximally 0.8. In molecular dynamics simulations, we observed As-V to diffuse
via a ring mechanism in relaxed silicon, with a calculated overall energy barrier of 1.29 eV. Poisson’s ratio of
uniaxially strained silicon in the �100� direction was calculated to be 0.26.
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I. INTRODUCTION

The ongoing aggressive scaling of semiconductor devices
requires ultrashallow junctions. Arsenic, with its high solu-
bility and rather low diffusivity, is the preferred n-type dop-
ant for silicon.1 However, during postimplantation annealing
at high concentrations, As exhibits the phenomenon of tran-
sient enhanced diffusion, explained by V-mediated
diffusion.2,3 A solid understanding of arsenic vacancy pair
�As-V� diffusion is therefore very important to control the
resulting dopant profile spreading. Another challenging task
in the fabrication of scaled devices is the improvement of the
electrical performance through mobility enhancement. In re-
cent years, strain engineering has established itself as a very
successful technique in this regard. Uniaxial strain is pre-
ferred in most complementary metal-oxide semiconductor
transistor technologies.4

In this paper, we present an ab initio study of As diffusion
in uniaxially strained silicon. First, the elastic behavior of
crystalline silicon under compressive and tensile stress was
investigated by calculating Poisson’s ratio. The obtained re-
sult was used for all simulations with strained structures. In a
second step, we determined the strain dependence of the rela-
tive diffusion coefficient for the most prevalent mobile As
defect. From the strain-dependent minimum energy configu-
rations of the four mobile defects I �self-interstitial�, V �va-
cancy�, As-I �arsenic interstitial�, and As-V, the last one was
determined as the most numerous defect due to its signifi-
cantly smaller formation energy. In contrast to previous ab
initio work on As-V diffusion in strained silicon,5 we exam-
ined its diffusion mechanism with molecular dynamics �MD�
simulations. Furthermore, all migration steps of the observed
ring mechanism were considered. The calculated migration
barriers were combined with the formation energies to finally
estimate the As-V diffusion coefficient.

The density functional simulations were performed with
the Vienna ab initio simulation package �VASP�.6,7 The pro-
jector augmented wave �PAW� method8 was used. The cutoff
for the plane-wave expansion was set to 300 eV, and the
condition for electronic selfconsistency was 10−4 eV. Ex-
change and correlation effects were calculated with the gen-
eralized gradient approximation �GGA� �Perdew-Wang 91�.
The Brillouin zone was sampled only at the � point. The

atomic structure minimization was performed by the conju-
gate gradient algorithm. The MD simulations were per-
formed with a time step of 1 fs and in a simulation cell with
with 64�1 atoms. For nudged elastic band �NEB� simula-
tions, the same supercell was used. The relaxations to deter-
mine minimum energy configurations were performed in
216�1 atom supercells. In all simulations with unstrained
silicon the calculated lattice constant was set to 5.47 Å.

II. RESULTS AND DISCUSSION

A. Poisson ratio of silicon

As preliminary investigation into defect structures of
strained silicon, we studied perfect silicon under uniaxial
stress. If compressive stress is applied in the �100� direction,
the structure is relaxed equally in the two other perpendicular
directions. For tensile stress, the crystal contracts equally in
those directions. The relation between uniaxial stress ��xx�
and strain ��xx� in the �100� direction is given by Young’s
modulus Y100: �xx=

�xx

Y100
. The strain resulting in the two sym-

metrically equivalent perpendicular directions �010� and
�001� is given by Poisson’s ratio

� = −
��

��

= −
�yy

�xx
= −

�zz

�xx
. �1�

Y100=1.3�1012 dyn /cm2 leads to a compressive and tensile
strain value of 0.014 for the stress maximum of 1.8 GPa.9

The perpendicular strains ��yy and �zz� were derived with
ab initio simulations. We calculated the total energy of per-
fect silicon for a combination of uniformly distributed strain
values �Fig. 1�. As theory10 postulates a quadratic relation
between the energy of a linear elastic solid and the applied
strain, we fitted the calculated energies to obtain the equation

Etot
Si − Eref

Si �eV� = 2157�xx
2 + 6077�yy

2 + 3214�xx�yy , �2�

and minimized the fit function to �yy for constant �xx. In
agreement with Eq. �1�, this leads to a linear relation of par-
allel and perpendicular strain. From our calculations, we
found Poisson ratio �=0.26, which agrees very well with
other experimental11 ��=0.27� and theoretical9 ��=0.28�
studies.
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B. Mobile defects

The minimum energy configurations of the four mobile
defects V, I, As-I, and As-V were determined with relax-
ations for each applied strain value. For the interstitial de-
fects, we investigated the two split orientations �110� and
�011� because they are not equivalent in uniaxially strained
silicon. Each of the four remaining split orientations is sym-
metrically equivalent to one of them. The coordinate systems
of strained structures differ from each other. In order to com-
pare the strain minimum configurations in the same coordi-
nate system, we transformed them into the coordinate system
of unstrained silicon. To visualize the 3N-dimensional
�N=216�1� configuration space, it was reduced to two di-
mensions by a classical multidimensional scaling
technique.12 Figure 2 shows the minimum energy configura-
tions in the lattice of perfect unstrained silicon and in the
reduced configuration space. Points in the configuration
space that are grouped together were regarded as having the
same configuration. With this definition, we identified the
following three configuration classes:

�1� Separated, The configurations of V are separated into
two groups �Fig. 2�a��, corresponding to different Jahn-Teller
distortions for tensile �blue� and compressive �red� strain.
The four silicon neighbors of V form pairs, which are char-
acterized by atom distances. The two atoms of the same pair
are closer to each other than to an atom of the other pair. In
compressive silicon the pairs have �110�- and

�1̄10�-orientation and in the tensile case they are �011� and

�011̄� oriented.
�2� Strain independent, The minimum energy configura-

tions of the interstitial defects are all split configurations that
are identical for differently strained silicon �Figs. 2�b�–2�e��.

�3� Continuously changing, Although V and As atom are

direct neighbors in all As-V configurations, there are small
but continuous changes in configurations for the different
strains �Fig. 2�f��.

From these results, we conclude that the minimum energy
configurations of defects can change in silicon with different
strains. The formation energy calculation of defects in
strained silicon is a generalization of the unstrained case.13,14

The formation energy of a defect X in silicon with strain � is
calculated according to

Ef
X��� = Etot

X ��� − �
i

ni�i��� , �3�

where Etot
X ��� is the total energy of the strained supercell

containing the defect X and ni is the number of atoms of type
i in the supercell. The corresponding reference energy �i���
is the strained equivalent to �i��=0�, defined in Refs. 13 and
14.

For the cases of perfect silicon and silicon with a defect,
we assumed that the total energy exhibits a quadratic strain
dependence. In combination with Eqs. �1� and �3�, similar to
earlier work,15 this assumption permits to express the forma-
tion energy of a defect as a quadratic function of the applied
uniaxial strain �xx. The results are presented in Fig. 3.

The formation energies of the two discovered V configu-
rations for tensile and compressive strain were reproduced
with two fits that coincide for the unstrained case. Compared
to the unstrained case, the formation of V is increasingly
favored for both tensile and compressive strains. The self-
interstitial is an additional atom in the bulk and a volume
increase supports its formation. An extension of the lattice
decreases the formation energy. For tensile strains, the for-
mation of the �110� orientation is favored. For compressive
strains, the self-interstitial has �011� orientation. Similarly,
the formation energies of both As-I orientations decrease
when the structure is extended. While the As-I�110� is fa-
vored for compressive strains, none of the orientations is
preferred for the tensile case. The formation energies of the
different minimum energy configurations of As-V were ap-
proximated with two fits. Compared to the other mobile de-
fects, the formation energies of As-V are significantly
smaller �at least 0.5 eV�. This agrees with the prevailing
opinion in literature16–18 that As-V makes a dominant contri-
bution to As diffusion in silicon.

C. Diffusion mechanism of As-V

We analyzed the diffusion mechanism of the As-V pair by
a systematic combination of MD, relaxations and NEB simu-

TABLE I. Statistics of the MD simulation. Left part: Migration
mechanisms and number of visits in a configuration. Right part:
Total time spent in a configuration by the vacancy.

Mechanism Number of events Configuration
Time
�ps�

Exchange 8 NN1 164.0

NN1↔NN2 6 NN2 4.6

NN2↔NN3 1 NN3 1.4

FIG. 1. �Color� The calculated total energies of silicon �black
dots� for different combinations of perpendicular and parallel strain
and quadratic fit �blue surface�. The strain values for which the
energies are minimal are represented by the red line.
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lations. We performed a MD simulation of 170 ps at
1000 °C. Our result confirmed the ring mechanism proposed
in other studies.19,20 After the MD simulation, start and end
configurations of the appropriate migrations were determined

with relaxations from corresponding MD steps. The migra-
tion barriers between these configurations were finally calcu-
lated with NEB simulations �Fig. 4�a��. They are in the same
range as those of other ab initio studies.19,20 Starting from the

(a) (b)

(c) (d)

(e) (f)

FIG. 2. �Color� The minimum energy configurations of the mobile defects in real �upper� and reduced configuration �lower� space. The
saturation of the colors for compressive �red� and tensile �blue� strain increases for values toward the unstrained case �black�. The axis unit
of the configuration space is given in Angström. The As atom is represented by a larger sphere.

AB INITIO CALCULATIONS OF ARSENIC IN… PHYSICAL REVIEW B 81, 174119 �2010�

174119-3



preferred minimum energy configuration NN1, the exchange
event was most frequent �Table I� due to its smallest energy
barrier �0.70 eV�. Although the NN2 configuration was vis-
ited several times, only 4.6 ps were spent in this configura-
tion. In most of the cases when V jumped to the NN2 posi-
tion, it immediately moved back into the NN1 configuration
as a consequence of the small backward barrier �0.01 eV�.
The time spent in the NN3 configuration was even shorter
�1.4 ps�.

The trajectories for the three migrations are presented in
Figs. 4�b�–4�d�. During the exchange the As atom moves
straight into the vacancy position. The silicon atom deviates
only slightly from the direct path when moving from NN3 to
NN2 �Fig. 4�d��. However, during the migration of V from
NN1 to NN2, the corresponding silicon atom does not move
on the shortest line from one lattice site to the next. It passes
a position with a small kink in the energy plot and finally
ends in a configuration slightly off a lattice site, shifted into
the direction of V. This is caused by the two cumulative

effects that V acts attractive on its neighbors whereas the As
atom repels surrounding silicon atoms.

D. As-V diffusion in strained silicon

As a next step toward the determination of the As-V dif-
fusion coefficient in uniaxially strained silicon, the diffusion
rate �As-V��� for the ring mechanism was calculated with a
simple random walk model where V jumps between the
minimum energy configurations. As all possible orientations
of the ring mechanism are symmetrically equivalent in
�100�-uniaxially strained silicon, we assume As-V to diffuse
isotropic. We considered the most probable case where V
moves directly around the hexagonal ring, i.e., it was forbid-
den to jump into previous configurations,

�As−V��� = 	�
i=1

5
1

�i���
−1

�
i=1

5 	 �i���
�i��� + �i−1���
 . �4�

Here, �i���=�ae
−Eb

i ���/kT is the rate for migration i and i−1

denotes the backward migration.21 The attempt frequency �a
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FIG. 4. �Color� Energy barriers �a� and migration trajectories
�b�–�d� of the ring mechanism calculated with NEB simulations.
For consecutive NEB images the atoms are colored from green to
blue. The As atom is indicated by a larger sphere.
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was assumed to be the same for all migrations and strains.
The correctness of this assumption is based on calculations
of the attempt frequency using strain-dependent transition
state theory. We found that their influence on �i��� is at least
a factor of 100 smaller than that of the energy barriers. In
any case, when the relative diffusion rate is finally calcu-
lated, �a cancels out. Eb

i ��� is the energy barrier of migration
i and k and T are the Boltzmann constant and the tempera-
ture, respectively. To complete our estimation of the diffu-
sion coefficient we included the calculated As-V formation
energies

DAs-V��� = D0e−Ef
As−V���/kT�As-V��� , �5�

where the prefactor D0 with dimension �cm2� was assumed
to be strain independent.

The results for the NEB barriers and the relative diffusion
rate are presented in Fig. 5. The strain dependent NEB simu-
lations were based on the MD simulation. To determine the
start and end configurations, the minimum energy configura-
tions of the MD simulation were again relaxed in strained
silicon. Besides the already discussed NN1 configuration of
As-V, also the other ring configurations showed small
changes for the different strains. As the high barriers domi-
nated in the calculation of �As-V���, only those are shown. In
contrast to the result of an ab initio study with biaxial strain,5

we found a stronger strain dependence of the relative diffu-
sion rate in compressive silicon than in tensile.

The final result for the relative diffusion coefficient calcu-
lated with Eq. �5� is shown in Fig. 6. In qualitative agree-
ment with hydrostatic pressure experiments,22 for compres-
sive strain and an annealing temperature of 1000 °C,
diffusion is strongly enhanced �by a factor of up to 8� com-
pared to unstrained silicon. This fact is a direct consequence
of the increasing diffusion rate and the decreasing formation
energy in Fig. 3, both contributing to enhanced diffusion. For
the same reasons there is no relevant change of As diffusion
in tensile strained silicon because the decreasing diffusion
rate cancels the increasing concentration. This result again
agrees with an experimental investigation.23 The same trend
is observed for other temperatures. For the compressive case

and T=600 °C, our results predict diffusion enhancement by
a factor of 20. For high temperatures �T=1400 °C�, the in-
crease is comparatively smaller, and we predict a factor of
4.7.

III. CONCLUSION

To summarize, we established a strong increase of As dif-
fusion in uniaxially compressive silicon due to increasing
As-V concentration and lowered migration barriers. In the
tensile case, these two quantities showed opposite strain de-
pendence, with the result that diffusion remained unchanged.
Next to the results, the strength of this work is the developed
methodology that combines a sequence of absolutely indis-
pensable computation steps. Our method is perfectly suited
for further investigations on point defect diffusion in strained
silicon.
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