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The phonon localized edge-modes are systematically studied, and two conditions are proposed for the
existence of the localized edge-modes: �I� coupling between different directions �x, y, or z� in the interaction
and �II� different boundary conditions in three directions. The generality of these two conditions is illustrated
by different lattice structures: one-dimensional �1D� chain, two-dimensional �2D� square lattice, 2D graphene,
three-dimensional �3D� simple cubic lattice, 3D diamond structure, etc., and with different potentials: valence
force field model, Brenner potential, etc.
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In the lattice dynamics of a solid state system with N
atoms, there is one eigenvibrational vector u�
= �u�1 ,u�2 , . . . ,u�N� corresponding to each normal phonon
mode. In some phonon modes, a particular atom i has large
vibrational amplitude ui, and the vibrational amplitude de-
cays exponentially from this atom to its neighboring atom j,

uj � e−rij/Lc, �1�

where rij is the distance between atoms i and j, and Lc is a
constant. This is the so-called localized mode.1 The constant
Lc can be taken as the localization length or penetration
depth, and atom i as the core of this localized mode. The
localized mode usually appears around impurities with
smaller mass,1 vacancy defect,2 or in some superlattice
structures.3–5 Among others, there is a particular important
class of localized modes, where the localization origins from
the edge and surface configuration and the core is the edge
and surface atoms. The vibrational amplitude in this mode is
very large for atoms on the edge and surface, and decays
exponentially into the inner region of the system.6 This type
of localized modes will be referred to as localized edge-
modes �LEMs� in the present paper. The LEM exhibits its
importance in various physical processes. It governs the gen-
eration of defects in the quench dynamics of a system driven
across a quantum critical point.7 In thermal transport, LEM
can localize the thermal energy on the edge/surface of the
structure, which leads to very poor efficiency of pumping
thermal energy into the system through these edge regions.8

In the nonequilibrium Green’s function scheme, LEM corre-
sponds to delta peaks in the self-energy function, which in-
troduces much difficulty to implement it on computer by
molecular dynamics.9 Very recently, it was found that the
LEM also plays an important role in the dynamic instability
of microtubules which are self-assembled hollow protein
tubes playing important functions in live cells.10 Besides the
above listed importance, the LEM may have some possible
applications in thermal nanodevices considering its ability to
highly concentrate thermal energy. Although the importance
of the LEM has been recognized in many fields, research on
the origin of the LEM is still lacking, which is the aim of the
present work.

Since LEM is a double-edged sword, it is important to
understand its origin and find conditions for it, no matter we

want to make use of its advantage or to avoid its fatal disad-
vantage. In this paper, we propose two conditions for the
existence of the LEM: �I� coupling between different direc-
tions �x, y, or z� in the interaction and �II� different boundary
conditions �BCs� in three directions. The generality of these
two conditions is displayed by different lattice structures:
one-dimensional �1D� chain, two-dimensional �2D� square
lattice, 2D graphene, three-dimensional �3D� simple cubic,
and 3D diamond lattice. These two conditions are also valid
where the interaction of the system is described by different
potentials.

Two different interaction potentials are applied: the va-
lence force field model �VFFM� and the Brenner interaction
potential.12 The VFFM includes both longitudinal stretching
and transverse bending types of energy11

Vl =
kl

2
��u� j − u� j� · �e�ij

l ��2,

V� =
k�

2
��u� j − u� j� · �e�ij

���2, �2�

where kl and k� are the corresponding force constants. The
two unit vectors e�ij

l and e�ij
� are in the longitudinal and per-

pendicular directions between atoms i and j. These two po-
tentials are implemented in the “General Utility Lattice Pro-
gram” �Ref. 13�. The force constant matrix is obtained from
this code and diagonalized to achieve the eigenvalue, i.e., the
phonon frequency, and the eigenvector, i.e., the vibrational
amplitude vector u� . The localized or nonlocalized character
of each mode is then determined by examining u� with Eq.
�1�.

As a fundamental property of localized mode, one par-
ticular atom vibrates with very large amplitude in this type of
phonon modes. In the meantime, only those atoms in the
neighborhood of this particular atom can feel its vibration
and follow it to vibrate.1 In case of no coupling between
different directions in the interaction, there will be only the
longitudinal vibration modes. These phonon modes prefer to
travel along its vibrational direction instead of been local-
ized. So the first condition for LEM is �I�: coupling between
different directions in the interaction. The LEM is not simply
a common localized mode; its localization core is exactly at
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the edge of the system. As a result, it will be sensitive to the
local environment of the edge, which is determined by the
BC. So the second condition for the LEM is �II�: different
BC in three directions. In the following, we are going to use
different lattice structures to demonstrate these two condi-
tions for the LEM. Before carrying out the calculation, we
would like to make clear three issues. �1� For 2D or 3D
structures, there are more than one atom on the boundary of
the system. All of these boundary atoms are possible to serve
as the localization core of the LEM. However, we find that it
is adequate to treat just one of these boundary atoms since all
of them have equivalent number of LEM if there is any LEM
in the system. For simplicity and clarity, we consider the
LEM with the first atom on the left boundary as the localiza-
tion core. �2� We stick to the Cartesian coordinate, where the
x axis is from left to right in the horizontal direction. The y
and z axes will be rotated to display the structure more
clearly where it is necessary. The x and y axes lie in the 2D
plane in case of 2D lattice structure. �3� Each vibrational
vector is demonstrated by an arrow �red online� plotted by
VMD.14 The direction of the arrow denotes the direction of
the vibrational vector, while the length of the arrow is pro-
portional to the value of the vibrational amplitude. In some
figures for the LEM, there is a long arrow pointing from
edge into center. Attention should be paid that this arrow
displays the large vibrational amplitude of the boundary
atom, not the vibration of the inner atoms.

The inverse participation ratio �IPR� is a proper criterion
for the phonon localization property.15 The IPR for phonon
mode k is defined through the normalized eigenvector uk,

Pk
−1 = �

i=1

N ��
�=1

3

ui�,k
2 �2

, �3�

where N is the total number of atoms. We can determine the
value of IPR for the localized modes. It can be assumed that
there are m atoms that can vibrate in the localized mode, so
the vibrational amplitude for each atom is u=1 /�m consid-
ering the normalization of eigenvector u� . Then the IPR for
this mode can be obtained as P−1=1 /m. If m=1, we get a

absolute localized mode with P−1=1. This means that only
one atom can vibrate in this mode. We can say that this mode
is absolute localized around this vibrating atom. We can also
calculate the IPR for the translational phonon mode, where
all atoms have the same vibrational amplitude u=1 /�N. It is
easy to see that the IPR for this mode is P−1=1 /N. As a
result, it is straightforward to see the localization property of
a phonon mode through its IPR value. If IPR for this mode is
on the order of 1 /m, this mode is localized. Otherwise, if
IPR is on the order of 1 /N, this mode is not localized. As we
will see in the following, the value of 1 /N is usually several
orders smaller than 1 /m. So the IPR is an efficient criterion
for the phonon localization.

Figure 1 is a 1D chain, where only one atom sits at the left
and right boundaries. We find that there is no LEM in this
system. In the figure we show three typical phonon modes in
this system. In these modes, it is indeed the case that the
boundary atom has large vibrational amplitude; however, the
vibrational amplitudes do not decay from the edge into the
center. So these kinds of phonon modes are non-localized
modes. We have applied open BC in the two boundaries. If
we use the periodic BC, we will obtain the textbook har-

FIG. 1. �Color online� Three typical extended phonon modes
with large vibrational amplitude for the first boundary atom in a 1D
chain.
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FIG. 2. �Color online� The inverse participation ratio for 2D
square lattice structure. �a� Two conditions are fulfilled, �b� condi-
tion �i� is broken, and �c� condition �II� is broken. The labels a–f
denotes the six phonon modes shown in Fig. 3.
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monic oscillation eigenmodes. Here we use the VFFM vibra-
tional potential, where the interaction range is adjustable. If
the interaction range is a�rcut�2a �a as the lattice con-
stant�, each atom only interacts with its first-nearest-
neighboring �FNN� atoms; if rcut�2a, the interaction is ex-
tended to the second-nearest-neighboring �SNN� atoms. We
have changed the interaction range, and there is no LEM in
all situations. This result is quite understandable. Because in
the 1D system, there is no coupling between different direc-
tions in the interaction, and the edge only exists in the x
direction. As a result, neither conditions �I� nor �II� can be
satisfied.

Figure 2 is the IPR for a 2D square lattice system. In
panel �a�, the two conditions for the LEM are satisfied in this
system by considering interactions up to SNN which leads to
the coupling between x and y directions; and applying the
open and periodic BC in the x and y directions. In this situ-
ation, we can see many phonon modes with large value of
IPR, indicating localization. The largest value for IPR is
about 0.2, which means that this mode is localized around
about five atoms. In panel �b�, we only consider the FNN
interaction. There will be no coupling between x and y di-
rections in the square lattice system. So condition �I� will be
broken, yet condition �II� still holds. In this situation, the P−1

for all phonon modes are very small, on the order of 1 /64
=0.0156. So there is no LEM. Panel �c� shows that the situ-

ation is similar if condition �II� is broken. In Figs. 3�a�–3�f�,
we show explicitly the six phonon modes denoted by labels
�a�–�f� in Fig. 2. In panels �a� and �b�, the first boundary
atom has very large vibrational amplitude, and this vibra-
tional amplitude decays exponentially from the edge into the
center. The localization length is Lc=0.9a, where a is the
bond length. This very small localization length explicates
the good localization property of the LEM. Actually, it can
be seen from the figure that the vibrational amplitude is al-
most zero for the fourth atom from the edge. Panels �c�–�f�
are the four nonlocalized phonon modes, where the first
boundary atom can have large vibrational amplitudes, but the
amplitudes do not decay.

In the above 2D square lattice system, the SNN interac-
tion is required to introduce a coupling between x and y
directions. Now we consider the 2D graphene sheet as shown
in Fig. 4. The graphene lattice structure is quite different
from the square lattice, as the FNN interaction is enough to
couple x and y directions in the graphene. We first use the
VFFM with the FNN interaction to describe the potential of
the system. The open and periodic BC are applied in the x
and y directions, respectively. In this way, both conditions �I�
and �II� are satisfied, and we indeed see the LEM as shown
in panels �a� and �b�. We cannot break condition �I� in
graphene, since the satisfaction of condition �I� origins from
the honeycomb structure. However, we can break condition
�II� by applying open BC in both x and y directions. Now
there is no LEM in this system, and we can only see some

FIG. 3. �Color online� �a� and �b� are two LEM in the 2D square
lattice structure. �c� and �d� are two nonlocalized modes because
condition �I� is broken. �e� and �f� are two nonlocalized modes due
to the broken of condition �II�.

FIG. 4. �Color online� ��a� and �b�� LEM and ��c� and �d�� non-
localized modes in the graphene sheet. The nonlocalized mode is
due to the broken of condition �II�. The vibrational potential is the
VFFM.

FIG. 5. �Color online� LEM and nonlocalized modes in
graphene with Brenner potential. �a� and �b� are two LEM and �c�
and �d� are two nonlocalized modes.

FIG. 6. �Color online� The LEM in the simple cubic lattice
system are shown in �a� and �b�. The nonlocalized modes due the
breaking of condition �I� or �II� are in �c�, �d� or �e�, �f�,
respectively.

CONDITIONS FOR THE EXISTENCE OF PHONON… PHYSICAL REVIEW B 81, 174117 �2010�

174117-3



extended modes represented by panels �c� and �d�. We also
apply the much more complicated Brenner potential to check
whether the two conditions for the LEM is potential depen-
dent or not. The carbon-carbon bond length is a=1.42 Å.
Figure 5 gives us the same information as the VFFM poten-
tial in Fig. 4: if both conditions �I� and �II� are fulfilled, there
is LEM as displayed in panels �a� and �b�; otherwise, if con-
dition �II� is broken, there is only nonlocalized modes as
shown in �c� and �d�. This test tells us that the two conditions
�I� and �II� for the LEM are very general. They do not de-
pendent on the interaction potential of the system. Actually,
we have also tested more potentials, such as Tersoff16 poten-
tial. We get the same result as Brenner potential. We have
also considered the 2D triangular lattice structure. Similar to
graphene, condition �I� can be fulfilled by considering only
the FNN interaction in the triangular lattice. We get the same
result as graphene discussed here. We also note that the fixed
BC prefers to have LEM compared with open BC. The LEM
will always occur when fixed BC is applied in graphene.

In the above we have considered the low dimensional
system. Now we are going to discuss the 3D system. We
begin with the simplest 3D system: simple cubic lattice
structure as displayed in Fig. 6. We use the VFFM interac-
tion, and consider up to the SNN interaction so that there is
coupling between x, y, and z directions, thus satisfying con-
dition �I�. Condition �II� can also be satisfied by applying
open BC in x direction and periodic BC in y and z directions.
In this situation, we can see the LEM as shown in panels �a�
and �b�. We note that in this 3D system, condition �II� does
not require the application of periodic BC in both y and z
directions. We only have to ensure that the periodic BC is
applied to at least one of these two directions. If we only
apply periodic BC in one direction �e.g., in y direction�, we
can also obtain the LEM, although the number of the LEM is
smaller. If we break condition �I� by considering only the
FNN interaction, there are only the nonlocalized phonon
modes as displayed in panels �c� and �d�. If we break condi-
tion �II� by applying open BC in all three directions, we can
only get the nonlocalized phonon modes as demonstrated in
panels �e� and �f�.

We consider a more complicated 3D system, diamond lat-

tice. The significant difference between the diamond struc-
ture and the simple cubic lattice structure is that the FNN
interaction in diamond is enough to account for coupling
between three directions. We use the VFFM with the FNN
interaction to satisfy condition �I�; and apply the open BC in
the x direction and periodic BC in both y and z directions to
fulfill condition �II�. Under these two conditions, we can see
the LEM as shown in Figs. 7�a� and 7�b�. We cannot break
condition �I� in the diamond structure, since this condition is
naturally satisfied by its structure. We can break condition
�II� by applying open BC in all three directions. This leads to
the nonlocalized phonon modes as represented by �c� and
�d�. Besides the VFFM, we also use the Brenner potential to
describe the interaction of the diamond with the bond length
as a=1.54 Å. Similar phenomena are shown in Fig. 8 where
panels �a� and �b� are the LEM with both conditions �I� and
�II� fulfilled, while panels �c� and �d� show two typical non-
localized phonon modes with condition �II� broken.

To conclude, we have used various examples to illustrate
the two proposed conditions for the existence of the LEM:
�I� coupling between different directions �x, y or z� in the
interaction; �II� different BC in three directions. The LEM
will exist if these two conditions are satisfied simultaneously.
We use different systems to show the generality of these two
conditions: 1D chain, 2D square lattice, 2D graphene, 3D
simple cubic, and 3D diamond lattice. These two conditions
are also valid in case of different interaction potentials.

The present work sheds some light on how to efficiently
make use of the LEM where it is beneficial, and avoid it
when it causes a disaster. For example, in the study of ther-
mal transport in real materials,8 the potential has been fixed,
so condition �I� cannot be broken. We can apply same open
BC in all directions as displayed in Fig. 4 and Fig. 5 to
eliminate the LEM by breaking condition �II�.

The work is supported by a Faculty Research Grant No.
R-144-000-257-112 of National University of Singapore. We
thank H. Tang for critically reading the paper.

FIG. 7. �Color online� The LEM and nonlocalized modes in the
diamond structure with VFFM vibrational potential. �a� and �b� are
two LEM. �c� and �d� are two nonlocalized modes obtained by
breaking condition �II�.

FIG. 8. �Color online� The LEM and nonlocalized modes in the
diamond structure with Brenner potential. �a� and �b� are two LEM.
�c� and �d� are two nonlocalized modes due to the breaking of
condition �II�.
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