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We study the electronic properties of interfaces between graphene and graphane, a hydrogenated version of
graphene. It is shown that these interfaces are useful for creating an effective edge for the �-electrons of
graphene. If the interface is oriented along a zigzag direction, edge states are found. We consider two different
interface types, corresponding to usual zigzag and bearded graphene edges. It is shown that, because of a
broken symmetry, the spin-orbit interaction is strongly amplified by the graphene/graphane interface and that
the edge states are particularly susceptible to this amplification. As an application, we propose a device which
is capable of converting spin polarizations to valley polarizations and vice versa. Exploiting the amplification
of the spin-orbit interaction, this conversion may be performed at temperatures near one Kelvin. We show that
these edge states give rise to quantum spin and/or valley Hall effects.
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I. INTRODUCTION

Two-dimensional electronic systems in which the impor-
tant physics is taking place solely at the edges have received
considerable interest during the last decades, starting with
the discovery of the quantum Hall effect.1 In a strong mag-
netic field, gapless transport channels exist only at the edges
of the system and these give rise to a remarkably well-
quantized conductance. For a long time, the quantum Hall
effect was the only known phase of this type. Recently, how-
ever, gapless modes have also been predicted on the surface
of topological insulators.2–4 In contrast to the quantum Hall
system, no magnetic field is needed for the generation of
edge states in topological insulators. Instead, the spin-orbit
interaction �SOI� plays the role of the magnetic field in that it
opens a bulk energy gap. The first system in which these
states have been investigated is graphene.2,5,6 It turned out,
however, that the SOI in graphene is rather weak.7 Further-
more, it is difficult to actually construct clean structural
edges of graphene, although some experimental progress has
been reported.8

Recently, a new possibility for the construction of very
clean graphene terminations has been proposed:9,10 rather
than structurally cutting graphene in order to create nano-
structures, it has been proposed to hydrogenate it locally.
Thereby, the �-band is removed wherever graphene is trans-
formed into graphane11,12 and an effective edge is created for
the �-electrons. By this technique of local hydrogenation,
not only ribbons with high-quality edges of the usual zigzag
type �we call them �-edges, henceforth� are possible; also
bearded edges ��-edges� are within reach �see Fig. 1�.

We study such graphene/graphane �GG� interfaces of �-
and �-type and find edge states, which are exponentially lo-
calized at the interface. However, instead of being energeti-
cally nearly flat, such as in the case of structural graphene
edges, the edge states at GG interfaces have a considerable
dispersion, the amplitude of which is largely determined by
the energy of the hydrogen 1s-orbital. These edge states en-
able a quantum spin-valley Hall effect �QSVHE�. Moreover,
the SOI of these edge states is strongly enhanced due to the
proximity of graphane. As an application we propose a de-

vice which is capable of converting valley polarizations into
spin polarizations and vice versa.

II. EDGE STATES

Henceforth, we assume that all edges and interfaces are
oriented along a zigzag direction. Due to the two-atomic unit
cell of a hexagonal lattice, there are in principle two different
types of boundary conditions—�-type and �-type �see Fig.
1�. The reason why a �-edge is seldom considered is that it is
highly unstable against structural recombinations.13 Indeed,
we are not aware of any experimental observation of a stable
�-edge in graphene.14 However, if we do not require the
graphene flake to be cut in order to generate a �-edge, but
only require the hydrogen deposition on graphene to start on
a certain sublattice while the hexagonal structure remains
intact, it makes not much of a difference whether �- or
�-interfaces are to be created.

Before we turn to a more elaborate modeling of GG in-
terfaces and the related edge states which respects the
�-band and the �-band, we would like to start with a quali-
tative discussion on the basis of a very simplified model
which, as it turns out, captures most of the important con-
cepts. We begin with a tight-binding model for the
�-electrons in graphene HG= t��r,r��cr

†cr� where t�−3 eV,
�r ,r�� runs over nearest neighbors of a hexagonal lattice r
=n1a1+n2a2+sR1 �n1 , n2�Z , s=0,1� with a1 ,a2 the Bra-
vais lattice vectors and R1 the vector connecting the A and B
sublattices �see also Fig. 5�. cr is a �-electron annihilation
operator. We want to describe geometries which are lattice
translationally invariant along a zigzag direction, which we
choose to be parallel to a1 �henceforth, we call this direction
the x direction�. Thus, it is convenient to transform to elec-
tron operators dn,k,s=Nx

−1/2�n1
e−ikn1cn1,n,s, where Nx is the

number of unit cells in the ribbon along the x-direction, so
that the one-dimensional �1D� Brillouin zone is �0,2��. In
terms of the d-operators, the Hamiltonian reads

HG = t�
k,n

dn,k,A
† dn,k,B + dn,k,A

† ukdn−1,k,B + H.c., �1�

where n labels the position along the a2 direction and uk
=1+eik.
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Before we model GG interfaces, we start with a short
discussion of the usual structural edges. These edges are ob-
tained from the interface structure, shown in Fig. 1, by com-
pletely removing the graphane regions. Later, the GG inter-
faces are modeled by successively reintroducing terms in the
Hamiltonian, which describe hopping between the outermost
row of the graphene carbon atoms and the carbon atoms in
the graphane region.

In the Hamiltonian �1�, a structural �-edge is introduced
by removing all terms with operators corresponding to posi-
tions n�0 and the terms with operators corresponding to the
A sublattice site of n=0. For a �-edge only the n�0 terms
need to be removed �see Appendix A�. A Hamiltonian trun-
cated in such a way gives rise to exponentially localized,
edge states with zero energy15

	�0
�/��k�� = Nk

�/��
n=0

�

e−n/	k
�/�+in
dn,k,B/A

† 	0� , �2�

with the normalization constant Nk
�,�= �1− 	uk	�2�1/2, the lo-

calization length 	k
�,�= � �ln	uk	�−1 and some unimportant

phase 
=arg�−uk
�1�. Obviously, the �-edge state only exists

for k� � 2�
3 , 4�

3 � while the remaining k-space supports the
�-edge state. At the projections of the valleys K and K� to
the 1D Brillouin zone, i.e., K→ 2�

3 and K�→ 4�
3 , the local-

ization lengths of both edge states diverge as 2

3

	k−K	−1 or
2

3

	k−K�	−1, respectively.
For a ribbon with �- and �-edges on opposite sides, a

zero energy mode is present throughout the whole Brillouin
zone. For k� � 2�

3 , 4�
3 �, the wave function of this mode is

exponentially localized at the �-edge, whereas for
k� �− 2�

3 , 2�
3 � it is localized at the �-edge. Directly at K or

K�, the wave function of the zero energy mode is completely
delocalized over the ribbon.

Now, instead of a structural graphene edge we want to
describe a GG interface �we discuss only the �-interface, the
�-interface being analogous; see also Appendix A�. The es-
sential features are well described within a simplified model
which includes only one -C-H group at each “tooth” of the
zigzag edge �see also Fig. 5�, instead of the whole graphane

lattice. We further neglect all �-orbitals of the carbon atoms.
The Hamiltonian of this -C-H group reads

HI = tdk,C
† d0,k,B + t�dk,H

† dk,C + H.c. + 
Hdk,H
† dk,H, �3�

and must be added to the �-truncated HG, where dk,C and
dk,H are the annihilation operators of the carbon �-orbital
and the hydrogen s-orbital, respectively. Typically,

H�−0.4 eV is much smaller than the other two energy
scales t�−3 eV and t��−5.8 eV �see Appendix B�. Since
we are only interested in how the -C-H group affects the
edge state �Eq. �2��, we project HG+HI onto the subspace
spanned by the edge state and the relevant additional atomic
orbitals on the C atom �2pz-orbital� and the H atom
�1s-orbital�, i.e., �	�0

��k�� , 	C�=dk,C
† 	0� , 	H�=dk,H

† 	0��. The op-
erators dk,H and dk,C are defined in analogy to the operators
dn,k,s. The neglect of the 2s-, 2px-, and 2py-orbitals on the
additional carbon atom is justified because the edge state is
decoupled from them by symmetry. The neglect of the other
bulk states of the graphene is justified by their higher energy
and the small weight of their wave functions at the outermost
row of atoms. Below, we further justify the use of this model
by a comparison with an extended tight-binding calculation.
The projected Hamiltonian reads

Hproj. = 
 0 tNk
� 0

tNk
� 0 t�

0 t� 
H
� . �4�

In leading order perturbation theory in

H

t�
and t

t�
, this projec-

tion yields a low-energy edge state 	���k��� t�	�0
��k��

− tNk
�	H�+O�
H�	C� with energy


��k� � 
H
t2

t�2 �2 cos�k − �� − 1�, k � �2�

3
,
4�

3
� , �5�

where we have dropped terms of order

H

2

t�2 and t4

t�4 . Note that
the amplitude of the state 	���k�� is of order 
H at the C atom
of the -C-H group. As a result, the inclusion of more and
more graphane rows, i.e., -C-H groups, only leads to terms of
higher order in 
H / t�. Thus, this simplified model is expected
to describe the energy dispersion correctly as long as no
other states which we have neglected here come too close in
energy. Equation �5� roughly describes a parabola around k
=� which crosses zero at K and K�. The edge state at a GG
interface has—in contrast to the edge state at a structural
zigzag edge—a finite velocity, the magnitude of which is
largely determined by the energy of the hydrogen 1s-orbital

H relative to the �-orbital energy in graphene �set to zero
here�. Note that also other effects which are not included in
our simplified model, e.g., next-nearest-neighbor hoppings16

or local electrostatic gates at the edges,17 can increase the
bandwidth of the edge state. For typical parameters we ob-
tain edge state velocities of 104–105 m /s �see Appendix A�.

The bandwidth of the edge state is crucial for the question
of magnetic ordering at the edges. Conventional graphene
edges are believed to be spin-polarized in their ground
state,18,19 because the electron-electron interactions are much
larger than the bandwidth of the edge state. An instability,
very reminiscent of a Stoner instability, then leads to a po-

FIG. 1. �Color online� �- and �-interfaces in a graphene/
graphane heterostructure. The large �red� spheres represent the car-
bon atoms and the small �blue� spheres the hydrogen atoms. The
brighter spheres correspond to the graphene region while the darker
spheres correspond to graphane.

MANUEL J. SCHMIDT AND DANIEL LOSS PHYSICAL REVIEW B 81, 165439 �2010�

165439-2



larized ground state. In addition to this, Lieb’s theorem20

suggests that the ground state should be spin-polarized at a
zigzag edge, where there is a local imbalance between the
number of A and B sublattice sites. However, Lieb’s theorem
is only applicable in particle-hole symmetric systems. The
graphane termination breaks this symmetry so that Lieb’s
theorem is not applicable any longer. However, the question
is: is this symmetry breaking strong enough to drive the edge
out of the ferromagnetic phase. To answer this, one must
compare the strength of the electron-electron interactions
with the bandwidth of the edge state. A large bandwidth cor-
responds to a strong breaking of the electron-hole symmetry
and thus favors a non-magnetic ground state. Experimentally,
the bandwidth can be tuned further by electrostatic gates so
that one should be able to depolarize the edge at GG
interfaces.17,21

Figure 2 compares the energy dispersion of the edge states
calculated from the extended tight-binding model, as intro-
duced below, with Eq. �5� and its analog for the �-edge state
�see Appendix A�. While the simplified model for the �-edge
state agrees well with the extended model, the simplified
�-edge state dispersion predicts a too small bandwidth. How-
ever, the main features, namely the different directions of
motion of electrons in the valley K �K�� at different inter-
faces, are described properly by the simplified model.

III. EDGE STATE TRANSPORT

A ribbon with combined �- and �-interfaces ���-ribbon�
with finite width W of the graphene region gives rise to a
quantum valley Hall effect �QVHE�,22 in which K �K�� val-
ley electrons move left �right� at the �-interface and right
�left� at the �-interface, if the Fermi energy 
F is tuned as
indicated in Fig. 2. For wide enough ribbons �	kF

�W /2�, the
overlap between edge states moving in different directions is

small so that backscattering is forbidden if valley scattering
can be neglected. Since valley scattering requires the transfer
of a large crystal momentum, only atomic scale disorder
would destroy the QVHE.

The detection of this QVHE by a transport measurement
could be a first experimental step to reveal the GG interface
quality. In a clean ��-ribbon the conductance is 2e2

h n, where
n is the number of transport modes intersected by 
F �see
inset of Fig. 2�. Disorder on the scale of the lattice constant,
however, induces valley scattering and the backscattering
processes at a single edge become important. This is similar
to introducing magnetic impurities at the edge of a QSHE
system.

For wide �W�50 nm���-ribbons at temperatures below
the spin-orbit gap in bulk graphene ��10 mK �Ref. 7�� a
new quantized Hall effect arises: the QSVHE. Here, not only
the spin or the valley determines the direction of motion at
the edges, like in the QSHE2 or in the QVHE, respectively,
but both, spin and valley are responsible for the selection of
the edge and the direction of motion, if 
F is tuned into the
bulk SOI-induced gap in graphene. For instance, at an
�-interface only electrons in valley K and with spin pointing
into a certain direction �we define this direction as ↑� are
allowed to move left; the electron in valley K� and with spin
pointing into the opposite direction �↓ � moves right. The
other two combinations of valley and spin are not allowed.
This increases the stability of the QSVHE compared to the
pure QSHE or QVHE because backscattering requires simul-
taneous valley and spin scattering. In principle the QSVHE
already allows spin-valley conversion, but only at very low
temperatures ��10 mK�. In the next section we show how
GG interfaces may be used to perform spin-valley conver-
sion at much higher temperatures.

IV. ENHANCED SPIN-ORBIT INTERACTION

It is well known that the smallness of the SOI in graphene
is rooted in the lightness of carbon on one hand and in the
symmetry-induced decoupling of the �- and �-bands, on the
other. The latter issue can be overcome, however, by break-
ing the �z symmetry of the lattice. While the carbon atoms
of the A and B sublattices are coplanar in graphene, they are
“pushed” out of the plane in graphane due to the rehybrid-
ization sp2→sp3 which is caused by the presence of the
additional hydrogen atoms.11 As a result, the hopping be-
tween �-band orbitals and �-band orbitals on neighboring
carbon sites is allowed in graphane and at the GG interface,
so that the �-band is locally coupled to the �-band at the
interface. Note that, in addition to this direct hopping, also a
strong indirect coupling between the carbon �- and
�-orbitals via the hydrogen atom takes place in graphane.
This indirect coupling is independent of the details of the
interface geometry. For these reasons, we expect an en-
hanced SOI near GG interfaces.

In order to substantiate this expectation, we use an ex-
tended tight-binding model for GG heterostructures, which
respects the �- as well as the �-orbitals of the carbon atoms.
It is based on an environment-dependent tight-binding model
for general hydrocarbons23,24 and takes the atomic carbon

FIG. 2. �Color online� The band structure of a graphane-
terminated ��-ribbon with W=10 nm. The dashed horizontal line
is a typical Fermi energy 
F for the QVHE regime chosen such that
	kF

�W /2. The gray bands correspond to exponentially localized
states at the outer graphane edge, which are not important here. The
full curves are results of numerical calculations within the extended
tight-binding model. The dashed �blue� curves show the effective
model dispersion �Eq. �5��. The inset shows the conductance G of
the graphene region as a function of 
F.
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SOI into account.7 More information about the extended
tight-binding model can be found in the Appendix B. For
simplicity, we discuss interfaces in which the first row of the
graphane lattice is coplanar with the graphene region. Note,
however, that our results also apply to tilted interfaces, as
discussed in detail in the Appendices E and F. We find that
the GG edge states exhibit a much larger spin-splitting than
conventional edge states. Figure 3 compares the spin-
splitting of the edge states of a graphane-terminated
��-ribbon with the situation in a usual ��-nanoribbon with-
out graphene termination. This can be understood for the
�-edge state by projecting the on-site SOI Hamiltonian

HSO = i��
r

�
������


���cr,p�,�
† ����

� cr,p�,��, �6�

where cr,p�,� annihilates an electron at site r in orbital p�

with spin �, �� are the Pauli matrices for the electron spin,
� ,� ,�=x ,y ,z, ��3 meV is the strength of the atomic SOI
of carbon,7 and 
��� is the Levi-Civita tensor, onto the two-
dimensional spin-degenerate subspace of the �-edge state
	���k� ;�� obtained by diagonalizing the extended tight-
binding Hamiltonian without SOI. In a conventional edge
state 	�0

��k� ;�� �without graphane termination� only the
�-orbitals are occupied so that ��0

��k� ;�	HSO	�0
��k� ;����0

and the SOI becomes a second order effect.7 At a GG inter-
face, however, the edge state acquires contributions from the
�-orbitals because of the �z symmetry breaking which leads
to a mixing of the �- and the �-band. As a result, the SOI
becomes a first order effect. Since the energy scale of the
hopping Hamiltonian is a few eV while the energy scale of
the SOI Hamiltonian is a few meV, this leads to an amplifi-
cation of SOI effects by a factor of 102–103. This is the
fundamental reason for the enhancement of SOI effects at
GG interfaces, as compared to pure graphene nanoribbons.

The projected SOI Hamiltonian for the �-edge state reads

HSO
eff,� = �

���
�

2�/3

4�/3 dk

2�
ek,�,�

† �����k�ek,�,��, �7�

with ek,�,� the �-edge state annihilation operators and

�����k� = ����k�;�	HSO	���k�;��� , �8�

��k − ���Nk
��2��R

��y + �i
��z����, �9�

where �R ,�i are constants describing the Rashba and intrin-
sic parts of the effective SOI, respectively. The Dresselhaus
term ���x� vanishes because of the mirror symmetry
x→−x of the interfaces. The additional factor �Nk

��2 ac-
counts for the fact that the effective SOI, generated by a GG
interface, must be proportional to the weight of the edge state
wave function at the interface. The parameters �R

�=
−0.09 meV and �i

�=0.021 meV are obtained from a fit to
the numerical results �for details see Appendix F�. Because
of time-reversal invariance the spin-splitting is exactly zero
at k=0, ��. These are also the points where the spin direc-
tion of the energetically higher edge state changes abruptly.
Note that for wide ribbons �W�100 nm�, the spin-splitting
at K ,K� is essentially given by the bulk SOI of graphene
because Nk

�/� vanishes for k→K ,K�. As a result, the SOI
enhancement at the interfaces does not increase the critical
temperature at which the QSVHE can be observed.

However, there is another possibility to use the interfacial
enhancement of the SOI for high-temperature spin-valley
conversion. Because the SOI enhancement is proportional to
the weight of the edge state wave functions at the interface, it
is obvious that the enhancement of the edge states’ spin-
splitting at K and K� decays as W−1 �see also Appendix F�. In
the limit of wide ribbons the �very small� spin-orbit splitting
of bulk graphene is approached. This is because at K and K�,
due to the complete delocalization of the edge state, the
weight of the edge state wave function at the interface is
vanishingly small, and so is the SOI enhancement from the
interface. Thus, one should use narrow ribbons in order to
exploit the SOI enhancement at GG interfaces. In Fig. 4, the
band structure of a narrow GG heterostructure is shown. At

FIG. 3. �Color online� SOI-induced spin-splitting of the edge
states. The solid black �blue� curve shows the absolute value of the
spin-splitting �
SO�k� of the edge states calculated from the ex-
tended tight-binding model with the full SOI. This calculation has
been done for a 10 nm wide ��-ribbon. The dashed �red� line
shows the spin-splitting calculated from the effective Hamiltonian
�9�. The spin-splitting at K ,K� which is slightly larger than the
spin-orbit splitting in bulk graphene is due to finite-size effects. The
gray �green� curve shows the spin-orbit splitting of the edge states
without graphene termination, scaled up by a factor of 100. This
calculation has also been done within the extended tight-binding
model �without the graphane regions�, as described in Appendix C.

FIG. 4. �Color online� Energy dispersion of the edge states of a
2 nm wide ��-ribbon near the K-valley. The two bands have oppo-
site spin direction. The dashed line indicates a typical 
F. The inset
shows a larger region of the band structure. The gray lines are bulk
graphane states and states at the outer graphane edge which are not
of interest here.
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the maxima of the edge mode the spin-orbit splitting is about
0.07 meV�0.8 K. Note that although these states are de-
rived from edge states, they do not actually appear like edge
states in this case because 	k�W �	k diverges near K and
K��. Thus, by squeezing the wide edge states into a narrow
ribbon, the spin-orbit splitting is enhanced at K and K�. Even
narrower ribbons exhibit even larger spin-orbit splittings.

As required, the energetically higher band at K has the
opposite spin-direction than the corresponding band at K�.
Thus, by tuning 
F as indicated in Fig. 4, a spin-valley filter
is realized: left- and right-movers exist for each spin and
valley but the transmission of this structure is only non-zero
for �K ,↑� or for �K� ,↓� and zero for the other two combina-
tions of valley and spin. This means that each spin-up elec-
tron which initially consists of K and K� components �valley-
unpolarized� will be in a pure valley state �K here� after it
has passed the narrow ��-ribbon in x-direction, while a
valley-unpolarized spin-down electron will be in a pure K�
state after the passage. This filtering works also in the oppo-
site way, i.e., a valley polarization results in spin polarization
after passage.

V. CONCLUSION

We have demonstrated that a termination of graphene na-
noribbons by graphane can be utilized to create an effective
edge for the �-band in graphene. This effective edge features
edge states, similar to the usual zigzag edge states that are
well known in zigzag nanoribbons of pure graphene. In ad-
dition to this, two advantageous properties of graphene/
graphane interfaces are found: �a� the bandwidth of the edge
states at graphene/graphane interfaces is enhanced compared
to the bandwidth of edge states at usual graphene edges. The
bandwidth enhancement is proportional to the energy of the
hydrogen 1s-orbital. This suggests tuning the bandwidth by
electrostatic gates or by alternative adsorbates with a differ-
ent orbital energy than hydrogen. �b� due to the �z symme-
try breaking in graphane, a strongly enhanced spin-orbit in-
teraction exists at the interface which affects foremost the
edge states.

These additional features may be exploited in the con-
struction of nanoribbons with special properties. The larger
bandwidth of the edge states and its tunability may be used
to drive the edges out of their spin-polarized phase.21 We
have shown that a narrow nanoribbon in the spin-unpolarized
phase can be used as a device that converts spin polarization
into valley polarization and vice versa. Due to the enhanced
spin-orbit interaction at the interface, the operation tempera-
ture of this device may well be near one Kelvin.

It should also be noted that graphene/graphane interfaces
provide a means to construct �effective� bearded edges. In
usual graphene nanoribbons, these would be very unstable.
Very recently, the stability of graphene/graphane interfaces
has been studied in Refs. 25 and 26. They found that very
narrow graphane-terminated graphene nanoribbons are stable
and even that there is a tendency to atomically sharp inter-
faces. These papers suggest that it might indeed be possible
to make rugged graphene/graphane interfaces atomically
sharp by annealing, e.g., with protocols similar to the one
used in Ref. 8.
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APPENDIX A: SIMPLIFIED MODEL FOR THE EDGE
STATE

The �- and �-truncated Hamiltonians for the structural
graphene zigzag edges read

HG
� = t�

k
�
n=1

�

�dn,k,A
† dn,k,B + dn,k,A

† ukdn−1,k,B� , �A1�

HG
� = t�

k
��

n=1

�

�dn,k,A
† dn,k,B + dn,k,A

† ukdn−1,k,B� + d0,k,A
† d0,k,B� ,

�A2�

with uk=1+eik and the simplified model Hamiltonians for
the �- and �-interfaces between graphene and graphane read

HI
� = tdk,C

† d0,k,B + t�dk,H
† dk,C + H.c. + 
Hdk,H

† dk,H �A3�

HI
� = tukdk,C

† d0,k,B + t�dk,H
† dk,C + H.c. + 
Hdk,H

† dk,H,

�A4�

where we have defined

dk,H = Nx
−1/2�

n1

e−ikn1cn1,H �A5�

dk,C = Nx
−1/2�

n1

e−ikn1cn1,C. �A6�

The operators cn1,C annihilate an electron in the �-orbital of
the carbon atom next to the edge, as shown in Fig. 5 and the
operators cn1,H annihilate an electron in the 1s-orbital of the
corresponding hydrogen atom.

FIG. 5. �Color online� Definitions in the simplified interface
model. The gray �green� dots represent the carbon atoms of the
-C-H groups and the small black �blue� dots represent the hydrogen
atoms. The number labels indicate the n1 coordinate of the carbon
atoms in the graphene region.
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The projection of HG
�/�+HI

�/� onto the subspaces
�	�0

�/��k�� , 	C�=dk,C
† 	0� , 	H�=dk,H

† 	0�� reads in matrix form

�HG
� + HI

��proj. = � 0 tNk
� 0

tNk
� 0 t�

0 t� 
H
� , �A7�

�HG
� + HI

��proj. = � 0 tukNk
� 0

tuk
�Nk

� 0 t�

0 t� 
H
� . �A8�

Because 	
H	� 	t	 , 	t�	, we are only interested in results to
leading order in 
H. We find a low-energy edge state for both
�- and �-interfaces


� =
t2�Nk

��2

t2�Nk
��2 + t�2
H + O�
H

2 �, k � �2�

3
,
4�

3
� , �A9�


� =
t2	uk	2�Nk

��2

t2	uk	2�Nk
��2 + t�2
H + O�
H

2 �, k � �−
2�

3
,
2�

3
� .

�A10�

Near the boundary of the k-space domains of the edge states,
K= 2�

3 and K�= 4�
3 , the dispersion is approximately linear and

we can write for both states �� /�� in both valleys �K ,K��


�/� = 
3
t2
H

t�2 	�k	 + O��k2� , �A11�

where �k=k−K or �k=k−K�. From this we can estimate the
typical velocity of the edge states near K and K� to

	v�/�	 � 
3
t2	
H	

t�2

a0

3

�
� 105m

s
, �A12�

which is about one order of magnitude smaller than the
Fermi velocity in graphene.

Next, we would like to estimate the typical localization
length of the edge states in the QSVHE regime. If we take
the SOI into account, a spin gap ��2 �eV opens up at K
and K� for wide ribbons �W�100 nm�. This spin gap is of
the order of the spin-orbit splitting in bulk graphene because
the edge states become completely delocalized over the
graphene region at K and K�. If the Fermi energy is of the
order of the spin gap, the four Fermi momenta can be esti-
mated by

kF
1/2 � K � �

t�2


3t2
H

� K � 3.4 · 10−3� , �A13�

kF
3/4 � K� � �

t�2


3t2
H

� K� � 3.4 · 10−3� . �A14�

From this, the corresponding localization lengths for all in-
terface states in the QSVHE regime are

	kF

�/� =
3

2
a0	ln	ukF

�−1 � 22 nm, �A15�

with a0�1.4 Å the nearest-neighbor C-C distance.

APPENDIX B: TIGHT-BINDING PARAMETERS

We want to model the graphene/graphane heterostructures
by a nearest-neighbor tight-binding model which takes into
account the �-band and the �-band of the hexagonal carbon
backbone and the 1s-orbitals of the hydrogen atoms attached
to each C atom in the graphane region. We neglect the non-
orthogonalities of orbitals on different sites. First of all, we
need the bare tight-binding hopping integrals between the
oriented carbon orbitals 2s, 2px, 2py, 2pz, i.e., the matrix
elements of the Hamiltonian H

Vss = �2s;r0	H	2s;r1� , �B1�

Vsp = �2pz;r0	H	2s;r1� , �B2�

Vpp
� = − �2pz;r0	H	2pz;r1� , �B3�

Vpp
� = �2px;r0	H	2px;r1� , �B4�

and the hopping integrals between carbon orbitals and the
hydrogen 1s-orbital

Wss = �1s;r0	H	2s;r2� , �B5�

Wsp = �2pz;r0	H	1s;r2� , �B6�

where r0= �0,0 ,0�T, r1=a0�0,0 ,1�T, and r2=b0�0,0 ,1�T

with a0 the nearest-neighbor C-C distance and b0 the C-H
distance. The kets 	2s ;r� , 	2pi ;r� represent the 2s- and the
2pi-orbitals �i=x ,y ,z� of the carbon atoms at r. The ket
	1s ;r� represents the hydrogen 1s-orbital.

The H-H distance in the chair conformation of graphane
is large enough so that the direct hopping between hydrogen
orbitals may be neglected. All nearest-neighbor hopping in-
tegrals between the relevant orbitals in graphane can be re-
duced to the parameters defined in Eqs. �B1�–�B6�, as we
will show subsequently.

In general, these bare hopping parameters are
environment-dependent.23,24 However, there is a consider-
able variance of hopping parameters in the literature. For
instance, the very often used parameters in Ref. 27 deviate
considerably from the ones extracted from Ref. 24 �see Table
I�. In this case, the deviation is probably due to the different
scopes of Refs. 24 and 27, namely, the crystal structure and
the electronic properties, respectively. Therefore, we believe
that the carbon orbital hopping parameters of Ref. 27 are
more suitable to our needs. Furthermore, as Reich et al.

TABLE I. Two sets of nearest-neighbor tight-binding param-
eters from the literature. In the following, we use the second col-
umn of parameters.

Reference 24
�eV�

Reference 27 �used here�
�eV�

Vss −4.6 −6.8

Vpp
� −2.4 −3.0

Vpp
� −6.5 −5.0

Vsp −4.7 −5.6
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argue28 for the �-band, for a quantitative description one
would have to include up to 3rd neighbor hoppings and the
corresponding non-orthogonalities. These parameters are,
however, to our best knowledge, not available for the �-band
in graphene. Since we only aim at a description on a quali-
tative level, we refrain from a more quantitative first prin-
ciples calculation. We rather check that our results are robust
with respect to variations in the parameters.

Furthermore, we make the simplifying assumption that
the bare hopping matrix elements are the same in the
graphene and in the graphane region. This does not mean, of
course, that the final Hamiltonian in the carbon subspace is
equal for graphene and graphane. The different relative
alignment of the A- and the B-sublattice is taken into account
later.

The parameters for the C-H bond in the graphane region
�Wss and Wsp� are calculated along the lines of Ref. 23, with
a C-H bond length of 1.1 Å.11 They are

Wss = − 5.4 eV, Wsp = − 5.8 eV. �B7�

Finally, the 2p-orbital energy of carbon defines the zero of
the energy. The relative energy of the carbon 2s-orbital is

C

s =−8.7 eV.27 The orbital energy of the hydrogen 1s-orbital
can be roughly estimated from Refs. 23 and 24. We assume
that the orbital energies of the carbon orbitals are elevated
due to the nearby hydrogen atom about the same amount as
due to the other carbon atoms. In this work we use

H

s =−0.4 eV for the hydrogen 1s-orbital. The results and
conclusions do not depend critically on this value.

APPENDIX C: ORBITAL RIBBON HAMILTONIAN

We first want to derive the Hamiltonian, describing bulk
graphane and bulk graphene, in order to check the resulting
band structure against ab initio band structures in the
literature.11 For doing this, we need to translate the bare hop-
ping integrals Eqs. �B1�–�B7� to the hoppings on the lattice
under consideration. We define the honeycomb lattice vec-
tors a1=a0�
3,0 ,0�T and a2=a0�


3
2 , 3

2 ,0�T and the nearest-
neighbor vectors

R1 = a0�0,1,z�T, �C1�

R2 = a0�−

3

2
,−

1

2
,z�T

, �C2�

R3 = a0�
3

2
,−

1

2
,z�T

, �C3�

where a0 is the C-C distance of flat graphene and za0 is the
separation of the A- and B-sublattice planes. We choose the
parameter z=z0�0.42 in this work. At each carbon site, we
define the system of the 2s- and 2p-orbitals in the following
way: the s-orbital is spherically symmetric, so that the
atomic alignment is irrelevant. The p-orbitals can be charac-
terized by a vector, pointing into the direction of the positive
part of the orbital wave function. The wave functions of the
second carbon shell are approximately

�2s�r� = f2s�	r	� , �C4�

�2pi
�r� = f2p�	r	�ri, i = x,y,z . �C5�

Thus, we choose the alignment of the three 2p-orbitals ac-
cording to the same coordinate system, which defines a1 ,a2.
Note that the p-orbitals transform as a vectors. This is useful
if we want to express a p-orbital pointing, say, into the
�1,1,0� direction. The wave function of this orbital can be
written in terms of the basis functions Eq. �C5�,

�2p,�1,1,0��r� =
1

2

��2px
�r� + �2py

�r�� . �C6�

The direction of an orbital is conveniently expressed by a
vector p.

We need to deal with three different types of C-C hop-
pings. There is the hopping from an s-orbital to another
s-orbital �ss�, the hopping from an s-orbital to a p-orbital
�sp� and the hopping between p-orbitals �pp�. For the subse-
quent discussion we introduce the bond vector rb which con-
nects the two atoms participating in the bond under consid-
eration. For an sp-bond rb points always from the atom,
carrying the s-orbital, to the atom on which the p-orbital is
located. For ss-bonds and pp-bonds the direction of rb plays
no role.

The ss-hopping does not depend on the direction of rb but
only on the bond length. The bond length, however, is as-
sumed constant over the whole lattice. In a homogeneous
structure �only graphene or graphane�, this assumption is ful-
filled perfectly. In a heterostructure such as the one we aim to
describe there is a minor difference in the bond lengths in the
different regions. We neglect this difference in the bond
length because we believe that the dominant difference be-
tween graphene and graphane is the different symmetry of
the lattice.

For sp-hopping we only know the hopping integral if the
p-orbital is aligned along the bond vector. The hopping be-
tween an s-orbital and a p-orbital that is perpendicular to the
bond vector is zero by symmetry. Thus, only the angle �
between the p-orbital and the bond vector is important �see
Fig. 6�. The sp-hopping integral of such a bond is then

tsp��� = − Vsp cos �, cos � =
rb · p

	rb		p	
. �C7�

For pp-hopping, three angles are relevant: the two angles
�1 ,�2 between the p-orbitals p1 ,p2 and the bond vector rb
�see Fig. 6� and the angle � between the planes spanned by
rb, p1 and rb, p2. The hopping integral of such a bond is

tpp��1,�2,�� = cos �1 cos �2Vpp
� + sin �1 sin �2 cos �Vpp

�

�C8�

with

cos �1 = −
rb · p1

	rb		p1	
, cos �2 =

rb · p2

	rb		p2	
, �C9�

and

� = � �rb � p1,rb � p2� . �C10�
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With the above equations we can evaluate all hopping
matrix elements we need to write down the Hamiltonian. We
start with the Hamiltonian in the carbon subspace HC. We
denote the sublattice by s=A ,B, the Bravais lattice vector
Rn=n1a1+n2a2 and the orbitals by �=0,1 ,2 ,3 for the s-,
px-, py-, and pz-orbital, respectively. The real-space Hamil-
tonian reads

HC = �
n,�,��

cn,�,A
† �t�,��,1cn,��,B + t�,��,2cn−�0,1�,��,B

+ t�,��,3cn+�1,−1�,��,B� + H.c., �C11�

where cn,�,s are electron annihilation operators and t�,��,j for
j=1,2 ,3 are the hopping integrals between orbitals � and ��
calculated by Eqs. �C7� and �C8� for a bond between a cen-
tral A atom and its three neighboring B atoms. For a bulk
system, this Hamiltonian can be transformed to k-space as
usual

HC = �
k �
s

C�dk,0,A
† dk,0,A + dk,0,B

† dk,0,B�

+ � �
�,��

dk,�,A
† f����k�dk,��,B + H.c.�� , �C12�

where

f����k� = t�,��,1 + t�,��,2e−ik2 + t�,��,3ei�k1−k2�, �C13�

and

dk,�,s =
1


N
�

n1,n2

e−i�k1n1+k2n2�cn,�,s. �C14�

Note that k1 ,k2 are the components of the k-space coordinate
with respect to the reciprocal vectors, which are nonorthogo-
nal. In terms of kx and ky we have k1=
3kx and
k2= 1

2 �
3kx+3ky�.
The graphene regions of the heterostructures are fully de-

scribed by HC. In the graphane region, the hydrogen-related
terms must be added to HC. Because we only consider
nearest-neighbor hopping and the chair conformation of
graphane, direct interhydrogen hopping is not allowed. Since
the hydrogen atoms are supposed to sit nicely on top
�z�0� of the B sites and below the A sites �z�0�, the only
non-zero hopping integrals, allowed by symmetry, are the
two between the hydrogen 1s-orbital and the carbon 2s- and
2pz-orbitals, i.e., Wss and Wsp, respectively. Because of this
perfect alignment, no further transformation of the hopping
integrals is needed. Only, because the 2pz-orbital points in
positive z-direction at the A- as well as at the B-sites, we
have to respect the different sign of the sp-hopping between
the carbon atoms on A-sites and their attached hydrogen at-
oms and those on B-sites. We find

HH−C = �
k,s

�
s
Cdk,H,s

† dk,H,s + �Wssdk,H,s
† dk,0,s

+ �− 1�sWspdk,H,s
† dk,3,s + H.c.�� . �C15�

The spinless bulk Hamiltonian H=HC+HH−C can be repre-
sented as a k-dependent �10�10�-dimensional matrix,
which is easily diagonalized. Figure 7 shows the graphane
band structure calculated from H. Compared to the first-
principles band structure of Sofo et al.,11 the band width of
the lowest band is somewhat larger in our tight-binding
model. This is typical for tight-binding models on honey-
comb lattices with only nearest-neighbor hoppings and or-
thogonal orbital wave functions. The band gap is with Eg
�2.4 eV smaller than the one found in Refs. 11 and 29.
However, since our qualitative considerations are not sensi-
tive to the graphane band gap and since there is neither the-
oretical consensus nor experimental verification of the size
of the band gap, yet, we have chosen to ignore this defi-
ciency here. Note that the band gap can be tuned to higher
values by changing the hopping parameters within their fluc-

FIG. 6. �Color online� Relative orientation of the carbon s- and
p-orbitals. rb is the bond vector, connecting the positions of the two
atoms.

FIG. 7. �Color online� Bulk band structure of graphane calcu-
lated from our tight-binding model �Eqs. �C12� and �C15��.
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tuation found from the literature. We have checked that our
results are stable with respect to such parameter changes.

For modeling graphane-terminated graphene nanoribbons
which are lattice-translationally invariant along the
a1-direction �zigzag ribbons�, we perform a partial Fourier
transform of the carbon-electron operators, i.e.,

dn,k,�,s =
1

Nx
�
n�

e−ikn�cn�,n,�,s. �C16�

The ribbon Hamiltonian in the carbon subspace then reads

HC = �
k,n,�,��

dn,k,�,A
† �t�,��,1dn,k,��,B

+ �t�,��,2 + eikt�,��,3�dn−1,k,��,B� + H.c. �C17�

It is important to note that the hopping integrals t�,��,j are
different in the graphane and graphene regions. At the inter-
faces we assume that the carbon atoms in the last graphane
row have the sp3-like orbital configuration of graphane rather
than the sp2 configuration of graphane. There is some ambi-
guity in this choice. Different choices of the interface prop-
erties do not lead to qualitatively different results. Only the
magnitude of the interface-induced spin-orbit splitting and
the details of the edge state dispersion may be renormalized
by factors of order one.

The hydrogen part of the Hamiltonian is easily added to
the graphane regions, as explained above.

APPENDIX D: SPIN-ORBIT HAMILTONIAN

We restrict ourselves to the on-site spin-orbit interaction
generated by the Hamiltonian

HSO =
�

4m2c2

�A

��V�r� � p̂� · � ,

�D1�
where V�r� is the �a priori unknown� potential of the carbon
ions, p̂=−i���x ,�y ,�z� is the momentum operator of an elec-
tron, and �= ��x ,�y ,�z� are the Pauli matrices for the elec-
tron spin. We are interested in the matrix elements of HSO in
the subspace spanned by the carbon 2s- and 2p-orbitals, i.e.,
the states 	��,���	� ,���	�� � 	�� where �=0,1 ,2 ,3 labels
the s-, px-, py-, pz-orbital, respectively, and �= ↑ ,↓ labels the
spin.

��,�	HSO	��,��� = A �
i=x,y,z

��	��V�r� � p̂�i	�������
i .

�D2�

Now we perform an explicit calculation of the matrix ele-
ments and relate all non-zero integrals to each other by sym-
metry considerations. In real space, we can write �i , j ,k
=x ,y ,z�

��	��V�r� � p̂�i	��� = − i
ijk� d3r��
� �r��� jV��k����r� ,

�D3�

where we used the wave functions defined in Eq. �C5�. From
the symmetry of the orbital wave functions and the potential
V�r� it is easy to see that

�s	HSO	pi� = �pi	HSO	s� = 0, �D4�

A�pi	��V � p̂� j	pk� = i
ijk� , �D5�

where 
ijk is the Levi-Civita tensor and

� =
�

4m2c2�
0

�

drr	fp�r�	2V��r� . �D6�

In second quantization the Hamiltonian reads

HSO = i��
n,s

�
�,�,�

���


���cn,�,s,�
† ����

� cn,�,s,��, �D7�

where � ,� ,�=x ,y ,z. The coupling constant ��3 meV is
determined from the atomic spin-orbit interaction �see, e.g.,
Ref. 7�.

APPENDIX E: GRAPHANE-TERMINATED ��-RIBBONS

As mentioned above, there is some ambiguity in the align-
ment of the interface bonds. There are two extreme cases.
The first is shown in Fig. 1: there, the interface bonds are
completely in-plane, as if they would correspond to the
graphene region. The other extreme case would be that the
bonds between the graphene and the graphane region are
aligned as if the first graphene atom was sp3-hybridized, i.e.,
they are tilted out of the xy-plane just as all other bonds in
the graphane region. It is not known to which extent the
bonds are tilted out of the plane. This detail is, however, not
important for our qualitative considerations.

In the following we quantify the tilting at the interface by
a parameter zJ. The fully tilted situation is described by set-
ting zJ=z0. The flat interface �as shown in Fig. 1�, on the
other hand, is described by zJ=0.

The impact of the interface details on the dispersion of the
GG interface state is shown in Fig. 8. Obviously, primarily
the edge states are affected by the interface details while the
bulk dispersion is largely invariant. Also it is observed that,
while the �-edge state’s dispersion always resembles a pa-
rabola very closely, the �-edge state changes the shape of its
dispersion more heavily. However, for this work only the
dispersion near K and K� is important. There, changing zJ
mainly renormalizes the interface state velocity by a factor of
order unity.

In the numerical diagonalization of the ��-ribbon Hamil-
tonian the dispersion of the �-edge states are sometimes �de-
pending on the interface details� crossed by bands which are
exponentially localized at the outer graphane edge �see Fig.
8�. Usually, this crossing happens at 	k	�0.2�. These states
are spatially separated from the edge states at the interfaces
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and are thus not important here. If the graphane regions were
infinitely wide, these bands would not affect the �-edge state
at all. However, since the numerical calculations use a finite
size ribbon, these graphane edge states have an exponentially
small overlap with the �-edge state wave function. Since we
are generally interested in the band structure near K and K�,
this crossing is not important for our reasoning. Thus, in the
plots of the numerical spin-splitting and the spin-orbit
strength �see below�, we leave out the part of the Brillouin
zone which is beyond the crossing. This is why the plots of
some numerical results are restricted to the k-range
�0.2� ,1.8��.

APPENDIX F: EFFECTIVE SPIN-ORBIT HAMILTONIAN

The effective spin-orbit Hamiltonian of the edge states at
the GG interface is obtained by projecting HSO �see Eq.
�D7�� to the restricted Hilbert space of the edge states
	���k� ;��. This leads to an effective SOI described by

�����k� = ����k�;�	HSO	���k�;��� , �F1�

which can be decomposed by means of spin Pauli matrices.
It turns out that the function which multiplies �x is zero
while the coefficient functions of �y/z are finite. This makes
sense because in addition to the intrinsic SOI of pure
graphene, there is a z→−z symmetry breaking at the inter-
face which leads to a Rashba-like term kx�

y. The x→−x
symmetry, however, is not broken by the interface so that the
Dresselhaus-like term kx�

x vanishes.
The function �����k� can be calculated numerically from

the wave functions of the GG edge states. However, it can
also be well approximated by an analytic form, constructed
from the following reasoning: the spin-orbit interaction at the
GG interface is strong compared to the spin-orbit interaction
in bulk graphene. Therefore, an effective model must respect
the renormalization of the SOI by the amplitude of the inter-
face state wave function directly at the interface. This is
given by Nk

� �Nk
�� for �- ��-� edge states in infinitely wide

ribbons. Moreover, because of time-reversal invariance, the

k-dependent coupling strength must be odd at k=0,�. Thus,
we only take into account odd polynomials around these two
points.

As it turns out, the linear terms are sufficient to fit the
numerics of the �-edge state. For the �-edge state more
terms are needed for a quantitative fit. This is in part due to
the graphane bulk bands which come close to the �-edge
states in energy. We checked that the linear fit for �SO,�

eff �k�
becomes better if we artificially increase the graphane band
gap by tuning the tight-binding parameters.

The form of the effective spin-orbit interaction of the �-
and �-edge states with only linear terms reads

�SO,�
eff �k� = �k − ���Nk

��2��R
��y + �i

��z� , �F2�

�SO,�
eff �k� = k�Nk

��2��R
��y + �i

��z� . �F3�

In order to find the parameters �R
�/� and �i

�/�, we fit these
functional forms to the numerical results. Figure 9 shows
various fits. In Table II, the effective spin-orbit parameters
for the flat �zJ=0� and the tilted �zJ=z0� interfaces are given.
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FIG. 8. �Color online� Different band structures for zJ=0 �red�,
zJ=z0 /2 �green� and zJ=z0 �blue�. The graphene part of the ��-
ribbon is 21 nm wide in this calculation and the graphane termina-
tions are 2.1 nm wide. The bulk states and the states at the outer
graphane edges are not significantly affected by zJ. The correspond-
ing energy bands lie on top of each other for the three cases.

FIG. 9. �Color online� Spin-orbit strength ���k� , �= i ,R from
the effective model �dashed lines� and from our extended tight-
binding model �solid lines�. The gray �green� line represents the
Rashba term of the spin-orbit Hamiltonian and the nearby dashed
lines represent the corresponding terms from the effective models.
The black �blue� line represents the intrinsic term of the spin-orbit
Hamiltonian. The effective Hamiltonian of the �-edge state is Eq.
�F2�. The effective Hamiltonian of the �-edge state on the left-hand
side �the region labeled by linear fit� is given by the linear version
Eq. �F3� while on the right-hand side �the region labeled by 5th
order fit�, Eq. �F4� is shown. Part �a� shows a calculation for a flat
interface �zJ=0� and part �b� shows a calculation for a maximally
tilted interface �zJ=z0�.
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The �-edge state spin-orbit interaction is well reproduced by
the effective form given in Eq. �F2� while the �-edge state
spin-orbit interaction is not. Therefore, we include higher
powers in Eq. �F3�

�SO,�
eff �k� = k�Nk

��2��R
��1 + aR

�k2 + bR
�k4��y

+ �i
��1 + ai

�k2 + bi
�k4��z� . �F4�

The parameter fits to the numerical results are given in Table
II for the one parameter forms �F2� and �F3� and for the three
parameter form �F4� in Table III. In order to compare the
effective models with the numerical results, we define the
Rashba �intrinsic� spin-orbit strength �R�k� ��i�k�� as the co-
efficient of the Pauli matrix �y ��z� in the expressions
�F1�–�F4�. Figure 9 compares the different expressions. Ob-
viously, the linear expression �F2� is sufficient for the �-edge
state while �F3� shows significant deviations from the nu-
merical results for the �-edge state.

The spin-splitting �
SO�k� calculated from the effective
model is in better agreement with the numerical results than
the spin-orbit strengths ���k� �see Fig. 3�, even for the linear
model of the �-edge state, because this quantity is an average
over the intrinsic and Rashba term of the spin-orbit Hamil-
tonian.

For infinitely wide ribbons �W→��, the normalization
factors Nk

�/� vanish at K ,K�. Thus, the spin-orbit splitting at
K ,K� is not enhanced by the Hamiltonians �F2�–�F4�, com-
pared to pure graphene. In finite size ribbons, however, the
normalization of the edge state wave functions is signifi-

cantly different from Nk
�/� if 	k

�/��W. The edge state of a
finite size ��-ribbon with N unit cells in the y-direction can
be written as

	�0�k�� =
 1 − 	uk	2

1 − 	uk	2�N+1� � �
n=0

N

exp�−
n

	k
� + in
�dn,k,B

† 	0� .

�F5�

At K ,K� the absolute value of this wave function is constant
in y-direction. Thus, the amplitude at the interface is not
proportional to �NK

�/��2=0 in this finite-size case, but rather
proportional to

1 − 	uk	2

1 − 	uk	2�N+1� ——→
k→K,K� 1

Ny + 1
. �F6�

As a result, the GG interface-induced SOI near K ,K� is pro-
portional to W−1. Thus, the SOI of bulk graphene becomes
dominant at K ,K� in the limit W→�.

This is important for the QSVHE in that the Fermi energy
must be tuned exactly to the spin-orbit gap which is due to
the bulk graphene SOI. Qualitatively, this bulk SOI can be
included in the effective model by adding the bulk graphene-
induced spin-orbit splitting of the edge states at K ,K�,30

HSO,�/�
eff → HSO,�/�

eff + �0�z�3, �F7�

where 2�0��eV is the spin-orbit gap at K ,K� in bulk
graphene and �3= �1 for K and K�, respectively.
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