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The band spin-orbit coupling, which makes it possible for the orbital motion of electrons to affect the spin
dynamics, is known to be present in crystals with destroyed mirror symmetry. A framework for analyzing
effects of the spin-orbit coupling on spin-dependent electron kinetics is suggested and applied to the electron-
spin resonance on an electron gas in an impure asymmetric two-dimensional semiconductor structure. The
general case of excitation of the resonance by both the electric and magnetic components of the microwave
electromagnetic field is considered and the frequency-dependent tensors of the electric conductivity and spin
susceptibility as well as the spin-current-correlation tensors, which additionally characterize the response of a
broken-mirror-symmetry conducting media to an external electromagnetic field, are calculated. It is shown that
the electric component of the resonant microwave field can excite the resonance more effectively than the
magnetic component in spite of a small value of the spin-orbit coupling. The formalism presented allows one
to consider the case when an external static magnetic field is arbitrary inclined with respect to the plane of the
structure and the cyclotron frequency �c corresponding to the perpendicular component of the field can take
any value less that the Fermi energy �F. It is found that the cyclotron motion not only modifies the spin
relaxation time but also has an effect on the spin precession giving rise to a shift of the Larmour frequency. The
shift can be positive or negative depending on the sign of g factor of current carriers relative to the sign of their
charge. It is shown that due to the cyclotron motion the spin resonance can also take place in the particular case
of zero g factor. It is also found that because of the spin-velocity correlations the absorption of the linear
polarized radiation can change its value at the magnetic field reversal.
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I. INTRODUCTION

Electron spin resonance �ESR� has long been used to de-
termine g factors of molecules and solids providing informa-
tion about chemical structures of molecules and electron
band structures of solids. In addition, the longitudinal and
transverse relaxation times, T1 and T2, which can be inferred
from the form of the absorption line, allow one to investigate
interactions responsible for spin-flip transitions. Recently, the
ESR has been employed to study g factors, g factor anisotro-
pies, and spin relaxation in different two-dimensional �2D�
semiconductor structures.1–7 An enhanced attention paid to
2D structures is bound up with the growing interest in spin-
tronic devices and quantum information processing8 because
a good understanding of the spin dynamics and processes
responsible for destruction of spin coherence is vital to those
fields. The ESR could help to attain all these objectives: it
provides possibilities to investigate fundamental aspects of
the spin dynamics by studying the ESR absorption and si-
multaneously with the help of an ESR pulse one can generate
the spin magnetization of a system and control its state and
evolution.9 This paper aimed at an investigation of features
of the ESR in 2D semiconductor structures connected with
destroyed mirror symmetry.

As is known, the carrier-effective-mass Hamiltonian in
such structures contains a term that couples the carrier’s mo-
mentum and spin

Hso = ��p � c� · � , �1�

where � is a constant characteristic of the material, c is one
of two nonequivalent normals to the plane of a structure, �
and p are, respectively, the Pauli spin and momentum opera-

tors, and units in which �=c=kB=1 are used. The term, Eq.
�1�, can be considered as a consequence of parity violation
with respect to reflection in the plane of the 2D electron
layer. The spin-orbit coupling of this form was first intro-
duced phenomenologically in Ref. 10 and microscopically in
Ref. 11 for bulk crystals of polar symmetry; c is then the
direction of the polar axis. �For the sake of uniformity, we
shall call the vector c the polar axis both in the cases of bulk
polar crystals and asymmetric 2D structures.� Hamiltonian
�1� should be present in semiconductor quantum wells with
wurtzite structure. Later its presence in some A3B5 semicon-
ductor heterostructures,12,13 surface states,14 and silicon
quantum wells due to lacking mirror symmetry of the con-
fining potential1–3,5 was confirmed. We shall term Hamil-
tonian �1� the band spin-orbit coupling �BSOC� to distin-
guish from the impurity spin-orbit coupling induced by
scattering on heavy impurities. Usually, in the absence of the
spin-orbit interaction, the orbital and the spin degrees of
freedom of an electron evolve independently of each other.
Hence, in the presence of a static magnetic field B�0�, the
ESR, i.e., transitions between two states of an electron dif-
fering only in their spin orientation, can be excited by the
magnetic component of an applied microwave field if a fre-
quency of the field matches the electron Zeeman splitting
�s=g�BB�0�. Because of the BSOC, the spin degrees of free-
dom of an electron in a crystal are not independent on the
orbital motion. Due to this circumstance, the ESR acquires
two important aspects.

�A� First, the BSOC mixes the spin and orbital electron
states causing spin transitions to be allowed not only under
the action of the magnetic component of the incident radia-
tion but also under the action of the electric component. This
idea has been put forward long ago;15 subsequently it was
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experimentally realized for donor-bound electrons in bulk
Cd1−xMnxSe crystals of wurtzite symmetry.16 Nowadays it
has attracted a new interest from the field of spintronics
where it has became a basis for developing various mecha-
nisms of the control of the charge-carrier spin via the control
of its orbital motion.17 The present paper represents an at-
tempt to provide a general description of the resonant ab-
sorption due to both the magnetic and electric components of
the microwave field. Within the scope of macroscopical elec-
trodynamics, the absorption of an electromagnetic wave due
to magnetodipole transitions is defined by the imaginary part
of the spin susceptibility multiplied by the square of the
magnetic field amplitude of the wave. We show below that
electrodipole transitions, which are allowed by the presence
of the BSOC, lead to a possibility to excite the ESR by the
electrical component of the radiation, i.e., to a contribution to
the absorption described by the real part of the conductivity
multiplied by the square of the electric field amplitude.
Moreover, we show that the electric field can excite the ESR
more effectively that the magnetic field. There also appear
magnetoelectric contributions to the absorption which are bi-
linear in amplitudes of magnetic and electric fields. These
contributions are defined by some macroscopic kinetic coef-
ficients that characterize a conducting media with destroyed
mirror symmetry in addition to the magnetic susceptibility
and electrical conductivity.

Previous considerations of the electric-dipole-induced
ESR �Ref. 7 and 15� were focused on clean systems. Accord-
ingly, they reduced to calculations of spin-flip matrix ele-
ments responsible for the excitation of the resonance by the
electric �and magnetic� component of the incident radiation
relying on the quantum mechanic perturbation theory. The
decay of the ESR was taken into account simply by intro-
ducing a phenomenological relaxation time into final equa-
tions. As opposed to that, the resonance in moderately im-
pure systems in the regime of frequent collisions with
impurities is the subject of the present paper. Following the
Bloch approach,18 we consider the resonance as a motion of
the ensemble-averaged spin �and current� density under the
influence of the external constant magnetic field, the impu-
rity scattering, the BSOC, and the oscillating microwave
field. Thus, the calculation of the resonant responses of a
system is now a quantum kinetic rather than quantum me-
chanic problem.

�B� Another one aspect which the BSOC adds to the ESR
is a possibility for the orbital motion to influence the spin
dynamics. One example of such an influence discovered in
Ref. 19 is an “orbital” mechanism of the spin relaxation—the
scattering on a scalar, spin-independent potential should give
rise to the decay of the spin magnetization. Indeed, for an
electron with the momentum p, the term, Eq. �1�, can be
considered as the Zeeman energy of the electron in a ficti-
tious magnetic field B f�p�=��p�c� /g�B, where g is the
electron g factor and �B is the Bohr magneton. Hence the
spin of the electron precesses about B f�p�. If, as a result
of scattering, the electron goes from a state with the mo-
mentum p into a state with the momentum p�, its spin will
appear under the action of the field B f�p�� and will have to
precess about the new direction. In this way, a stochastic
process of impurity scattering inducing the random jumps of

the electron on the Fermi surface gives rise to a correspond-
ing stochastic process of the fictitious magnetic field reorien-
tation that leads to a stochastic disturbance of the phase of
the spin precession. The randomization of the spin phase
results in a finite time of “forgetting” by the electron of its
initial spin orientation that reveals itself through the spin
magnetization decay. In the paper,19 only the decay of the
spin polarization at zero magnetic field was considered
within a quasiclassical approach and the relaxation time �so
��0�0

−2, where �0 is the zero-field electron-scattering time
and �0=2�pF�0, was obtained for the case of relatively weak
BSOC �0	1. The transverse relaxation time T2 through this
mechanism first estimated in Ref. 11 also appeared to be
proportional to �so. A rigorous quantum kinetic theory of the
ESR developed later20 has confirmed the result.

All theoretical results of Refs. 11 and 20 were obtained by
neglecting the effect of an external magnetic field on the
orbital dynamics. Experiments on the ESR, however, sup-
pose a finite external magnetic field B�0� and the effect of the
field on the orbital motion may be much more pronounced
than on the spin motion. Indeed, because of small effective
mass, the cyclotron frequency �c of many of semiconductor
materials greatly exceeds the Larmour frequency �s. Due to
this fact, the cyclotron frequency can become equal to or
exceed the electron-scattering rate �0

−1 even at moderately
strong magnetic fields what makes it necessary to take the
cyclotron motion or, in the quantum mechanics language, the
orbit quantization into account. From a general viewpoint,
one may expect that the cyclotron motion influences the ESR
in systems with the BSOC in two ways. First, the cyclotron
character of electron motion alters the stochastic process of
the electron diffusion on the Fermi surface induced by impu-
rity scattering thereby affecting the described above orbital
mechanism of spin relaxation. In addition, both the cyclotron
and Larmour motions of the electron density are somewhat
circularlike. Therefore, one may suppose that, because of the
BSOC, the cyclotron motion can influence the spin preces-
sion. Thus both aspects of the ESR, dissipative and dynami-
cal ones, can be subject to the cyclotron motion.

The quantum approach to any kinetic problem under Lan-
dau quantization conditions is known to encounters some
difficulties. First, the necessity of dealing with a discrete en-
ergy spectrum suggests the application of more refined math-
ematical means than at the absence of the quantization. There
is also an additional difficulty specific to systems with the
BSOC. The fact is that usually at a microscopic description
of the ESR, one needs to know the explicit form of quantum
states transitions between which �due to the electromagnetic
interaction with the incident radiation as well as impurity
and/or phonon scattering� form the resonant absorption.
However, in the case under study, the one-particle Hamil-
tonian can be explicitly solved only at the external magnetic
field perpendicular to the plane of the system.15 But even in
that case, a complicated form of the eigenfunctions strongly
impedes real calculations. Thus a search for a more adequate
formalism is an actual problem.

In the present paper, we circumvent difficulties mentioned
above and propose a general method which can be applied
to kinetic problems in conductors with the BSOC and which
does not require the explicit form of exact one-particle
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states—their energies and eigenfunctions. For sufficiently
dirty semiconductors with the weak BSOC, the method
allows one to include in a systematic way effect of the orbital
quantization into physics of the ESR in particularly and into
spin-dependent electron kinetics in general. Basically, the
applied approach reduces to a “kinetic” variant of perturba-
tion theory when some quantities of dynamical nature �the
Zeeman energy �s=g�BB�0� and the energy of the spin-orbit
splitting 
so=2�pF� are considered to be small in compari-
son with a quantity of dissipative origin, namely, with
the impurity scattering rate �0

−1. Our principal observation is
that main constituents of the quantum kinetic theory �ver-
texes and kernels of equations controlling spin-dependent
kinetic processes� can be calculated simply by treating the
Zeeman interaction and Hso as small perturbations. The
realm of applicability of the method is the “BSOC weak
limit,” where the SO splitting is weak in the sense that 
so
	max��0

−1 ,�c�. Thus the approach is applicable at any value
of the cyclotron energy from very small �c�0	1 to moder-
ately big �c�0�1, �c	�F, and at any direction of the static
magnetic field from perpendicular to parallel to the plane of
a 2D system. We show that in addition to a modification of
the longitudinal and transversal relaxation times the cyclo-
tron motion influence the frequency of the ESR resulting in a
shift of the resonant frequency as compared with the Larm-
our frequency �s. The shift depends on the electron mean-
free path, which shows its kinetic origin, and can be positive
or negative in a general case. In the particular case of zero g
factor, when the Larmour frequency vanishes, the spin pre-
cession is maintained solely by the cyclotron motion. It
should be emphasized that the analytical form of results pre-
sented below appears to be possible due to the employment
of two technical means: �i� the method of generating func-
tions proposed in Ref. 21 that greatly simplifies calculations
of integrals of the Landau-problem eigenfunctions and �ii� a
very convenient method of evaluating sums over Landau lev-
els by means of the contour integration developed in Ref. 22.

There are several attempts in the literature to calculate
effects of the change in the orbital dynamics due to the ex-
ternal magnetic field on the spin relaxation and resonance in
systems under discussion. On a semiclassical level, effects of
the cyclotron motion on the spin dynamics were first ad-
dressed in Ref. 23 where a dependence of the longitudinal
relaxation time T1 on the value of an applied magnetic field
was calculated. A bibliography of works devoted to the spin
relaxation can be found in Ref. 24. An entirely quantum
approach for the calculation of both the longitudinal and
transverse relaxation times was proposed in a paper.25 It was
restricted to perpendicular fields being entirely relied on the
fact that only in that case energies and eigenfunctions of the
one-particle Hamiltonian can be represented in an explicit
form.15 Although initial equations of Ref. 25 are valid at any
values of material parameters characterizing the system, the
awkwardness of some mathematical expressions due to the
cumbersome form of the eigenfunctions eventually forced
those authors to admit limitations in order to obtain final
results in a visible form. The first limitation is �pF�0	1,
which means that the BSOC is relatively weak while the
second one is �s�0	1, which assumes that the magnetic
field is not very strong or the semiconductor is not very

clean. An extension to the case of a tilted magnetic field has
been performed in Ref. 26 where a dependence of the relax-
ation time on angle between the magnetic field and the plane
of electron motion as well as the space dispersion of the
resonance was calculated. A departure of the spin precession
axis from the direction defined by magnetic field under the
action of the cyclotron motion was also noticed. In the case
of perpendicular magnetic fields and if one omits the space
dispersion, results of Ref. 20 mainly agree with those of Ref.
25. However, the approach of Ref. 20 suffers from an unde-
sirable restriction. Namely, the inequality 
so	�c, where
�c=eB�

�0� /mc is the cyclotron frequency corresponding to the
perpendicular component of the field, that was adopted on a
stage of that derivation, excludes the limit of magnetic fields
parallel to the electron motion plane, when �c�0→0 and the
Landau quantization becomes ineffective. However, in spite
of this fact, the final expression for the resonant spin suscep-
tibility appeared to be well behaved at any directions of the
external field coinciding in the parallel field limit with a
corresponding expression for the susceptibility obtained
earlier20 by disregarding diamagnetism from the outset. This
circumstance tempts us to think that the restriction 
so	�c
at small magnetic fields is not motivated by an essential
physics but should be rather a drawback of the theoretical
method applied. �Note that Ref. 25 is also not free from an
analogous restriction.� The ESR in tilted magnetic fields was
also considered in Ref. 27 by means of a semiclassical ki-
netic equation. However, the correctness of a procedure of
exclusion of orbital degrees of freedom to get a balance-type
equation for the magnetization, which was not presented
there, is not clear. So it is difficult to estimate the validity of
the approach applied and the accuracy of results obtained.
The effect of the cyclotron motion on frequency and axis of
the spin precession was missed in Ref. 27. An attempt to
analyze some features of the ESR absorption within a semi-
classical approach was also made in Ref. 28. It should be
noticed that previously published works considered only the
resonant response of the spin density to the Zeeman interac-
tion with the magnetic field, i.e., the spin susceptibility, and
to ac electric field.29 To the best of the author’s knowledge, a
microscopic treatment of the resonant contribution to the
conductivity of the electron gas was never proposed.

The paper is organized as follows. In Secs. II–IV main
results of the formal analysis are presented, technical details
of derivation being given in Appendices A and D. In Sec. II
we introduce the model we aim to investigate. We start with
a formulation of constitutive relations that express the den-
sities of electric current J and spin magnetization M as func-
tions of the electric and magnetic fields E and B, modified
for a conducting medium of polar symmetry. We show that a
microscopic cause of additional terms in the constitutive re-
lations is the presence of cross spin-current correlations
which emerges due to the BSOC. Further, as a prelude, we
present a short evaluation of the additional terms in the sim-
plest case of the absence of an external constant magnetic
field. This calculation allows us to formulate our method
most clearly, disregarding complexities connected with the
Landau quantization. In the end of Sec. II we give an expres-
sion for the microwave field absorption which follows from
the modified constitutive relations. It is relevant to a general
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case when the system is subject to both the magnetic and
electric components of the field. In Sec. III, we demonstrate
the method in a full generality. Although the central object of
this paper is the electrical conductivity, we consider first the
spin susceptibility tensor, �ij���, which determines the ab-
sorption of the microwave radiation when a 2D structure is
placed in a node of electric component of the microwave
field. The fact is that the operator of current, the correlation
function of which defines the conductivity according to rules
of quantum statistical mechanics,30 is a function of coordi-
nates, whereas the spin operator is not. As will be seen, be-
cause of this circumstance, the evaluation of �ij��� appears
to be more simple than ij���. We show that results of Ref.
26 are really valid at any relation between 
so and �c. In
Sec. IV, we apply the method to a calculation of the cross
spin-current-correlation tensors �ij��� and �ij���. In Sec. V,
we calculate the electric conductivity tensor, ij��� which
determines the absorption of the microwave radiation when
the 2D structure is placed in an antinode of electric compo-
nent of the microwave field. Finally, in Sec. VI, we summa-
rize our results and give an outlook for possible further in-
vestigations.

II. MODEL AND FORMULATION

A. Model Hamiltonian

The physical model we are using is based on the follow-
ing premises. We assume that the Coulomb energy is much
smaller than the Fermi energy �F so that many-body effects
do not play an appreciable role and may be omitted. Thus we
consider the 2D degenerate system of electrons of charge −e
and spin 1

2 subject to a moderately strong external magnetic
field B�0�, �c	�F. Then the matter Hamiltonian has the form

H = H0 + Hso + HZ + Himp,

H0 =
1

2m
�p +

e

c
A�0��2

, Hso = ��p +
e

c
A�0��� c · � ,

HZ = − � · B�0�, Himp = �
i

U�r − Ri� . �2�

Here �=−g�B� /2 is the spin magnetic-moment operator,

A�0�=
1
2 �B�

�0��r� is the vector potential of the part of the
field that is perpendicular to the plane of the system,
B�

�0�=c�c ·B�0��, and the potential of impurities positioned
in arbitrary distributed points Ri of concentration nimp is
considered to be short ranged: U�r−Ri�=U��r−Ri� �then
according to Ref. 30 the elastic lifetime �0 is given by �0

−1

=mnimpU2�.
There are several dimensionless parameters determining

the behavior of the system. As it was mentioned above,
the external magnetic field appears in the theory through
the parameters �s�0 and �c�0, where �s=g�BB�0� and �c
=eB�

�0� /mc are the Larmour and cyclotron frequencies. The
first parameter is treated below as small. But because the
cyclotron frequency in many semiconductors may exceed
very much the Larmour frequency, the parameter �c�0 can be

large. Spin-orbit constant � also appears in the problem in
two ways. The parameter �=�pF /�F, where �F= pF

2 /2m is the
Fermi energy, having a pure quantum-mechanical nature is
treated as being very small so that all powers of � in equa-
tions in excess of the first can be ignored. Another parameter
�0=2�pF�0, which controls the kinetics of spin-flip process
by impurity scattering, is much greater �0 /�=2�F�0�1. In
this paper we adopt �0	1, i.e.,

� 	 �0 	 1. �3�

Note that the inequality �s�0	1 does not prevent the ESR to
be sharp because its width is determined by the spin relax-
ation time �so	�0�0

−2, which is much longer than the mean-
free time �0. So the sharp-resonance condition �if one ne-
glects effects of the cyclotron motion� is

�0
2 	�s�0. �4�

B. Constitutive relations

It is natural to expect that the parity violation with respect
to reflection in the plane of the 2D electron layer should
influence macroscopical properties of the substance. The
magnetoelectric effect �MEE�—the occurrence of a spin po-
larization of the current carriers induced by the electric cur-
rent, predicted in Ref. 31 and experimentally observed in
Ref. 32, is an example of such an influence. It can be ex-
pressed through the relation

S = d�c �
J

evF
� , �5�

where S is the spin-polarization density, J is the current den-
sity, vF is the Fermi velocity, and d is a constant proportional
to the spin-orbit constant �. Such a relation would be forbid-
den in a center-symmetric system because spin is a parity-
even quantity whereas current is parity odd. On the micro-
scopic level, the property that ensures the MEE is spin-
velocity correlations, which are inherent in systems with the
BSOC. In a more general case of a time-dependent electro-
magnetic field �sufficiently slow and weak�, a result of the
presence of the spin-velocity correlations is a modified form
of constitutive relations

M = �̂B + �̂E , �6�

J = ̂E − �̂Ḃ , �7�

where M is the spin magnetization density, E and B are the
electric and magnetic components of the field and a point
over B denotes the time derivative.33 First terms in right-
hand sides of these equations �with the conductivity ̂ and
the spin susceptibility �̂� are familiar, whereas the presence

of second terms �with kinetic coefficients �̂ and �̂� is one of
the hallmarks of electrodynamics of conducting media of
polar symmetry. It is seen that right-hand sides of Eqs. �6�
and �7� are sums of terms of different parity under space
reversal. The second term in Eq. �6� accounts for the MEE in
the stationary limit. Strictly speaking, the coefficient �̂ in Eq.
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�6� slightly differs from the standard susceptibility since it
relates the magnetic moment M with the magnetic induction
B rather than the magnetic field H. But because �̂	1, we
will neglect the difference. It has to be emphasized that the
form of Eqs. �6� and �7� is somewhat conditional. It implies
that the static part of the magnetic field, B�0�, and conse-
quently the equilibrium part of the spin magnetization, M�0�,
are excluded from B and M, respectively. The static mag-
netic field, which does not need to be small, has been in-
cluded in the matter Hamiltonian �2�; accordingly, its influ-
ence on the material kinetic coefficients is assumed.

A connection between the spin-velocity correlations and
the additional terms can be shown in the following way. For
the sake of simplicity, we consider here the case without the
external magnetic field; a general case will be considered in
subsequent sections. In the linear-response regime, M and J
can be expanded in the electromagnetic interaction

Hef = −
1

c

 d2rj�r� · A�r,t� . �8�

Since, due to the BSOC, the velocity operator

v�p� = i�H,r� =
p

m
+ �c � � �9�

as well as the usual scalar part v�sc� also has a spin compo-
nent v�sp�, the current operator in the second quantization
representation has the form

j = jkin + jdia + jpar,

jkin = −
e

m
���+ �

2i
�� − ��

�

2i
��

+� − e���
+�c � �����,

jdia = −
e2

mc
A��

+��, jpar = c � � ���
+������ . �10�

Accordingly, the interaction Hamiltonian can be rewritten as

Hef = Hef
�1� + Hef

�2�,

Hef
�1� = −
 d2r��r� · B�r,t� ,

Hef
�2� = −

1

c

 d2r�jkin�r� + jdia�r�� · A�r,t� , �11�

where ��r�=−�g�B /2���
+�r�������r� and B=��A. First

terms in Eqs. �6� and �7� are usual responses of the spin
magnetization on Hef

�1� and the current on Hef
�2�. Let us show

that additional terms arise as a cross responses of the spin
magnetization on Hef

�2� and the current on Hef
�1�. According to

rules of statistical physics,30 we have for the second term in
Eq. �6�

Mi
�2���n� = − �g

2
�B�T�

�l



p

Tr�i

�G��l + �n,p�v j�p�G��l,p��
e

c
Aj��n� , �12�

where �l= i�T�2l+1� , �n= i�T2n are fermion and boson
Matsubara frequencies,34 v�p� is given by Eq. �9�, G��l ,p�
is the Green’s function corresponding to Hamiltonian �2�,
p= d2p

�2��2 , and effects of impurities are temporary omitted.
Only the contribution of jkin is retained; an analogous contri-
bution of jdia can be shown to be zero. In the Feynman-
diagram language, the right-hand side of Eq. �12� is the fer-
mion loop with two vertexes one of which �the left response
vertex� contains the operator i and another �the right cause
vertex� is the velocity operator v j. The term “spin-velocity
correlations” adopted in this paper means a nonzero value
of diagrams of such a type. As is known,30 in order to get
the Fourier-component Mi

�2���� at real frequencies an ana-
lytical continuation from the discrete frequencies �n to the
real axis from above �+0+, where �� �−� ,�� is the real
variable, should be performed. Referring the reader to Ref.
30 for details of the continuation we give the final result.
The loop becomes three diagrams: one retarder diagram
that involves the product GR��+� ,p�v j�p�GR�� ,p� multi-
plied by tanh� �

2T �, one advanced diagram that involves the
product GA��+� ,p�v j�p�GA�� ,p� multiplied by −tanh� �+�2T �,
and one diagram which will be called kinetic. The latter in-
volves the product GR��+� ,p�v j�p�GA�� ,p� multiplied by
the function F�� ,��= �tanh �+�

2T − �
2T �. Since two quasiparticle

poles in the product GR��+� ,p�v j�p�GR�� ,p� �and also in
GA��+� ,p�v j�p�GA�� ,p�� lie on the same side of the real
axis, the effective range of the momentum integration in ad-
vanced and retarded diagrams is of order pF �Ref. 35� so that
one may ignore the frequency � of the electromagnetic field
and the presence of impurities which is accurate up to per-
turbations on the order of � /�F and ��F�0�−1. The contribu-
tions of these diagrams become proportional to



p

Tr�iG
R�A���,p�v j�p�GR�A���,p�� �13�

and hence is zero since the integrand, due to the Ward iden-
tity GR�A��� ,p�v j�p�GR�A��� ,p�= �

�pj
GR�A��� ,p�, is the full de-

rivative. In this way we come to

Mi
�2���� = − �g

2
�B�
 d�

2�i
�N���,��


p
Tr�iG

R�� + �,p�

�v j�p�GA��,p��
e

c
Aj��� , �14�

where N��� ,��= 1
� �fF���− fF��+���, fF���= �exp� �−�T �+1�−1

is the Fermi distribution function. Thus, in the zero-
temperature limit, we get for the kinetic coefficient �̂ of
Eq. �6�
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�ij��� = � eg�B

4�
�


p
Tr�iG

R��F + �,p�v j�p�GA��F,p�� .

�15�

An analogous consideration of the response of the electric
current to Hef

�1� leads to

�ij��� = � eg�B

4�
�


p
Tr�vi�p�GR��F + �,p� jG

A��F,p�� .

�16�

Equations �15� and �16� express the kinetic coefficients �̂ and

�̂ through the spin-velocity correlations like the standard
equations for the conductivity30

ij��� =
e2

2�



p
Tr�vi�p�GR��F + �,p�v j�p�GA��F,p��

�17�

and the dynamical part of the spin susceptibility

�ij
dyn��� =

i�

2�
�g

2
�B�2


p
Tr�iG

R��F + �,p� jG
A��F,p��

�18�

express these quantities through the dynamical velocity-
velocity and spin-spin correlations. An account of impurity
scattering is known to lead to the appearance of a decay of
the Green’s function and to the impurity renormalization of
one of two vertexes. For �ij

�dyn����, it is equivalent to the
change i→�i, where �i is the solution of the ladder-type
vertex equation

���
i ��� = ��

i +
1

m�0



p
G��

A ��F,p����
i ���G��

R ��F + �,p� .

�19�

In the case of �̂��� and �̂���, one may also consider that the
spin vertex is to be impurity renormalized. In the case of the
conductivity, one of bar velocity vertexes, for example, the
left one vi�p�, should be renormalized which means the sub-
stitution vi�p�→Vi, where the vertex Vi is defined by the
equation

V��
i ��,p� = v��

i �p� +
1

m�



k
G��

A ��F,k�

�V��
i ��,k�G��

R ��F + �,k� . �20�

C. Outline of the method

In this section, we present shortly the logic of our ap-
proach to spin-dependent kinetic problems by considering

the cross-response coefficient �̂; details of calculations are
given in Appendix A. As it is seen from Eqs. �16� and �19�,
the basic constituents of the theory after the averaging over
impurity positions is performed are the kernel of Eq. �19�

����t������� � t�����,�� =
def 1

m�0



p
G��

R ��F + �,p�G��
A ��F,p� ,

�21�

which allows one to rewrite Eq. �19� as

������ = ��� + ����t������������� , �22�

and the velocity-vertex v̂�1�

v��
�1���� =

1

m�0



p
�GA��F,p�v�p�GR��F + �,p����, �23�

which has the sense of the first impurity correction to the
bare velocity operator. The factor 1 /m�0 is introduced to Eq.
�21� to make the kernel dimensionless. The kinetic coeffi-

cient �̂ is expressed through the solution of Eq. �22� and the
velocity-vertex v�1� as

�ij��� = m�0� eg�B

4�
�Tr�v�1�

i � j���� . �24�

The electron Green’s function of Hamiltonian �2� at B�0�=0
has the form �see, e.g., Refs. 20 and 31�

G����n,p� = �
�=�

���
����p�G�����n,p� , �25�

G�����n,p� = ��̃n − �����−1, �26�

���
����p� =

1

2
���� � �p̂ � c� · ���� , �27�

where �����p�=�����p�−� , �����p�= p2 /2m��p, and �̃n
=�n�1+ �2�0��n��−1�. The simplicity of this form allows one to

evaluate �̂ without difficulty.20 We, however, will use another
method which is adequate in a more general case when the
system is subject to an external magnetic field. Namely, we
will expand the quantities �Eqs. �21� and �23�� in a power
series about small parameters ��, �, and �. �The presence of
the external magnetic field will be seen below to add another
one small parameter ��s��.� The expansion can be obtained
simply by means of the expansion of the Green’s function
G����n ,p�,

G��n,p� = G�0���n,p� + G�0���n,p�Hso�p�G�0���n,p�

+ G�0���n,p�Hso�p�G�0���n,p�Hso�p�G�0���n,p�

+ ¯ , �28�

where G��
�0���n ,p�=�����̃n−��p�−��−1 is the Green’s func-

tion of the system with removed spin-orbit coupling. By sub-
stituting Eq. �28� into Eqs. �21� and �23�, one obtains ex-
pansions of the kernel t��� and the vertex v̂�1����. The evalu-
ation of terms of the expansions can be carried out in a
standard manner. In the integrals over the momentum space,
one should change the Cartesian coordinates for polar coor-
dinates. Then angular integration gives rise to a combination
of Pauli matrices and the remaining radial integrals can be
elementary performed with the help of the theory of residues.
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First consider the kernel t̂���. Because of the integration
over p direction, only terms with even numbers of Hso con-
tribute. To an accuracy of �2 terms, we have

t̂��� � t̂�0���� + t̂�2�, �29�

where

����t�0����� =
1

m�0



p
G��

R�0�G��
A�0� �30�

and

t̂�2� = p̂�11� + p̂�02� + p̂�20�,

����p�11����� =
1

m�0



p
G��

R�1�G��
A�1�,

����p�02����� =
1

m�0



p
G��

R�0�G��
A�2�,

����p�20����� =
1

m�0



p
G��

R�2�G��
A�0� �31�

Here

G�1� = GR�0�HsoGR�0�, G�2� = GR�0�HsoGR�0�HsoGR�0�.

�32�

In Eqs. �29�–�31� and all below, the energy and momentum
arguments ��F+� ,p� of retarded Green’s functions and
��F ,p� of advanced Green’s functions are omitted for brevity.
A calculation yields �see Appendix A�

����t�0�������� � �1 + i��0�������,

����p�11����� �
�0

2

2
�c � �����c � ����,

����p�02����� = ����p�20����� � −
�0

2

4
������. �33�

Note that the right-hand sides of Eq. �33� include the direct
products of a matrix which depends on the indices ���� and
a matrix which depends on the indices ����. It is much con-
venient, however, to deal with the direct products of matrices
one of which depends on the indices ���� and another one on
the indices ����. In the Feynman-diagram language, it
means to split up the four spin indices into a pair of indices
by means of which the kernel is connected with other part of
a ladder diagram coming from the left and a pair of other
indices through which the kernel is connected with a part of
the ladder diagram coming from the right. An advantage of
the representation obtained in such a way is that it allows one
to readily reduce the spin-matrix equations for the spin and
velocity vertexes to systems of scalar equations. The desired
rearrangement of the spin indices is possible owing to Fierz-
type identities for the direct products of the Pauli matrices
�see Appendix C�. By means of these identities t̂��� can be
written in the form

����t������� �
1

2
�1 + i��0�������

+
1

2
�1 + i��0 − �0

2��c · �����c · ����

+
1

2
�1 + i��0 −

�0
2

2
��c � �����c � ����.

�34�

It easy to verify that the solution of Eq. �22� has the form

�i��� =
ci�c · ��

− i��0 + �0
2 +

i − ci�c · ��

− i��0 +
1

2
�0

2

. �35�

Now consider v�1����. In view of Eqs. �9� and �21�,

v�1���� = v�1,sc���� + v�1,sp���� , �36�

where

v��
�1,sc���� =

1

m�0



p
�GA p

m
GR�

��

�37�

and

v��
�1,sp���� = ��c � ��������t������� . �38�

Because of the presence of the vector p under the integral in
Eq. �37�, only terms with odd numbers of Hso contribute. To
an accuracy of �3 terms, we have

v�1,sc���� = v�1.1�
�sc� ��� + v�1.3�

�sc� ��� , �39�

where

v�1.1���
�sc� ��� =

1

m�0



p

p

m
�GA�1�GR�0� + GA�0�GR�1����,

�40�

v�1.3���
�sc� ��� =

1

m�0



p

p

m
�GA�3�GR�0� + GA�2�GR�1�

+ GA�1�GR�2� + GA�0�GR�3����. �41�

A calculation yields �see Appendix A�

v�1.1�
�sc� ��� � − ��c � ���1 + i��0� �42�

and v�1.3�
�sc� =0. The corresponding expansion of v�1,sp����, with

the help of Eq. �34�, can be found to be

v̂�1,sp���� � ��c � ���1 + i��0 −
�0

2

2
� . �43�

As a result,

v̂�1���� � − �
�0

2

2
�c � �� �44�

does not depend on �. Substituting Eqs. �35� and �44� into
Eq. �24�, we get
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�ij��� = ����eijscs, ���� = �m�0� eg�B

2�
��1 + i��so�0��−1,

�45�

where �so�0�−1=�0
2 /2�0. Thus the frequency dispersion of �,

just as �, becomes essential at frequencies �	�so
−1 whereas

the dispersion of the conductivity appears only at more high
frequencies �	�0

−1.
An evaluation of the kinetic coefficient �̂ is carried out

along the same lines. In this case, one should introduce the
right velocity vertex

v��
�1r���� =

1

m�0



p
�GR��F + �,p�v�p�GA��F,p���� �46�

instead of the left velocity-vertex v�1l� defined by Eq. �23�
and, through the equation

���
�l� ��� = ��� + ���

�l� �������t������� , �47�

the left renormalized spin vertex ��l���� instead of the right
spin vertex ��r���� defined by Eq. �22�. In terms of ��l����
and v�1r�, the coefficient �̂ can be expressed as

�ij��� = m�0� eg�B

4�
�Tr��i

�l����v j
�1r����� . �48�

It easy to check that v�1l�=v�1r� and ��l�=��r� so that

� ji��� = �ij��� . �49�

Thus, in the absence of an external magnetic field, the con-
stitutive relations take the form

M = �B + �E � c , �50�

J = E + �Ḃ � c . �51�

In the low-frequency limit ��so�0�	1, Eq. �50� reduces to

M = � eg�B

2�
��m�0�c � E� , �52�

which coincides with Eq. �5� with d=
�pF

�F
if one expresses

the spin magnetization M through the spin polarization S
as M=S�g�B /2� and the electric field E through the electric
current density as J=DE �with the Drude conductivity D
=e2pF

2�0 /2�m�.
Note that one can interpret the presence of the additional

terms in the right-hand sides of Eqs. �50� and �51� in the
following way. The emergence of the electric current induced
by the electric field E implies a shift of the Fermi surface on
the drift momentum pdr	eE� what means that the fictitious
magnetic field B f�p� acquires a component ��pdr�c� /g�B
	E�c, which is the same for all electrons. The second term
in Eq. �50� may be viewed as the spin magnetization due to
this field. The existence of its counterpart, i.e., the second
term in Eq. �51�, may then be expected by taking guidance
from the Onsager’s symmetry principle.36

The calculations just presented show a key point of the
approach proposed—one should express kernels of the
Bethe-Salpeter-type equations for the exact spin and velocity

vertexes �but not solutions of these equations� as a power
series in the small parameters. The expressions can be ob-
tained simply by means of the expansion �Eq. �28�� of the
full Green’s function. Since one-electron line of any ladder
diagram that contribute to any of the kinetic coefficients

̂ , �̂�dyn� , �̂, and �̂ is retarded whereas the other is ad-
vanced, quasiparticle poles multiplied together lie on either
side of the real axis. Therefore, the integration over �= p2

2m
−�F in any element of the ladder diagram is limited to the
region on the order of �0

−1 so that the corresponding integrals
converge. Thus the Green’ function without spin-orbit cou-
pling becomes the main calculational tool of the theory. It is
not difficult, therefore, to anticipate that the approach will be
efficient as well when the Landau quantization is taken into
account. Indeed, the spectral decomposition of the Green’
function of the Landau problem is not difficult to use and the
substitution of the � integration for the summation over the
Landau levels should not introduce a principal complication
into the method.

D. Absorption coefficient

It is convenient to separate the total current-density opera-
tor into the “paramagnetic,” ĵpar, and “conduction,” ĵcond
= jkin+ jdia, parts. Then the power loss of the microwave field
due to the Joule heating can be represented as37

R = �J · E − M · Ḃ� , �53�

where J is the ensemble-averaged conduction current den-
sity, E and B are the electric and magnetic components of the
field, a point over B denotes the time derivative, and the
brackets mean the time averaging. Inserting the constitutive
relations �6� and �7� into Eq. �53�, we obtain for the case of
a monochromatic wave

R =
1

2
�E�

� · ̂���� · E�� +
�

2
�B�

� · �̂���� · B��

−
�

2
Im�E�

� · ��̂��� + �̂+���� · B�� , �54�

where E� and B� are the Fourier amplitudes of the electric
and magnetic fields, ̂�=Re ̂, �̂�=Im �̂, and the superscript
+ means the Hermitian conjugation. Here the first, “electric”
term, RE, and the second, “magnetic” term, RB, are standard.
The third, “magnetoelectric” term REB is a characteristic fea-
ture of a conducting media of polar symmetry.

While the magnetoelectric term has been obtained within
macroscopic electrodynamics, it can be also interpreted in
terms of quantum mechanics. Indeed, the lost in field energy
per unit time can be written as38

R = �
n,m

�nwmn�mn, �55�

where �n=exp��F−En� /T� is the Gibbs distribution function,
En—energy levels of the system, F—its free energy, �mn
=Em−En, and wmn is the probability of the transition n→m
�per unit time� due to the interaction with the field. By
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dropping the diamagnetic current and assuming the field to
be monochromatic, the interaction can be written as

1

2
� e

c
v · A� +

g�B

2
� · B��e−i�t + c.c. �56�

Then

wmn =
2�

4
�� e

i�
vmn · E� +

g�B

2
�mn · B��2

��� − �mn�

+ � ie

�
vmn · E�

� +
g�B

2
�mn · B�

��2

��� + �mn�� , �57�

where E�= �i� /c�A� and matrix elements of spin and veloc-
ity operators are taken between the exact eigenstates of the
unperturbed system. The part of wmn bilinear in the electric
and magnetic fields after some manipulation can be put in
the form

ie�g�B

8
�


−�

�

dtei�t�
n,m

�n�− �n���t� · B�
� �m��m�v · E��n�

+ �n�v · E��m��m���t� · B�
� �n� + �n�v�t� · E�

� �m�

��m�� · B��n� − �n�� · B��m��m�v�t� · E�
� �n�� , �58�

what is nothing but

ie�g�B

8
�


−�

�

dtei�t���v�t� · E�
� ,� · B���

− ����t� · B�
� ,v · E���� , �59�

where the square and angle brackets denote the commutator
and the averaging over the canonical ensemble. By employ-
ing the real-time formalism30 �instead of the thermal ones

used in Sec. II B�, one can obtain the representation of �̂���
and �̂��� through the retarded correlation functions

�ij��� =
e

�
�g�B

2
�


0

�

dtei��+i0�t��vi�t�, j�� , �60�

�ij��� =
e

�
�g�B

2
�


0

�

dtei��+i0�t��i�t�,v j�� . �61�

By making use of Eqs. �60� and �61�, it is not difficult to see
that Eq. �59� is identical with REB which follows from Eq.
�54�. Thus one may treat the magnetoelectric contribution to
the absorption coefficient as a result of an interference be-
tween quantum transitions induced by the electric and mag-
netic fields.

In the absence of an external magnetic field, when Eqs.
�50� and �51� are applicable, the expression for the magne-
toelectric term takes the form

������Im�E�
� � B� · c� . �62�

In the case of a free electromagnetic wave incident on a 2D
electron system Im�E�

� �B� ·c�=0. But if the microwave ra-
diation is absorbing by a bulk conductor, within which the
wave vector of the radiation has an imaginary part, the mag-
netoelectric contribution to the power loss should be finite so

that the absorption acquires a dependence on the angle be-
tween the Poynting vector of the radiation and the polar axis.
The magnetoelectric contribution is also finite for a 2D elec-
tron system subject to an external magnetic field, as it will be
shown in Sec. VI.

III. SPIN SUSCEPTIBILITY

A. Bethe-Salpeter kernel

In this section, we evaluate the spin susceptibility of the
system defined by Hamiltonian �2� following the lines of
Sec. II C. Only the logic of the evaluation is given; all cal-
culations are placed in Appendix B. As usually, we use the
coordinate representation dealing with the Landau quantiza-
tion. In this representation, the susceptibility of the system in
the presence of disorder, as a function of frequency and wave
vector, is given by30

�ij
�dyn��q,�� = − �g

2
�B�2

i�

−�

� d�

2�
N���,��

���
i ���,���q,�;����

j , �63�

where N��� ,��= 1
� �fF���− fF��+���, fF���= �exp� �−�T �+1�−1

is the Fermi distribution function while

���,���q,�;�� = 

r−r�

e−iq·�r−r�����,���r,r�;�,�� �64�

is the Fourier transform of the joint propagator of a particle
with energy �+� and a hole with energy � in the presence of
disorder

���,���r,r�;�,�� = �G��
R �r,r�;� + ��G��

A �r�,r;��� ,

�65�

where GR and GA are the advanced and retarded single-
particle Green’s functions corresponding to Hamiltonian �2�,
� � implies impurity averaging, and the fact39 is used that

�̂�r ,r� ;� ,�� depends only on the relative coordinate r−r�.
Everywhere below, the wave vector q is assumed to be zero.

The particle-hole propagator �̂ is the sum of an infinitive
series

���,���r,r�;�,�� = ���,��
�0� �r,r�;�,��

+ nimpU2

r1

���,��
�0� �r,r1;�,��

����,��
�0� �r1,r�;�,�� + ¯ , �66�

where

���,��
�0� �r,r�;�,�� = �G��

R �r,r�;� + ����G��
A �r�,r;��� .

�67�

In the Feynman-diagram language, the series �Eq. �66�� rep-
resents the sum of the so-called ladder diagrams. This sum
satisfies the Bethe-Salpeter equation
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���,���r,r�;�,�� = ���,��
�0� �r,r�;�,��

+ nimpU2

r1

���,��
�0� �r,r1;�,��

����,���r1,r�;�,�� . �68�

The irreducible part of �̂, �̂�0��r ,r� ;� ,��, which is the ker-
nel of the integral Eq. �68�, can be considered as the basic
building block of the theory.40 It is the point where obstacles
to incorporating diamagnetism into the theory appear.

First of all note that the effect of impurity scattering can
be considered in the framework of a technique developed in
the work,41 where the scattering from a single impurity site is
treated in lowest Born approximation while effects of level
broadening are accounted for self-consistently. As a result,
the self-energy of the impurity averaged Green’s function
acquires an energy dependent imaginary part, �i /2����, in-
dependent of the energy of Landau level. As the presumably
weak SO coupling plays a negligible role in the one-electron
decay at �pF�	1, the decay may be calculated regardless of
Hso. Then ���� and the density of states for a single spin,
N���=− p

��nIm��− �n+ 1
2 ��c− i

2���� �
−1, where p= 1

2��2 is the
Landau-level degeneracy and �= c

eB�0�
is the magnetic length,

are related via the equation22

1

����
= 2�N���nimpU2. �69�

By virtue of this equation, N��� takes on a nonzero value
within the intervals �− 1

2� , 1
2� � about each Landau level. The

detailed form of � can be obtained from Ref. 41; when
�c�0�1, �����0 /2�c�1/2. Further, taking into account that
the magnetic field is supposed to be adjusted to make ��n
+ 1

2�c�−�F��0	1 for some integer n=n0, the � integration in
Eq. �63� is essentially limited by the factor N��� ,�� and the
condition �s�0	1, all quantities involved are evaluated at
the Fermi energy. Therefore, we can set �=���F�, drop the

dependence of �̂�0� on �, and put T=0 in Eq. �63� assuming
T�	1.

Now, according to directions given in Sec. II C, we ex-

pand the kernel �̂�0��r ,r� ;� ,�� in series in the small param-
eters �pF� and �s� or, what is the same, in the spin-orbit
coupling Hso and the Zeeman interaction HZ. As in the case
of zero magnetic field �compare with Eq. �21��, it is conve-
nient to deal with the dimensionless kernel

����T������� =
def

T��,����� = nimpU2���,��
�0� �0,�;�F� .

�70�

The unperturbed kernel T̂�0� has the form

����T�0�������� = nimpU2

r1−r2

G��
R�0��r1,r2;�F + ��

�G��
A�0��r2,r1;�F� . �71�

The spectral decomposition of the impurity averaged Green’s
function corresponding to the Hamiltonian H0 is

G�0���
R�A� �r1,r2;�� = ����

n,l
�r1�n,l��n,l�r2�Gn

R�A���� ,

Gn
R�A���� =

1

� − �n � i/2�
. �72�

Here �r �n , l� is the eigenvector of H0 corresponding to the
eigenvalue �n=�c�n+1 /2�. Its explicit form is given in Ap-
pendix B. Substituting Eq. �72� into Eq. �71�, we obtain

����T�0�������� � �������1 + i��� , �73�

which has the same form as in the zero-magnetic-field case
�see Eq. �33�� and depends on the cyclotron frequency only
through �.

Now consider contributions to the kernel T̂ which are of
the first order in small parameters �s� or �pF�. The correc-
tion to G�0�

R�A��r1 ,r2 ;���� due to HZ has the form

G�1.Z���
R�A� �r1,r2;�� = 


r�
�Ĝ�0�

R�A��r1,r�;��ĤZĜ�0�
R�A��r�,r2;�����.

�74�

The corresponding correction to T̂ is

����Tpar
�1� ����

= nimpU2

r1−r2

�G��
R�1.Z��r1,r2;�F + ��G��

A�0��r2,r1;�F�

+ G��
R�0��r1,r2;�F + ��G��

A�1.Z��r2,r1;�F�� . �75�

Here, because the correction is already proportional to the
small parameter �s�, one can neglect the small parameter ��
and set �=0. A calculation yields �see Appendix B�

����Tpar
�1� ���� =

i

2
��s����h · ������� − ����h · ����� ,

�76�

which also depends on �c only through �.
The first correction to G�0�

R�A��r1 ,r2 ;�� due to Hso is

G�1,so�
R�A� �r1,r2;�� = 


r�
G�0�

R�A��r1,r�;��Hso�r��G�0�
R�A��r�,r2;�� .

�77�

The corresponding correction to T̂

����Tso
�1����� = nimpU2


r1−r2

�G��
R�1,so��r1,r2,�F�G��

A�0��r2,r1,�F�

+ G��
R�0��r1,r2,�F�G��

A�1,so��r2,r1,�F�� �78�

equals zero just as in the zero-magnetic-field case.
Now consider corrections of the second order. The correc-

tion to G�0�
R�A��r1 ,r2 ;�� due to Hso has the form
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G�2�so
R�A� �r1,r2� = 


r



r�
G�0�

R�A��r1,r�Hso�r�G�0�
R�A��r,r��

�Hso�r��G�0�
R�A��r�,r2� . �79�

Accordingly, the second-order correction to T̂�0� due to Hso is

T̂so
�2� = P̂�1.1� + P̂�2.0� + P̂�0.2�,

����P�1.1����� = nimpU2

r1−r2

G��
R�1,so��r1,r2�G��

A�1,so��r2,r1� ,

����P�2.0����� = nimpU2

r1−r2

G��
R�2,so��r1,r2�G��

A�0��r2,r1� ,

����P�0.2����� = nimpU2

r1−r2

G��
R�0��r1,r2�G��

A�2,so��r2,r1� .

�80�

A calculation yields �see Appendix B�

����P�1.1����� =
2��pF��2

1 + ��c��2 �s��
+ s��

− + s��
− s��

+ � ,

����P�2.0����� = − 2��pF��2��1 + i�c��−1���
�u�

+ �1 − i�c��−1���
�d�����,

����P�2.0����� = − 2��pF��2�����1 − i�c��−1���
�u�

+ �1 + i�c��−1���
�d�� , �81�

where s�= �x�y� /2, ��u,d�= �1�h� ·�� /2, and h�

=B�
�0� / �B�

�0��. Thus, by making use of the equality

s��
+ s��

− + s��
− s��

+ =
1

2
�c � ���� · �c � ����, �82�

we get

����Tso
�2����� = −

��pF��2

1 + ��c��2 ��c � ���� · �c � ���� + 2������

+ i��c����h� · ������� − ����h� · ������ .

�83�

Note that the last term in Eq. �83� has the same spin structure

as T̂par
�1� from Eq. �76�. This fact shows that owing to the

BSOC the cyclotron motion can contribute to the same
physical processes which in systems without the BSOC are
controlled only by the Zeeman interaction. A contribution to

T̂ of order ���s��, i.e., bilinear in Hso and HZ, equals zero
�see Appendix B�. Contributions quadratic in �s are finite but
can be ignored since they are only a corrections on the order

of ��s��2 to T̂�0�. Contributions of order �2��s��, i.e., linear
in HZ and quadratic in Hso, are also finite but small at
�	1.

B. Spin vertex

Instead of the particle-hole propagator �̂���, which is an
object of four spin indexes, it is simpler to deal with the
renormalized spin vertex �, which is an object of two spin
indexes. The equation for the left spin vertex has the same
form as in the zero-magnetic-field case �see Eq. �47��

���
�l� ��� = ��� + ���

�l� �������T������� . �84�

In the Feynman-diagram language, it turns up while one con-
siders ladder diagrams for �̂ as a renormalization of the left
 vertex. The right renormalized spin vertex, which turns up
while one considers ladder diagrams for �̂ as a renormaliza-
tion of the right  vertex, also can be introduced. It obeys the
equation

���
�r���� = ��� + ����T����������

�r���� , �85�

which is an analog of Eq. �22�. The susceptibility is ex-
pressed through the solution of Eq. �84� as

�ij����dyn� =
i�

2�
�g�B

2
�2

�nimp�U�2�−1���
�l�i�������T���������

j

= i��N��F��g�B

2
�2

Tr��i
�l����T̂��� j� . �86�

To simplify the treatment of Eq. �84�, which plays the role of
the quantum kinetic equation and hence is the central equa-
tion of the theory, we perform two transformation. �i� The
first transformation, just as in the zero-magnetic-field case,

consists in a rearrangement of spin indexes of the kernel T̂ so
that, for example, a pair of indices, � , �, by means of which
the kernel is connected with  j in Eq. �86�, appears at one
spin matrix and the same is true with respect of another pair
of indices � , �, by means of which the kernel is connected
with ��l����. As a result, we get

T��� = Trelax + Tprec, �87�

where

����Trelax���� �
a

2
������ +

b

2
�c · �����c · ����

+
u

2
�c � �����c � ���� �88�

with

a = 1 + i�, b = 1 + i� − �̄2,

u = 1 + i� −
�̄2

2
,

� = ��, �̄ = �2�pF���1 + ��c��2�−1/2 �89�

while
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����Tprec���� =
1

2
���s��hi −

�̄2

2
��c��h�

i �eijk��
j ��

k .

�90�

It will be seen that T̂relax is responsible for the spin relax-

ation, whereas T̂prec for the spin precession. It is convenient

to join together both terms in T̂prec to obtain

����Tprec���� = −
�

2
eijkt

i��
j ��

k , �91�

where42

� = �res�,�res = ��s
2 − �̄2�s�c��c · h�� + � �̄2

2
�c�2�1/2

,

t � h + ��̃2 �c

2�s
��h�c · h� − c sgn�c · h�� . �92�

�ii� The second transformation is a transition to a new set of
spin matrices. Let the orthogonal 2D vectors �x̂ , ŷ� lie in the
plane of the structure and the vector ẑ is perpendicular to the
plane. Instead of the standard set of Pauli matrices
�x ,y ,z�, which can be considered as projections of the
spin-vector � on the basis x̂ , ŷ , ẑ, we introduce a new set
which is “bound” to the external magnetic field B�0� and the
polar axis c. At a general direction of B�0� with respect of the
plane of the structure, we define

��1,�2,�3� =
def

�� · f�1�,� · f�2�,� · f�3�� ,

�f�1�,f�2�,f�3�� = �t,
c � t

�1 − �c · t�2
,

c − t�c · t�
�1 − �c · t�2� . �93�

Because unit vectors f�1� , f�2� , f�3� form the orthogonal
right-handed basis, just as the standard one, the commutative
relations for matrices �1 , �2 , �3 are the same as those for
matrices x , y , z. In terms of the new set, the kernel

T̂��� has the form

����T������� =
a

2
������ +

1

2
��bc2 + us2����

1 ���
1 + u���

2 ���
2

+ �bs2 + uc2����
3 ���

3 + �b − u�cs����
1 ���

3

+ ���
3 ���

1 �� −
�

2
����

2 ���
3 − ���

3 ���
2 � , �94�

where c= �c ·h� and s=�1− �c ·h�2.

Since the kernel T̂��� does not entangle the scalar and
spin channels, i.e., does not contain terms of the form ������
and ������, the solution of Eq. �84� should be a linear com-
bination of � matrices. This circumstance as well as the vec-
tor character of � suggests the following ansatz

��l���� = �
s,m=1

3

f�m�Vms�s �95�

with the help of which Eq. �84� reduces to the equation for
the matrix Vms

�
s=1

3

VisRsn = �in, �96�

where Rsn is the 3�3 matrix

R = �A 0 P

0 B �

P − � C
� �97�

with elements

A = − i� +
�̄2

2
�1 + c2� , B = − i� +

�̄2

2
,

C = − i� +
�̄2

2
�2 − c2� , P = cs

�̄2

2
. �98�

Thus

Vis = �R�is
−1 =

1

det R�BC + �2 − P� − BP

P� AC − P2 − A�

− BP A� AB
� , �99�

where det R=ABC+A�2−BP2.

In the kernel T̂��� entering Eq. �86�, one may neglect
terms proportional to the small parameters ��, �s�, and �̄,
i.e., one may substitute T��,������������. Then Eq. �86�
takes the form

�ij
�dyn���� � i��

�

m
N��F��0 Tr��i

�l���� j� . �100�

where �0= m
� �

g�B

2 �2 is the static susceptibility of 2D degener-
ate electron gas and

Tr��i
�l� j� = 2�

nm

Rnm
−1 f �n�

i f �m�
j . �101�

Equations �100� and �101� settle the problem of calculation
of the spin susceptibility under conditions �s�	1 and �̄
	1. In the following we assume that the more restrictive
sharp-resonance condition �Eq. �4�� or, more precisely,
�̄2 /�	1 is satisfied. The determinant of the matrix R is a
polynomial of the third order of argument � and hence it has
three roots. A simple analysis shows that up to corrections on
the order of ��̄2 /��2 the roots are

�0 � − i
�̄2

2
�1 + c2� ,

�� � ��res − i
�̄2

2
�3 − c2� , �102�

where

�res =
�

�
= ��s

2 − �̄2�s�c��c · h�� + � �̄2

2
�c�2�1/2

.

�103�

In a vicinity of the pole �0,
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R−1 �
i

� − �0�
1 0 0

0 0 0

0 0 0
� . �104�

Accordingly, at low frequencies, the spin susceptibility has
the form

�ij��� � �0
2�

m
N��F�

− �

� +
i

T1

titj ,

1

T1
=
�̄2

2�
�1 + c2� . �105�

In a vicinity of the pole �+

R−1 �
i/2
� − �+�

0 0 0

0 1 − i

0 i 1
� . �106�

Hence

Tr��i
�l� j� �

i

� − �+
��f �2�

i f �2�
j + f �2�

i f �2�
j � − i�f �2�

i f �3�
j − f �3�

i f �2�
j �� .

�107�

By making use of the equalities

f �2�i f �2�j + f �2�i f �2�j = �ij − f �1�i f �1�j ,

f �2�i f �3�j − f �3�i f �2�j = eijkf �1�k, �108�

we get near the frequency of the ESR

�ij��� � �0
�

m
N��F�

− �

� − �res +
i

T2

��ij − titj − ieijktk� ,

1

T2
=
�̄2

4�
�3 − c2� . �109�

The matrix structure of the numerator of this expression
shows that it is the t direction defined by Eq. �92� rather than
h direction is the axis of the spin precession—the magnetic
term in the energy absorption RB= �

2 �B�
� · �̂���� ·B�� vanishes

at B� � t. Thus the cyclotron motion changes the direction of
the spin precession axis when the external magnetic field B�0�
deviates from the c direction. In a particular case of B�0� �c,
the longitudinal relaxation time T1 of Eq. �105� and the trans-
verse relaxation time T2 of Eq. �109� reduce to the corre-
sponding expressions derived in Ref. 25. At �c�0�1, when
the discreteness of the electron energy spectrum is pro-
nounced as much as possible and hence the description of the
conduction-electron-spin resonance �CESR� should resemble
one in terms of transitions between quantum states, Eq. �103�
at B�0� �c gives �res��s−4m�2 �F

�c
. As �s	�c, this expres-

sion is in accord with the spin splitting �s−4n0m�2 �c

�c−�s
of

the Landau level with n0�
�F

�c
�1, which follows from an

explicit solution of H0+Hso+HZ.15 All above, we considered

the system of carriers with negative charge and positive sign
of g in Eq. �2�, i.e., as in the case of free electrons. In the
case of g�0, which can be considered quite analogously, we
come to the same Eq. �109� but with the resonant frequency
�res= ��s

2+ �̄2�s�c��c ·h��+ � �̄
2

2 �c�2�1/2, where �s= �g��BB�0�.
Thus, depending on the sign of g factor with respect to the
sign of charge carriers, the cyclotron motion can impede or
maintain the spin precession. Note that both the relaxation
time and the shift of the resonance frequency induced by the
cyclotron motion are controlled by the same parameter �̄.
The shift was missed in Ref. 25. The results presented are
valid at �s�	1, �̄	1, and �̄2 /�	1. The second criterion
reduces to the known criterion of applicability of the work19

�0	1 when �c�0	1 and to
�pF

�c
	1 when �c�0	1. Thus

results of Ref. 26 do not require the fulfillment of the in-
equality

�pF

�c
	1 at small external fields. It is interesting to

note that in the case of a structure with zero g factor, the
resonant frequency does not vanishes. According to Eq.
�103�, it becomes �res= �̄2

2 �c. Thus the cyclotron motion is
capable of maintaining the spin precession alone, without the
Zeeman interaction. The parameter determining the sharp-
ness of the resonance �resT2��c� can exceed unity.

IV. CROSS SUSCEPTIBILITIES

In this section, we apply the method that has been dem-
onstrated in the previous section to the evaluation of the
cross responses of the system described by Hamiltonian �2�.
For the response �̂ of the electric current to the Zeeman
interaction with the electromagnetic wave, Eq. �16� rewritten
in the coordinate space with allowance for impurities has the
form

�ij��� = � eg�B

4�
�


r1−r2

v��
i �r1����,���r1,r2;�F,����

j ,

�110�

where �̂ is defined by the series �Eq. �66�� or, that is the
same, by Eq. �68�. Just as in Eq. �9�, the velocity operator
v�r1� is the sum of the scalar and spin components

v�r1� = v�sc��r1� + v�sp�, �111�

where the spin component has the same form as in Eq. �9�,
v��

�sp�=��c�����, whereas the action of the scalar component
v�sc��r1� on the pair of Green’s functions G��

A �r2 ,r1� and
G��

R �r1 ,r2�, entering and leaving the velocity vertex v�r1� is
defined by the following way:43

G��
A �r2,r1�v��

�sc��r1�G��
R �r1,r2� =

def

lim
r1�→r1

���
1

2m
��� �r1� + �� +�r1���

�G��
R �r1,r2�G��

A �r2,r1�� ,

�� �r� =
�r

i
+

e

c
A�r�, �� +�r�� = −

�r�

i
+

e

c
A�r�� . �112�

As at the evaluation of the spin susceptibility, it is convenient
to consider the series �Eq. �66�� as the impurity renormaliza-
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tion of the spin vertex. Then expression �110� transforms into

�ij��� = �N��F�� eg�B

2
�Tr�vi

�1.l�� j
�r����� , �113�

where � j
�r���� is defined by Eq. �85� and, analogously to Eq.

�23�,

v��
�1.l� = nimpU2


r1−r2

G��
A �r2,r1�v���r1�G��

R �r1,r2� .

�114�

Like the zero-magnetic-field case, it is sufficient to find v�1.l�

with the accuracy up to ��̄2 , �����, and ���s�� terms. As
in Sec. II C, we have

v�1.l� = v�1.l�
�sc� + v�1.l�

�sp� ,

v�1.l���
�sc� = nimpU2


r1−r2

G��
A �r2,r1�v��

�sc��r1�G��
R �r1,r2� ,

v�1.l���
�sp� = ��c � ��������T������� . �115�

The expansion for v�1.l�
�sc� can be obtained by expanding the

Green’s functions in powers of Hso and HZ. It can be shown
�see Appendix D� that a nonzero contribution to v�1.l�

�sc� comes
from the correction of the first order in Hso and has the form

v�1.l�
�sc� � − ��c � ���1 + i��� , �116�

which differs from Eq. �42� only by the substitution �0→�.
Terms on the order of ��̄2 and ���s�� are absent in v�1.l�

�sc� but
present in v�1.l�

�sp� . Use of Eqs. �88� and �91� yields

v�1.l���
�sp� = ���1 + i�� −

�̄2

2
��c � ����

− ����c · t� − t�c · ������ . �117�

Thus

v�1.l� � − �� �̄2

2
�c � �� + ����c · t� − t�c · ����

�118�

or, in terms of the spin basis ���,

v�1.l� � − �
�̄2

2
�c � f�1���1 − �� �̄2

2
�c � f�2�� − ��c � f�3����2

− �� �̄2

2
�c � f�3�� + ��c � f�2����3. �119�

In the sharp-resonance approximation, the terms proportional
to � dominate. The Bethe-Salpeter Eq. �85� for the right

spin-vertex ��r���� can be solved just as the corresponding
equation for the left spin-vertex ��l���� was solved in Sec.
III B. The result is

��r���� = �
s,m=1

3

f�m�Rsm
−1�s. �120�

Thus ��r� differs from ��l� only by the transposition Rms
→Rsm that is equivalent to the change �→−� in Eq. �99�.
Near the pole �+ we have

Tr�vi
�1.l�� j

�r����� �
− i��

� − �+

� ��− �c � f�3��i f �2�j + �c � f�2��i f �3�j�

+ i��c � f�2��i f �2�j + �c � f�3��i f �3�j�� .

�121�

Use of Eq. �108� yields

�c � f�2��i f �3�j − �c � f�3��i f �2�j = �ij − ticj , �122�

�c � f�2��i f �2�j + �c � f�3��i f �3�j = − eijkck − �c � t�itj .

�123�

Finally, at frequencies near the ESR

�ij��� = N��F�� eg�B

2
� − ��res�

� − �res + i/T2

� �i��ij�c · t� − ticj� + �eijkck + �c � t�itj�� .

�124�

The evaluation of the kinetic coefficient �̂, which describes
the response of the spin density to the electric field, can be
performed quite analogously. Being written in coordinate
representation, Eq. �15� reads

�ij��� = � eg�B

4�
�


r1−r2

��
i ���,���r1,r2;�,��v j�r2���.

�125�

As in previous case, we consider impurity insertions as a
renormalization of the spin vertex. Then Eq. �125� can be
written in the form

�ij��� = �N��F�� eg�B

2
�Tr��i

�l����v j
�1.r�� , �126�

where, as distinct from Eq. �114�, the right velocity-vertex
v�1.r� is defined by

v��
�1.r� = nimpU2


r1−r2

G��
R �r1,r2�v���r2�G��

A �r2,r1� .

�127�

By repeating the previous analysis, one can show that v�1.r�

differs from v�1.l� only by the change �→−�, i.e.,
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vi
�1.r� � − �

�̄2

2
�c � f�1��i�1

− �� �̄2

2
�c � f�2��i + ��c � f�3��i��2

− �� �̄2

2
�c � f�3��i − ��c � f�2��i��3. �128�

Thus near the ESR and in the sharp-resonance approximation
we have

�ij��� = N��F�� eg�B

2
� − ��res�

� − �res + i/T2

� �i�citj − �ij�c · t�� − �eijkck − ti�c � t� j�� .

�129�

By comparing Eqs. �124� and �129�, we see that the resonant
part of the tensor �̂ is the transpose of the resonant part of the

tensor �̂. So the symmetry property �Eq. �49�� apparently is
always true. Note that the linear response of the spin polar-
ization to ac electric field in the particular case of in-plane
magnetic fields, when the cyclotron motion is suppressed,
was also calculated in Ref. 29. Equation �129� agrees with
results of Ref. 29 if conditions of applicability of the present
and that approach are simultaneously satisfied.

According to Eq. �54�, the magnetoelectric contribution to
the power loss is determined by the expression

�ij��� + �ij
+��� = − 2�� eg�B

2
�N��F�

�res�� − �res��
�� − �res�2 + T2

−2

� �i��ij�c · t� − ticj� + �eijkck + �c � t�itj�� .

�130�

In the case of a free plane wave, when the products Ei
�Bj are

real quantities and E� ·B=0, the magnetoelectric contribution
reduces to the form

REB = − ��� eg�B

2
�N��F�

�res�� − �res��
�� − �res�2 + T2

−2 �E�
� · t��c · B�� .

�131�

It can be finite for non-normal incidence. It is interesting to
note that since �E�

� · t��c ·B����E�
� ·h��c ·B�� the magneto-

electric contribution is an odd function of the magnetic field
direction h. Although the susceptibility tensor �ij �as well as
the conductivity tensor ij of Eq. �141�� also contains the
h-odd term eijktk�eijkhk, the corresponding contributions to
the absorption vanish when the incident radiation is linearly
polarized. In this case, the change in the absorption at the
magnetic field reversal is only due REB. The value of the
change is proportional to the value of the constant � of the
BSOC. Thus the detection of the difference in the power loss
at two opposite directions of the magnetic field provides a
possibility for a direct measurement of this constant. The
situation is similar to other two known examples of a change
in a polar crystal property at the external magnetic field re-
versal: �i� a change in the energy of an exciton with the
momentum q of the form q · �c�B�0�� �Ref. 44� and �ii� a

change in the line width of the ESR on free carriers of the
same form when the resonance is excited by inelastic light
scattering;11 q is then the momentum that is transformed to
or taken from the electron system. Note that because of the
presence of the scalar product �c ·B�� in REB the case of the
s polarization of the incident radiation should be excluded.

V. CONDUCTIVITY

In this section, a contribution of the ESR to the electrical
conductivity is considered. The fact that the ESR can mani-
fest itself in the conductivity tensor is a direct consequence
of the presence of the spin component in the velocity opera-
tor. Owing to this circumstance, any collective spin mode
can contribute to the correlation function of two velocity
operators, which, as is known, is the microscopic expression
for the conductivity. By writing Eq. �17� in the coordinate
space, we have for the conductivity tensor the expression

ij��� = � e2

2�
�


r1−r2

v��
i �r1����,���r1,r2;�F,��v��

j �r2� .

�132�

It is easy to check that the sharp resonance 	��−�res
+ i /T2�−1 appears in ij��� only as a result of summation of
the infinite series �Eq. �66��. Therefore, near the resonance,
one may safely drop the first term of the series,

� e2

2�
�


r1−r2

v��
i �r1����,��

�0� �r1,r2;�F,��v��
j �r2� , �133�

which has not a pole in the � plane in a vicinity on the order
of T2

−1 of the real axis. Then the sum of all other terms

� e2

2�
�


r1−r2

v��
i �r1��


r
���,��

�0� �r1,r�nimpU2

����,��
�0� �r,r2� + ¯�v�

j �r2� �134�

takes the form

�N��F�e2�vi,��
�1.l�v j,��

�1.r� + vi,��
�1.l�T��,�����v j,��

�1.r� + ¯� , �135�

where v�1.l� and v�1.r� are defined by Eqs. �114� and �127�. If
one defines the right renormalized velocity vertex by the
equation

V��
�r���� = v��

�1� + T��,�����V��
�r���� , �136�

which is an analog of Eq. �85�, the resonant part of the con-
ductivity can be written as

ij
�res���� = �N��F�e2 Tr�vi

�1.l�Vj
�r����� . �137�

The quantities v�1.l� and v�1.r� were found in Sec. IV. Because
in the sharp-resonance approximation

v�1.r� � �����c · t� − t�c · ��� , �138�

we have

V�r���� � �����r��c · t� − t�c · ��r��� . �139�

Use of Eqs. �119� and �120� yields
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Tr�vi
�1.l�Vj

�r�����

�
i����2

� − �+
�− ��c � f�2��i�c � f�2�� j + �c � f�3��i�c � f�3�� j�

+ i��c � f�2��i�c � f�3�� j − �c � f�3��i�c � f�2�� j�� . �140�

Finally, by making use of Eq. �108�, we obtain

ij
res��� � e2N��F�

i���res��2

� − �res + i/T2

� �cicj − �ij + �c � t�i�c � t� j + ieijscs�c · t�� .

�141�

Compare the power loss due to the electric component of the
microwave field, 1

2 �E�
� · ̂���� ·E��, and due to magnetic

component, �
2 �B�

� · �̂���� ·B��. First, Eqs. �109� and �141�
show that the polarization dependence of the electric and
magnetic terms coincides only at the perpendicular external
magnetic field B�0� �c. For the ratio of their absolute values
we have

RB

RE
	
�res��

�
	 �� g

�F�
� �m/m0��vF/c�

�
�2

, �142�

where m0 is the electron mass in vacuum and �=�pF /�F.
The value of the BSOC enters the denominator of this
expression through the parameter �, which is very small.
For the InxGa1−xAs / InyAl1−yAs heterostructure, which may
be considered as a typical example, m /m0=0.046, �=1.4
�10−10 eV so that the spin-orbit splitting 2�pF at the elec-
tron density ns�1�1012 cm−2 is equal to 0.65 meV. Since
the Fermi energy �F�40 meV, we have ��10−3. This
smallness, however, is compensated by two small parameters
entering the numerator: m /m0�10−2 and vF /c�10−3 so that
the total value of the ratio can be rather small. Thus the
electric component of the resonant microwave field can ex-
cite the resonance much more effectively than the magnetic
component in spite of a small value of the spin-orbit cou-
pling; an analogous fact was earlier known for donor-bound
electrons in bulk crystals.16 This agrees with results of recent
experiments performed on A3B5 quantum well,4 where the
ESR was detected only when the 2D structure was placed in
an antinode of electric component of the microwave field.

VI. SUMMARY

In this paper, the method for analyzing spin-dependent
kinetic problems in conducting media with the band spin-
orbit coupling has been suggested. The key statement of the
method, in the Feynman-diagram language, is that by sum-
ming infinite series of ladder kinetic diagrams responsible for
or contributing to a physical phenomenon, it is sufficient by
evaluating every single rung of the ladder to treat the BSOC
�and the Zeeman interaction� by means of the perturbation
theory. This approach has been applied to the ESR on con-
duction electrons in an impure asymmetric two-dimensional
semiconductor structure at tilted magnetic fields. Predictions
for the dependence of the resonant absorption upon the di-
rection of the magnetic field and the polarization of the inci-
dent radiation have been made that are subject to experimen-

tal verification. Two features of the ESR have been revealed:
�i� the electric component of the microwave field can excite
the ESR more effectively than the magnetic component. �ii�
Due to the BSOC, the cyclotron motion contributes to the
spin precession; in particular, the ESR can exist even if the g
factor of current carriers equals zero, i.e., in the absence of
the Zeeman interaction. In this case, the ESR is maintained
solely by the cyclotron motion. The constitutive relations
distinctive of the macroscopic electrodynamics of broken-
mirror-symmetry conducting media have been formulated as
well.

The method is applicable also to bulk crystals and could
serve as a general framework for analyzing both linear and
nonlinear responses of the system to external electromag-
netic perturbations. In particular, it would be interesting to
consider the ESR in a bulk polar semiconductor. In that case,
the relationship between electric, magnetic, and magneto-
electric contributions to the absorption could be different be-
cause of the suppression of the electric component of the
microwave field with respect to the magnetic one within the
skin layer. For the case of 2D structures in which both the
Rashba type and Dresselhaus type of spin-orbit coupling are
present and/or with an anisotropic g factor, an extension of
the method offers no principal difficulty. It would be also
interesting to find out the influence of interparticle collisions
on spin relaxation which should increase with the grow of
temperature. A more difficult problem is to evaluate the ESR
in the quantum Hall regime when the interparticle interaction
plays a substantial role.
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APPENDIX A

In this appendix, we present some details of the derivation
of Eqs. �33� and �42�. In the absence of an external magnetic
field, the Green’s function of the Hamiltonian H0 averaged
over impurities has the form

G��
R�A��0���F + �,p� = gR�A���,�����,

gR�A���,�� = �� − � �
1

2�0
�−1

, �A1�

where �= p2

2m −�F. Equation �33� readily follow from the
equalities


 d�

2��0�
gR��,��gA�0,��
�gR�0,��gA�0,���2

�gR�0,���3gA�0,��
gR�0,���gA�0,���3

� =�
�1 − i��0�−1

2�0
2

− �0
2

− �0
2

� .

�A2�

Because p�0.0�, p�2.0�, and p�0.2� are proportional to the small
parameter �2, we have dropped a dependence of these quan-
tities on the small parameter ��0.
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Consider the velocity-vertex v�1���� given by Eqs. �36�–�38� From Eqs. �32� and �40� we have

v�1.1���
�sc� ��� =
 dp̂

2�

 d�

2��0

p

m
��p � c · ������gR��,���2gA�0,�� + gR��,���gA�0,���2�

= ��c � ����
 d�

2��0
� p2

2m
���gR��,���2gA�0,�� + gR��,���gA�0,���2� . �A3�

Use of the equalities


 d�

2��0
��F + ����gR��,���2gA�0,��

gR��,���gA�0,���2 � =
i�0

�1 − i��0�2� − �F +
i

2�0

�F + � +
i

2�0

� �A4�

reduces Eq. �A3� to Eq. �42�. From Eqs. �32� and �41� we have

v�1.3���
�sc� ��� =
 dp̂

2�

 d�

2��0

p

m
�3p2�p � c · ����

���gR��,���4gA�0,�� + �gR��,���3�gA�0,���2 + �gR��,���2�gA�0,���3 + gR��,���gA�0,���4�

= �32m�c � ����
 d�

2��0
��F + ��2

���gR��,���4gA�0,�� + �gR��,���3�gA�0,���2 + �gR��,���2�gA�0,���3 + gR��,���gA�0,���4� . �A5�

Use of the equalities


 d�

2��0
��F + ��2�

�gR��,���4gA�0,��
�gR��,���3�gA�0,���2

�gR��,���2�gA�0,���3

gR��,���gA�0,���4
� =

i�0
3

�1 − i��0�4�
��F −

i

2�0
�2

��F −
i

2�0
��− 3��F −

i

2�0
� −

2i

�0
�1 − i��0��

��F + � +
i

2�0
��3��F + � +

i

2�0
� −

2i

�
�1 − i��0��

− ��F + � +
i

2�0
�2 � �A6�

yields v�1.3�
�sc� =0.

APPENDIX B

In this appendix, we show how one can derive equations
of Sec. III A. Because the technique of summing over Lan-
dau levels is presented in Ref. 22 in tiny details, we do not
reproduce it here. Only final results for sums encountered are
given. The same also refers to Appendix D.

�1� Consider the Green’s function G�0���
R�A� �r1 ,r2 ;�� given

by Eq. �72�. If one introduces a complex notation for the
position vector, with

z =
1

�
�x + iy�, z� =

1

�
�x − iy� , �B1�

the eigenstates of H0 can be written in the form21

�r�n,l� �  nl�z,z�� = �2��22n+ln!l!�−1/2 ̃nl�z,z�� , �B2�

 ̃nl�z,z�� = ezz�
�2�z�l�2�z��ne−zz�/2, n,l = 0,1, . . . �B3�

Use of the representation

 ̃nl�z,z�� = lim
�=�=0

����l����ne−2��e−�z−�z�
e−zz�/4 �B4�

yields

�
l

�r1�n,l��n,l�r2� = exp�1

4
�z1

�z2 − z1z2
���gn�z1 − z2� ,

gn�z� =
1

2��2e−�z�2/4Ln� �z�2

2
� , �B5�

where Ln denotes the Laguerre polynomial.45 We adopt that
the unit vector h�=B�

�0� / �B�
�0�� �directed perpendicular to the

plane of the electron structure� and unit vectors x̂ , ŷ �lying
in the plane of the electron structure� form the right-hand-
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oriented basis. Then, by making use of Eq. �B5� and the
equality

z1
�z2 − z1z2

� = 2ih� · �r1 � r2� , �B6�

one can represent Ĝ�0� in the form

G�0���
R�A� �r1,r2;�� = ��� exp� i

2�2h� · �r1 � r2���
n

gn�r1 − r2�

�Gn
R�A���� , �B7�

where

gn�r� =
def

gn�z� . �B8�

From Eqs. �75� and �B7� we find

����T�0�������� = ������nimp�U�2

r1−r2

�
n,m

gm�z2 − z1�

�gn�z1 − z2�Gm
A��F�Gn

R��F + �� . �B9�

Taking account of the orthogonality of the gn functions


 d2rgn�r�gm�− r� = 
n,m�2��2�−1 �B10�

and the equality

�
n

Gn
AGn

R =
1

� + i/�
2�iN��F�

p
, �B11�

where p= �2��2�−1 is the degeneracy or the number of states
per Landau level, N��� is the density of states connected with
���� by the relation �69�, Gn

R�Gn
R��F+��, and Gn

A�Gn
A��F�,

we come to Eq. �73�.
�2� Substituting Eq. �72� into Eq. �74�, we have

G�1.Z�
R�A��r1,r2;���� =

�s

2
�h · ����

n,l
�r1�n,l��n,l�r2��Gn

R�A��2,

�B12�

where h=B�0� / �B�0��. Then it follows from Eqs. �75� and
�B12� that

����Tpar
�1� ���� = nimp�U�2

�s

2
p�

n

��h · ��������Gn
R�2Gn

A

+ ����h · ����Gn
R�Gn

A�2� . �B13�

Use of the equalities

�
n

�Gn
R�2Gn

A = − �22�i

p
N��F� ,

�
n

Gn
R�Gn

A�2 = �22�i

p
N��F� �B14�

transforms Eq. �B13� to Eq. �76�.

�3� Consider corrections due to Hso. First note that Hso
can be written in the form

Hso = −
�

�
�h� · c��ŝ−�2�� −

z

2
� − ŝ+�2 � +

z�

2
�� ,

�B15�

where ŝ�= �̂x�̂y� /2. It follows from Eqs. �B2�–�B4� that

�2�� −
z

2
� n,l = �2�n + 1� n+1,l, �B16�

�2 � +
z�

2
� n,l = − �2n n−1,l. �B17�

With the help of these equations and the integration-by-part
rules


 dzdz�g��z��
�

z

��

z�
� f�z� =
 dzdz���

− ��

z�

− �

z
�g�z��

�

f�z� ,

�B18�

which are valid for any differentiable functions f�z� and g�z�
sufficiently rapidly vanishing at infinity, one can check that



r

�n1l1�r�Hso�r��r�n2l2�

= −
�

�
�h� · c�
l1l2

�ŝ−
�2�n2 + 1�
n1,n2+1

+ ŝ+
�2�n1 + 1�
n1+1,n2

� . �B19�

After substituting Eq. �B19� into Eq. �77�, we find

Ĝ�1.so�
R�A� �r1,r2� = −

�

�
�h� · c��

n,l

�2�n + 1�

�Gn
R�A�Gn+1

R�A��ŝ−�r1�n + 1,l��n,l�r2�

+ ŝ+�r1�n,l��n + 1,l�r2�� . �B20�

By making use of the representation �Eqs. �B2�–�B4��, one
can show that

�
l
��r1�n,l��n + 1,l�r2�

�r1�n + 1,l��n,l�r2� �
= exp�1

4
�z1

�z2 − z1z2
����gn

�1a��z1 − z2�
gn

�1b��z1 − z2�
� , �B21�

where

�gn
�1a��z�

gn
�1b��z�

� =
e−�z�2/4

2��2�2�n + 1�
Ln

1� �z�2

2
�� z�

− z
� �B22�
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and Ln
k denotes the associate Laguerre polynomial.45 Thus

Ĝ�1.so�
R�A� �r1,r2� = −

�

�
�h� · c��

n

�2�n + 1�Gn
R�A�Gn+1

R�A�

�exp�1

4
�z1

�z2 − z1z2
����ŝ−gn

�1b��z1 − z2�

+ ŝ+gn
�1a��z1 − z2�� . �B23�

The first-order correction T̂so
�1� given by Eq. �78� vanishes

because of the orthogonality of gn and gn
�1a,b� functions



r

gm�r�gn
�1a��− r� = 


r
gm�r�gn

�1b��− r� = 0. �B24�

�4� Equation �79�, with the help of Eq. �B19�, can be trans-
formed to the form

Ĝ�2.so�
R�A� �r1,r2,�F� = 2��

�
�2

�
n

�n + 1��Gn+1
R�A��Gn

R�A��2�r1�n,l��n,l�r2��̂�u� + �Gn+1
R�A��2Gn

R�A��r1�n + 1,l��n + 1,l�r2��̂�d�� , �B25�

where �̂�u,d�= 1
2 �1�h� ·��. Now, by making use of Eqs. �B23� and �B25�, for the quantities P̂�1.1�, P̂�2.0�, and P̂�0.2� defined by

Eq. �80�, one can obtain the following expressions:

����P�1.1����� = nimp�U�2

r1−r2

��
�
�2

�
n,m

�2�m + 1�Gm+1
A Gm

A�2�n + 1�Gn+1
R Gn

R

� �gm
�1a��r2 − r1�ŝ+ + gm

�1b��r2 − r1�ŝ−����gn
�1a��r1 − r2�ŝ+ + gn

�1b��r1 − r2�ŝ−���, �B26�

����P�2.0����� = nimp�U�2

r1−r2

2��
�
�2

�
n,m

�n + 1�Gm
Agm�r2 − r1����

� �Gn+1
R �Gn

R�2gn�r1 − r2��̂��
�u� + �Gn+1

R �2Gn
Rgn+1�r1 − r2��̂��

�d�� , �B27�

����P�0.2����� = nimp�U�2

r1−r2

2��
�
�2

�
n,m

�m + 1�Gn
Rgn�r1 − r2����

� �Gm+1
A �Gm

A�2gm�r2 − r1��̂��
�u� + �Gm+1

A �2Gm
Agm+1�r2 − r1��̂��

�d�� . �B28�

By making use of the orthogonality property



r
�gn

�1a��r�gm
�1a��− r� gn

�1a��r�gm
�1b��− r�

gn
�1b��r�gm

�1a��− r� gn
�1b��r�gm

�1b��− r�
�

= 
n,m
1

2��2�0 1

1 0
� , �B29�

together with Eqs. �B10� and �B24�, one can reduce expres-
sions �B26�–�B28� to the form

����P�1.1����� = nimp�U�2
�2

��3�
n

�n + 1�Gn+1
R Gn

RGn+1
A Gn

A

� �ŝ��
+ ŝ��

− + ŝ��
− ŝ��

+ � , �B30�

����P�2.0����� = nimp�U�2
�2

��3�
n

�n + 1����

� �Gn+1
R �Gn

R�2Gn
A�̂��

�u� + �Gn+1
R �2Gn

RGn+1
A �̂��

�d�� ,

�B31�

����P�0.2����� = nimp�U�2
�2

��3�
n

�n + 1����

� �Gn
RGn+1

A �Gn
A�2�̂��

�u� + Gn+1
R �Gn+1

A �2Gn
A�̂��

�d�� .

�B32�

Now use of the equalities

�
n

�nGn+1
R Gn

RGn+1
A Gn

A =
2�3�F

1 + ��c��2

2�

p
N��F� ,

�
n

�nGn+1
R �Gn

R�2Gn
A = −

2�3�F

1 + i�c�

2�

p
N��F� ,

�
n

�n�Gn+1
R �2Gn

RGn+1
A = −

2�3�F

1 − i�c�

2�

p
N��F� �B33�

reduces Eqs. �B30�–�B32� to Eq. �81�.
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APPENDIX C

In this appendix, a list of simply verified Fierz-type iden-
tities for the tensor products of Pauli matrices used in the
main text is presented. These identities are as follows:20,46

�n · ������� − ����n · ���� = in · ���� � ����

� ieljkn
l��

j ��
k , �C1�

������ =
1

2
������� + ��� · ���� , �C2�

�n � �����n � ���� = ������ − �n · �����n · ����,

�C3�

where n is any three-dimensional vector.

APPENDIX D

In this appendix, a derivation of Eq. �116� is given. Just as
in Sec. II C, the expansion of v�1.l�

�sc� in powers of � and �s� is
obtained by means of the expansion of the exact Green’s
functions in series in Hso and HZ. For the same reasons as in
the zero-magnetic-field case, only terms with odd numbers of
Hso are nonzero. With the required accuracy, they are v�1.so�

�sc� ,
which is linear in Hso, v�2.so,Z�

�sc� , which is bilinear in Hso and
HZ, and v�3.so�

�sc� , which is of the third order in Hso.
The derivation is essentially based on a complex represen-

tation of the vector operator v�sc��r� introduced in Ref. 21.
Namely, for any 2D vector p, it is valid the representation

p =
1

2
�pe� + p�e� , �D1�

where

e = x̂ + iŷ, p = px + ipy . �D2�

In particular, for the vector �� �r� of Eq. �112� we have

�� �r� =
1

2
��e� + ��e� , �D3�

where

� = −
i

�
�2�� −

z

2
�, �� = −

i

�
�2 � +

z�

2
� �D4�

with ��� /�z , ���� /�z�, and z is defined by Eq. �B1�. By
making use of Eqs. �B16�, �B17�, �D3�, and �D4�, we have

�� �r��r�n,l� = −
i

2�
�e��2�n + 1��r�n + 1,l�

− e�2n�r�n − 1,l�� �D5�

and

�n,l�r���� +�r�� =
i

2�
�e�2�n + 1��n + 1,l�r��

− e��2n�n − 1,l�r��� , �D6�

where the function �r �n , l� is defined by Eq. �B2�.

�1� In this auxiliary item, we consider the contribution of
spin-orbit free Green’s functions to v�1.l�

�sc� defined by Eq.
�115�. In the absence of an external magnetic field, the con-
tribution vanishes due to integration of the p-linear expres-
sion p�GA�0�pGR�0�� over all momentum space. We show
here that the reason for nullification of

v�1.l�
�sc��0� =

def

nimpU2

r1−r2

lim
r1�→r1

GA�0��r2,r1��
1

2m
��� +�r1�� + �� �r1��

�GR�0��r1,r2� �D7�

is of the same geometrical nature. Note that for any suffi-
ciently rapidly convergent spin-matrix functions F�r� and
G�r� it holds the equality



r1−r2

lim
r1�→r1

F���r2 − r1����
+�r1��G���r1 − r2�

= 

r1−r2

F���r2 − r1��� �r1�G���r1 − r2� . �D8�

Therefore, it is sufficient to calculate only one of the terms in
Eq. �D7�, for example, the second one. By making use of
Eqs. �B21� and �D5�, we have

GA�0��r2,r1��
1

2m
�� �r1�GR�0��r1,r2�

=
− i

4m�
�
m,n

Gm
Agm�r2 − r1� � �gn

�1b��r1 − r2�e��2�n + 1�

− gn−1
�1a��r2 − r1�e�2n�Gn

R. �D9�

Here gn�z� �see Eq. �B5�� is a function of �z�2, i.e., behaves as
a scalar at rotations of the complex plane, whereas functions
gn

�1.a,b��z� �see Eq. �B22�� have the form zf��z�2� or z�f��z�2�,
i.e., behave as vectors. Therefore, the coordinate integration
makes Eq. �D9� vanish. Formally, it follows from Eq. �B24�.
The first term in Eq. �D7� also vanishes in view of Eq. �D8�.

�2� Consider a term of the expansion linear in Hso. Quite
analogously to Eq. �40�, we have

v�1.so�
�sc� = nimpU2


r1−r2

lim
r1�→r1

�GA�0��r2,r1��
1

2m

���� +�r1�� + �� �r1��GR�1��r1,r2�

+ GA�1��r2,r1��
1

2m
��� +�r1�� + �� �r1��GR�0��r1,r2�� .

�D10�

All below, for the sake of brevity, the procedure of splitting
r1 to r1 and r1� with the following taking the limit r1�→r1 is
implicit. Due to Eq. �D8�, the right-hand side of Eq. �D10� is
equal to
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2nimpU2

r1−r2

�GA�0��r2,r1�
1

2m
�� +�r1�GR�1��r1,r2�

+ GA�1��r2,r1�
1

2m
�� �r1�GR�0��r1,r2�� . �D11�

With the help of Eqs. �72�, �B23�, and �D7�, one can trans-
form the first term of Eq. �D11� to

− 2nimpU2 i��c · h��
2m�2 p�

n

�n + 1�

�Gn+1
R Gn

R�Gn
Aes− − Gn+1

A e�s+� �D12�

while the second term to

2nimpU2 i��c · h��
2m�2 p�

n

�n + 1��Gn
Re�s+ − Gn+1

R es−�Gn+1
A Gn

A.

�D13�

Taking into account the identities

Gn+1
R�A�Gn

R�A� =
1

�c
�Gn+1

R�A� − Gn
R�A�� , �D14�

we obtain for the sum of Eqs. �D12� and �D13�

2nimpU2 i��c · h��
2m�2�c

p�e�s+ − es−��
n!0

�n + 1�

��Gn+1
R Gn+1

A − Gn
RGn

A� . �D15�

Here

�
n!0

�n + 1��Gn+1
R Gn+1

A − Gn
RGn

A� = − �
n!0

Gn
RGn

A =
2��

p

N��F�
1 − i��

�D16�

and

�c · h���e�s+ − es−� = i�c · h���x̂y − ŷx� = − ic � � .

�D17�

Thus, on account of relation �69�, we obtain

v�1.so�
�sc� = − �c � �

1

1 − i��
� − �c � ��1 + i��� .

�D18�

�3� In this item, we show that a correction bilinear in HZ and
Hso vanishes. First note that the term in the expansion of the
Green’ function bilinear in HZ and Hso can be written in the
form

G�so,Z�
R�2� �r1,r2� = 


r
�G�so�

R�1��r1,r�HZGR�0��r,r2�

+ GR�0��r1,r�HZG�so�
R�1��r,r2�� , �D19�

where G�1.so�
R is defined by Eq. �77�. By making use of the

explicit form of G�1.so�
R from Eq. �B20�, the first and second

terms of G�so,Z�
R�2� can be recast as

− � exp�1

4
�z1

�z2 − z1z2
����s�c · h��

2� �
n

�2�n + 1��Gn+1
R �Gn

R�2s−�h · ̃�gn
�1b��z1 − z2� + �Gn+1

R �2Gn
Rs+�h · ̃�gn

�1a��z1 − z2��

�D20�

and

− � exp�1

4
�z1

�z2 − z1z2
����s�c · h��

2� �
n

�2�n + 1���Gn+1
R �2Gn

R�h · ̃�s−gn
�1b��z1 − z2� + Gn+1

R �Gn
R�2�h · ̃�s+gn

�1a��z1 − z2�� .

�D21�

The correction to the velocity bilinear in HZ and Hso can be expressed through G�so,Z�
�2� , G�so�

�1� , and G�Z�
�1� as follows:

v�2.so,Z�
�sc� = nimpU2


r1−r2

�GA�0��r2,r1�
1

2m
��� +�r1� + �� �r1��G�so,Z�

R�2� �r1,r2� + G�so,Z�
A�2� �r2,r1�

1

2m
��� +�r1� + �� �r1��GR�0��r1,r2�

+ G�1.Z�
A �r2,r1�

1

2m
��� +�r1� + �� �r1��G�1.so�

R �r1,r2� + G�1.so�
A �r2,r1�

1

2m
��� +�r1� + �� �r1��G�1.Z�

R�1� �r1,r2�� . �D22�

Use of Eq. �D8� allows one to transform the first term in Eq. �D22� to the form
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− nimpU2 i��c · h���s

2m�2 p

� �
n!0

�n + 1���Gn+1
R �Gn

R�2Gn
Aes− − �Gn+1

R �2Gn
RGn+1

A e�s+��h · �� + �h · ����Gn+1
R �2Gn

RGn
Aes− − Gn+1

R �Gn
R�2Gn+1

A e�s+�� ,

�D23�

the second term to the form

− nimpU2 i��c · h���s

2m�2 p�
n!0

�n + 1��h · ����Gn+1
R �Gn+1

A �2Gn
Aes− − �Gn

R�2Gn+1
A �Gn

A�2e�s+�

+ �Gn+1
R Gn+1

A �Gn
A�2es− − Gn

R�Gn+1
A �2Gn

Ae�s+��h · ��� , �D24�

the third term to the form

− nimpU2 i��c · h���s

2m�2 p�
n!0

�n + 1��h · ��Gn+1
R Gn

R��Gn
A�2es− − �Gn+1

A �2e�s+� , �D25�

and the fourth term to the form

− nimpU2 i��c · h���s

2m�2 p�
n!0

�n + 1���Gn+1
R �2es− − �Gn

R�2e�s+��h · ��Gn+1
A Gn

A. �D26�

Thus, by dropping a common factor, we have for the sum of the all terms

�h · ���
n!0

�n + 1����Gn+1
R �2Gn

RGn
A + Gn+1

R �Gn+1
A �2Gn

A + Gn+1
R Gn

R�Gn
A�2�es−

− �Gn+1
R �Gn

R�2Gn+1
A + Gn

RGn+1
A �Gn

A�2 + Gn+1
R Gn

R�Gn+1
A �2�e�s+�

+ �
n!0

�n + 1���Gn+1
R �Gn

R�2Gn
A + Gn+1

R Gn+1
A �Gn

A�2 + �Gn+1
R �2Gn+1

A Gn
A�es−

− ��Gn+1
R �2Gn

RGn+1
A + Gn

R�Gn+1
A �2Gn

A + �Gn
R�2Gn+1

A Gn
A�e�s+��h · �� . �D27�

By making use of the equalities

�c�
n

�n + 1��Gn+1
R �2Gn

RGn
A = −

2��F�
3

p�1 + i���2N��F� ,

�c�
n

�n + 1�Gn+1
R �Gn+1

A �2Gn
A = −

2��F�
3

p�1 + i���
N��F� ,

�c�
n

�n + 1�Gn+1
R Gn

R�Gn
A�2 =

2i��F�
2

p�c
N��F���1 + i���−2 − 1� ,

�D28�

one can show that the sums standing in Eq. �D27� as a coef-
ficient at �h ·��es− vanishes. The same can be shown to be
true with respect to other sums.

�4� In this item, we show that the term in v�1.l�
�sc� , which is

proportional to �3, namely,

v�3.so�
�sc� = nimpU2


r1−r2

GA�0��r2,r1�
1

2m

���� +�r1� + �� �r1��GR�3��r1,r2�

+ GA�1��r2,r1�
1

2m
��� +�r1� + �� �r1��GR�2��r1,r2�

+ GA�2��r2,r1�
1

2m
��� +�r1� + �� �r1��GR�1��r1,r2�

+ GA�3��r2,r1�
1

2m
��� +�r1� + �� �r1��GR�0��r1,r2�

�D29�

vanishes. Here, for both the retarded and advanced functions,

G�3.so��r,r�� = 

r1,r2,r3

G�0��r,r1�Hso�r1�G�0��r1,r2�

�Hso�r2�G�0��r2,r3�Hso�r3�G�0��r3,r�� .

�D30�

In the explicit form
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G�3.so��r1,r2� = − 2�c · h����
�
�3

exp�1

4
�z1

�z2 − z1z2
���

��
n

�2�n + 1�3�Gn+1Gn�2�g�1b��z1 − z2�s−

+ g�1a��z1 − z2�s+� . �D31�

The explicit form of G�1.so� and G�2.so� are given by Eqs.
�B20� and �B25�. The first term in Eq. �D29� can be trans-
formed to

− nimpU22i�c · h��
m�

��
�
�3

p�
n

�n + 1�2�Gn+1
R Gn

R�2

��Gn
Aes− − Gn+1

A e�s+� , �D32�

the second term to

− nimpU22i�c · h��
m�

��
�
�3

p�
n

�n + 2��n + 1�

� �Gn+2
R �Gn+1

R �2Gn+1
A Gn

Aes− − �Gn+1
R �2Gn

RGn+2
A Gn+1

A e�s+� ,

�D33�

the third term to

− nimpU22i�c · h��
m�

��
�
�3

p�
n

�n + 2��n + 1�

� �Gn+2
R Gn+1

R �Gn+1
A �2Gn

Aes− − Gn+1
R Gn

RGn+2
A �Gn+1

A �2e�s+� ,

�D34�

and the fourth term to

− nimpU22i�c · h��
m�

��
�
�3

p�
n

�n + 1�2

��Gn+1
R es− − Gn

Re�s+��Gn+1
A Gn

A�2. �D35�

Thus, by dropping a common factor, we have for the sum of
all these terms

�
n

�n + 1�2���Gn+1
R Gn

R�2Gn
A + Gn+1

R �Gn+1
A Gn

A�2�es−

− ��Gn+1
R Gn

R�2Gn+1
A + Gn

R�Gn+1
A Gn

A�2�e�s+� + �
n

�n + 2��n + 1�

���Gn+2
R �Gn+1

R �2Gn+1
A Gn

A + Gn+2
R Gn+1

R �Gn+1
A �2Gn

A�es−

− ��Gn+1
R �2Gn

RGn+2
A Gn+1

A + Gn+1
R Gn

RGn+2
A �Gn+1

A �2�e�s+� . �D36�

This expression contains two terms proportional to es− as
well as two terms proportional to e�s+. Let us consider first
the terms proportional to es−. Use of the equalities

�
n

�n
2� �Gn+1

R Gn
R�2Gn

A

Gn+1
R �Gn+1

A Gn
A�2 � =

�4�F
2

�1 + i�c��2

2�i

p
N��F�� 1

− 1
�

�D37�

makes the sum that enters the first term proportional to es−,
vanish. Next consider the sum that enters the second term
proportional to es−. With the help of Eq. �D14�, it can be
transformed to

1

�c
2�

n

�n + 2��n + 1�

���Gn+2
R − Gn+1

R ��Gn+1
A �2 − �Gn+1

R �2�Gn+1
A − Gn

A�� .

�D38�

Now, use of the equalities

�
n

�n
2�

Gn+2
R �Gn+1

A �2

Gn+1
R �Gn+1

A �2

�Gn+1
R �2Gn+1

A

�Gn+1
R �2Gn

A
� = �2�F

2 2�i

p
N��F��

1

�1 + i�c��2

1

− 1

−
1

�1 + i�c��2

�
�D39�

makes the sum vanish too. Thus, all the coefficients that
stand at es− in Eq. �D36� vanish. The same is true with re-
spect to coefficients standing at e�s+.

1 Z. Wilamowski, W. Jantsch, H. Malissa, and U. Rossler, Phys.
Rev. B 66, 195315 �2002�.

2 Z. Wilamowski and W. Jantsch, Phys. Rev. B 69, 035328
�2004�.

3 A. M. Tyryshkin, S. A. Lyon, W. Jantsch, and F. Schaffler, Phys.
Rev. Lett. 94, 126802 �2005�.

4 M. Schulte, J. G. S. Lok, G. Denninger, and W. Dietsche, Phys.
Rev. Lett. 94, 137601 �2005�.

5 Z. Wilamowski, H. Malissa, F. Schaffler, and W. Jantsch, Phys.
Rev. Lett. 98, 187203 �2007�.

6 Z. Wilamowski, W. Ungier, M. Havlicek, and W. Jantsch,
arXiv:1001.3746 �unpublished�.

7 S. Gopalan, S. Rodriguez, J. Mycielski, A. Witowski, M. Gryn-

berg, and A. Wittlin, Phys. Rev. B 34, 5466 �1986�.
8 S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton,

S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M.
Treger, Science 294, 1488 �2001�.

9 C. P. Slichter, Principles of Magnetic Resonance �Harper and
Row, New York, 1963�.

10 E. I. Rashba, Fiz. Tverd. Tela �St. Petersburg� 1, 407 �1959�
�Sov. Phys. Solid State, 1, 366 �1959��; R. C. Casella, Phys.
Rev. Lett. 5, 371 �1960�.

11 R. Romestain, S. Geschwind, and G. E. Devlin, Phys. Rev. Lett.
39, 1583 �1977�.

12 B. Das, S. Datta, and R. Reifenberger, Phys. Rev. B 41, 8278
�1990�.

FEATURES OF ELECTRON-SPIN-RESONANCE… PHYSICAL REVIEW B 81, 165438 �2010�

165438-23

http://dx.doi.org/10.1103/PhysRevB.66.195315
http://dx.doi.org/10.1103/PhysRevB.66.195315
http://dx.doi.org/10.1103/PhysRevB.69.035328
http://dx.doi.org/10.1103/PhysRevB.69.035328
http://dx.doi.org/10.1103/PhysRevLett.94.126802
http://dx.doi.org/10.1103/PhysRevLett.94.126802
http://dx.doi.org/10.1103/PhysRevLett.94.137601
http://dx.doi.org/10.1103/PhysRevLett.94.137601
http://dx.doi.org/10.1103/PhysRevLett.98.187203
http://dx.doi.org/10.1103/PhysRevLett.98.187203
http://arXiv.org/abs/arXiv:1001.3746
http://dx.doi.org/10.1103/PhysRevB.34.5466
http://dx.doi.org/10.1126/science.1065389
http://dx.doi.org/10.1103/PhysRevLett.5.371
http://dx.doi.org/10.1103/PhysRevLett.5.371
http://dx.doi.org/10.1103/PhysRevLett.39.1583
http://dx.doi.org/10.1103/PhysRevLett.39.1583
http://dx.doi.org/10.1103/PhysRevB.41.8278
http://dx.doi.org/10.1103/PhysRevB.41.8278


13 J. Luo, H. Munekata, F. F. Fang, and P. J. Stiles, Phys. Rev. B
38, 10142 �1988�; 41, 7685 �1990�.

14 F. J. Ohkawa and Y. Uemura, J. Phys. Soc. Jpn. 37, 1325 �1974�.
15 E. I. Rashba, Fiz. Tverd. Tela �St. Petersburg� 2, 1224 �1960�

�Sov. Phys. Solid State 2, 1109 �1960��.
16 M. Dobrowolska, H. D. Drew, J. K. Furdyna, T. Ichiguchi, A.

Witowski, and P. A. Wolff, Phys. Rev. Lett. 49, 845 �1982�; M.
Dobrowolska, A. Witowski, J. K. Furdyna, T. Ichiguchi, H. D.
Drew, and P. A. Wolff, Phys. Rev. B 29, 6652 �1984�.

17 See E. I. Rashba and Al. L. Efros, Phys. Rev. Lett. 91, 126405
�2003�; Appl. Phys. Lett. 83, 5295 �2003�, and references
therein.

18 F. Bloch, Phys. Rev. 70, 460 �1946�.
19 T. Shimizu and K. Morigaki, J. Phys. Soc. Jpn. 28, 1468 �1970�;

M. I. Dyakonov and V. I. Perel’, Fiz. Tverd. Tela �St. Petersburg�
13, 3581 �1971� �Sov. Phys. Solid State 13, 3023 �1972��.

20 V. M. Edelstein, J. Phys.: Condens. Matter 5, 2603 �1993�. This
paper contains a more complete discussion of some theoretical
points concerning the quantum treatment of CESR in an electron
gas with BSOC.

21 A. L. Fetter, C. B. Hanna, and R. B. Laughlin, Int. J. Mod. Phys.
B 5, 2751 �1991�.

22 A. Houghton, J. R. Senna, and S. C. Ying, Phys. Rev. B 25, 2196
�1982�; 25, 6468 �1982�.

23 E. L. Ivchenko, Fiz. Tverd. Tela �Leningrad� 15, 1566 �1973�
�Sov. Phys. Solid State 15, 1048 �1973��.

24 N. S. Averkiev, L. E. Golub, and M. Willander, J. Phys.: Con-
dens. Matter 14, R271 �2002�.

25 A. A. Burkov and L. Balents, Phys. Rev. B 69, 245312 �2004�.
26 V. M. Edelstein, Phys. Rev. B 74, 193310 �2006�.
27 M. M. Glazov, Phys. Rev. B 70, 195314 �2004�.
28 Z. Wilamowski, W. Ungier, and W. Jantsch, Phys. Rev. B 78,

174423 �2008�.

29 M. Duckheim and D. Loss, Nat. Phys. 2, 195 �2006�.
30 A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinskii, Meth-

ods of Quantum Field Theory in Statistical Physics �Dover, New
York, 1963�.

31 V. M. Edelstein, Solid State Commun. 73, 233 �1990�.
32 Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom,

Phys. Rev. Lett. 93, 176601 �2004�.
33 Constitutive relations of a similar form were proposed earlier for

metals containing centroasymmetric impurities in a paper by L.
S. Levitov, Yu. V. Nazarov, and G. M. Eliashberg, Zh. Eksp.
Teor. Fiz. 88, 229 �1985� �Sov. Phys. JETP 61, 133 �1985��.

34 T. Matsubara, Prog. Theor. Phys. 14, 351 �1955�.
35 See, for example, J. L. Sigel, Phys. Rev. 186, 182 �1969�.
36 L. Onsager, Phys. Rev. 37, 405 �1931�; 38, 2265 �1931�.
37 L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous

Media �Pergamon, Oxford, 1984�.
38 L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 1

�Pergamon, Oxford, 1980�.
39 H. Scher and T. Holstein, Phys. Rev. 148, 598 �1966�.
40 For a somewhat different approach to spin-dynamic problems

see S. E. Barnes, Adv. Phys. 30, 801 �1981�.
41 T. Ando, J. Phys. Soc. Jpn. 37, 1233 �1974�.
42 In Ref. 26, the second term in the expression for the vector t was

unfortunately lost by preparing that manuscript.
43 V. M. Edelstein, JETP Lett. 67, 159 �1998�.
44 E. F. Gross, B. P. Zakharchenya, and O. B. Konstantinov, Fiz.

Tverd. Tela �Leningrad� 3, 305 �1961� �Sov. Phys. Solid State 3,
221 �1961��; J. J. Hopfield and D. G. Thomas, Phys. Rev. 122,
35 �1961�.

45 I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series
and Products �Academic Press, New York, 1980�.

46 P. J. Hirschfeld, P. Wolfle, and D. Einzel, Phys. Rev. B 37, 83
�1988�.

VICTOR M. EDELSTEIN PHYSICAL REVIEW B 81, 165438 �2010�

165438-24

http://dx.doi.org/10.1103/PhysRevB.38.10142
http://dx.doi.org/10.1103/PhysRevB.38.10142
http://dx.doi.org/10.1143/JPSJ.37.1325
http://dx.doi.org/10.1103/PhysRevLett.49.845
http://dx.doi.org/10.1103/PhysRevB.29.6652
http://dx.doi.org/10.1103/PhysRevLett.91.126405
http://dx.doi.org/10.1103/PhysRevLett.91.126405
http://dx.doi.org/10.1063/1.1635987
http://dx.doi.org/10.1103/PhysRev.70.460
http://dx.doi.org/10.1143/JPSJ.28.1468
http://dx.doi.org/10.1088/0953-8984/5/16/017
http://dx.doi.org/10.1142/S0217979291001097
http://dx.doi.org/10.1142/S0217979291001097
http://dx.doi.org/10.1103/PhysRevB.25.2196
http://dx.doi.org/10.1103/PhysRevB.25.2196
http://dx.doi.org/10.1088/0953-8984/14/12/202
http://dx.doi.org/10.1088/0953-8984/14/12/202
http://dx.doi.org/10.1103/PhysRevB.69.245312
http://dx.doi.org/10.1103/PhysRevB.74.193310
http://dx.doi.org/10.1103/PhysRevB.70.195314
http://dx.doi.org/10.1103/PhysRevB.78.174423
http://dx.doi.org/10.1103/PhysRevB.78.174423
http://dx.doi.org/10.1038/nphys238
http://dx.doi.org/10.1016/0038-1098(90)90963-C
http://dx.doi.org/10.1103/PhysRevLett.93.176601
http://dx.doi.org/10.1143/PTP.14.351
http://dx.doi.org/10.1103/PhysRev.186.182
http://dx.doi.org/10.1103/PhysRev.37.405
http://dx.doi.org/10.1103/PhysRev.148.598
http://dx.doi.org/10.1080/00018738100101447
http://dx.doi.org/10.1143/JPSJ.37.1233
http://dx.doi.org/10.1134/1.567639
http://dx.doi.org/10.1103/PhysRev.122.35
http://dx.doi.org/10.1103/PhysRev.122.35
http://dx.doi.org/10.1103/PhysRevB.37.83
http://dx.doi.org/10.1103/PhysRevB.37.83

