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We study numerically the localization properties of two-dimensional electrons in a weak perpendicular
magnetic field. For this purpose we construct weakly chiral network models on the square and triangular
lattices. The prime idea is to separate in space the regions with phase action of magnetic field, where it affects
interference in course of multiple disorder scattering, and the regions with orbital action of magnetic field,
where it bends electron trajectories. In our models, the disorder mixes counterpropagating channels on the
links, while scattering matrices at the nodes describe exclusively the bending of electron trajectories. By
artificially introducing a strong spread in the scattering strengths on the links �but keeping the average strength
constant�, we eliminate the interference and reduce the electron propagation over a network to a classical
percolation problem. In this limit we establish the form of the disorder-magnetic field phase diagram. This
diagram contains the regions with and without edge states, i.e., the regions with zero and quantized Hall
conductivities. Taking into account that, for a given disorder, the scattering strength scales as inverse electron
energy, we find agreement of our phase diagram with levitation scenario: energy separating the Anderson and
quantum-Hall insulating phases floats up to infinity upon decreasing magnetic field. From numerical study,
based on the analysis of quantum transmission of the network with random phases on the links, we conclude
that the positions of the weak-field quantum-Hall transitions on the phase diagram are very close to our
classical-percolation results. We checked that, in accord with the Pruisken theory, presence or absence of
time-reversal symmetry on the links has no effect on the line of delocalization transitions. We also find that
floating up of delocalized states in energy is accompanied by doubling of the critical exponent of the local-
ization radius. We establish the origin of this doubling within classical-percolation analysis.
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I. INTRODUCTION

A. Levitation scenario

Scaling theory of localization1 predicts that evolution with
size, L, of the conductivity, �, �in the units of e2 /2��� of a
two-dimensional �2D� sample is governed only by the value
of �, regardless of the type of disorder in the sample, i.e.,

��

� ln L
= � · ���� . �1�

Together with initial condition, � �L�l=�0=kFl, where kF is
the Fermi momentum, and l is the transport mean-free path,
Eq. �1� suggests that, in zero magnetic field, where ����=
−2 / ����, localization radius of electron states is given by

ln� �o

l
� =

��0

2
=

�

2
kFl . �2�

With increasing magnetic field, when ���� crosses from the
orthogonal to the unitary form, �u���=−1 / ����2, the local-
ization radius crosses over from �o to �u, given by

ln� �u

l
� = �2�0

2 = �2�kFl�2. �3�

Crossover takes place when weak localization is suppressed,
i.e., when the magnetic flux through the vector area spanned
by the electron traveling diffusively over the area ��o

2, is on
the order of the flux quantum. With vector area being ��ol,
we get the following estimate for crossover magnetic field

�c� =
l

�o
� exp�−

�

2
kFl� , �4�

where �c is the cyclotron frequency and � is the scattering
time.

The origin of the crossover, Eq. �4�, is that the paths,
which interfere in a zero field, acquire field-induced random
Aharonov-Bohm phases. Justification for considering exclu-
sively the phase action of magnetic field is that in high-
mobility samples with kFl	1 the crossover field is so weak
that its orbital action can be neglected. It is a very delicate
fact that, after the crossover, this orbital action causes a dras-
tic change in the eigenstates even for classically weak mag-
netic fields, �c�
1. This conclusion was drawn by
Khmelinitskii2 from the analysis of the renormalization
group flows.2,3 Originally, these equations were derived to
describe quantization of the Hall conductivity in a strong-
field limit, �c�	1,

��xx

� ln L
= −

1

2�2�xx
− �xx

2 De−2��xx cos�2��xy� , �5�

��xy

� ln L
= − �xx

2 De−2��xx sin�2��xy� , �6�

where �xx and �xy are, respectively, the diagonal and nondi-
agonal components of the conductivity tensor, and D is a
dimensionless constant. First term of Eq. �5� is the same as in
Eq. �1� with unitary ����. It originates from interference:
two paths corresponding to the same scatterers but different
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sequences of scattering events interfere even in the presence
of Aharonov-Bohm phases. Second term reflects the orbital
action of magnetic field �Lorentz force�; by curving electron
trajectories it tends to destroy the interference. Quantum-
Hall transition between �xy �L→�=n and �xy �L→�=n+1 takes
place when the “phase” and “orbital” terms compensate each
other. Khmelnitskii’s treatment2 is equivalent to solving Eqs.
�5� and �6� together with classical Drude initial condition,

�xx�L�l =
�0

1 + ��c��2 , �xy�L�l =
�0��c��

1 + ��c��2 , �7�

which yields the positions of delocalized states

En = ��c�n +
1

2
��1 +

1

��c��2� . �8�

As shown in Fig. 1 for n=0,1, the high-field part, �c�	1, of
En follows the centers of Landau levels, while the low-field
part, En�	�n+1 /2���c��−1, “floats up” as �c�→0. Such a
behavior of critical values of kFl=EF� in vanishing field is
usually called levitation of delocalized states.4 More specifi-
cally, it is expected that, upon increasing magnetic field
above the crossover, Eq. �4�, localization radius, ���c�, di-
verges in the vicinity of discrete values �c�= �n
+1 /2��kFl�−1, changing from unitary �u to infinity and return-
ing back to �u. Recasting Eq. �8� into the dependence, �xx

0

=�0
−1, versus the inverse filling factor, 
B

−1=�c / �2EF�, yields
a system of semicircles

�xx
2 + � 1


B
−

1

n + 1/2�
2

=
1

�n + 1/2�2 , �9�

shown in Fig. 1 inset, which is a part of the global phase
diagram.5 This diagram suggests that for high enough �xx

0 ,
i.e., for strong disorder, the resistance �xx��c� grows mono-
tonically. Upon decreasing �xx

0 , below a certain threshold
value, Fig. 1 �e.g., by applying the gate voltage� �xx��c� ex-
hibits two quantum-Hall peaks. For �xx

0 smaller than the sec-
ond threshold, Fig. 1, �xx��c� exhibits four peaks, and so on.
By now, such a behavior 
two peaks in �xx��c� dependence

for small enough �xx
0 � was reported in a number of experi-

mental papers, Refs. 6–15. On the other hand, theoretical
numerical studies16–25 aimed at revealing levitation on a mi-
croscopic level, are less conclusive.26 The only established
fact is the tendency27–33 for floating up of delocalized states
upon decreasing �c in the strong-field domain, where Landau
levels are still well defined. This tendency is due to disorder-
induced mixing of the neighboring well-resolved Landau
levels.

B. Network models

First numerical verification34 of one-parameter scaling Eq.
�1� was performed within the Anderson model.35 Physically,
this model corresponds to realizations of disorder in which
scatterers have random strength while positional disorder is
eliminated by placing scatterers on the lattice. In other
words, the phase acquired by electron between two subse-
quent scattering acts is assumed to be the same. Important is
that the minimal model,35 in which disorder is characterized
by a single dimensionless parameter, spread of the site ener-
gies in the units of bandwidth, captures all features of a
generic random potential.

Another minimal description of disorder is at the core of
scattering approach to localization introduced by Shapiro.36

Microscopic realization of the network, Ref. 36, requires re-
stricting the electron motion by a confining potential, as il-
lustrated in Fig. 2. This confining potential ensures that there
are only four possible outcomes of scattering, which takes
place at the nodes. In contrast to Anderson model, all scat-
terers at the nodes of network are assumed identical, while
positional disorder is maximally strong. This is achieved by
assuming that phases, accumulated between the neighboring
nodes, are completely random. Within the network model
description, a physical parameter, �kFl�−1, is emulated by 1
−T, where T is the transmission of the node. One of the
apparent successes of the network model description of dis-
ordered systems was the demonstration37 of the zero-field
localization-delocalization transition in 2D system with spin-
orbit scattering. Formal origin of this transition is the change
in sign of ��g� in Eq. �1� in the presence of spin-orbit
scattering.38
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FIG. 1. �Color online� Left: energy position of two lowest delo-
calized states, E0 and E1, as a function of magnetic field, �c, as
predicted in Ref. 2. At a given E, delocalization transition occurs at
low field �point L� and at high field �point H�. Right: same depen-
dencies, replotted in the axis inverse filling factor vs zero-field re-
sistivity, constitute a part of the global phase diagram, Ref. 5.
Depending on �xx

0 , the system undergoes a sequence of transitions,
0→1→0 or 0→1→2→1→0.

1 2
S

FIG. 2. In nonchiral network model, confining potential restricts
electron motion to the links. All the scattering matrices S at the
nodes are the same. Positional disorder is emulated by randomness
of phases acquired on the links. Depending on symmetry class, the
phases between the points 1 and 2 are either the same or different.
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Network-model approach is especially well suited for the
description of the quantum-Hall transition in a strong mag-
netic field. As was pointed out by Chalker and Coddington39

�CC�, in this case, unlike zero magnetic field, the links of the
network acquire a natural physical meaning, namely, they
coincide with equipotential lines40–42 of the bare smooth �on
the scale of magnetic length� random potential. This is due to
the field-induced quenching of kinetic energy of electron,
rather than due to artificially imposed confining potential. In
addition, in strong magnetic field, the motion along each
link, representing the drift of the Larmour circle, is unidirec-
tional. Nodes in the of the CC network also have a transpar-
ent meaning: they represent saddle points of the random po-
tential, where equipotentials come as close as magnetic
length. Various aspects of the quantum-Hall transition, rel-
evant to experiment,43–51 e.g., divergence of the localization
radius �scaling39,52,68�, critical statistics of energy levels,53

mesoscopic conductance fluctuations,54,55 point-contact
conductance,56 were studied theoretically using the CC
model.57

Testing the levitation scenario microscopically requires to
construct a minimal weakly chiral network model, which
captures the physics encoded in the system, Eq. �5�, namely,
competition between interference-induced localization and
orbital-induced curving asymmetry in the scattering to the
“left” and to the “right.” Construction of such a network and
study of its localization properties is the objective of the
present paper. On the physical grounds, the desired descrip-
tion should contain only two parameters, kFl and �c�. Short
communication on the results reported below can be found in
Ref. 58.

II. REFORMULATION OF NONCHIRAL NETWORK
MODEL

We achieve the goal of constructing a minimal weakly
chiral network model in two steps. First we reformulate the
standard nonchiral network model, Fig. 2, by separating each
node into the regions with backscattering and left-right scat-
tering. As a second step we incorporate weak chirality in the
form of imbalance between scattering to the left and scatter-
ing to the right.

In a standard nonchiral network model, Fig. 2, the scat-
tering at the node is described by 4�4 unitary scattering
matrix. This matrix can be parameterized by three indepen-
dent numbers, e.g., as follows:

S =�
r − d1 − t − d2

d1 r d2 − t

t − d2 r d1

d2 t − d1 r

 , �10�

where reflection, r, transmission, t, and deflection coeffi-
cients, d1, d2, are all real and satisfy the flux conservation
condition

r2 + t2 + d1
2 + d2

2 = 1. �11�

Isotropy requires that d=d1=d2, so that the scatterer is char-
acterized by only two independent parameters, say t and d.

The model belongs to the orthogonal symmetry class if the
phase, �12, accumulated upon propagation 1→2 between the
scatterers 1 and 2, Fig. 2, is equal to the phase, �21, accumu-
lated upon propagation 2→1. Otherwise, it belongs to the
unitary class.

Full localization of the eigenstates in 2D, predicted by the
scaling theory,1 manifests itself in vanishing transmission of
the network for all sets of t and d. The degree of localization
is governed by the conductance37

kFl =
1

2

t2 + d2

1 − t2 − d2 . �12�

If d and t are small, localization is strong �within one
plaquette�. Conversely, for t close to 1, electron changes the
direction of propagation after ��1− t2�−1	1 scattering acts,
which corresponds to high conductance, kFl	1, and expo-
nentially large localization radius. It is important to mention
one particular case, namely, t
1 and d	1 /�2. According to
Eq. �12�, this case of almost complete deflection, with weak
reflection and transmission, should correspond to strong lo-
calization. This is, however, not the case. In fact, the states
become progressively delocalized as d approaches the value
1 /�2. This conclusion can be drawn from Ref. 59, where the
corresponding limit of the network model has been studied.
Since the case d	1 /�2 will play an important role in our
construction later on, we discuss a seeming contradiction to
the scaling in this case in Appendix.

Note in passing, that the parameterization, Eq. �10�, re-
flects the Born scattering �for d1=d2�, where the probabilities
of deflection, forward, and backward scattering are indepen-
dent of the direction of incidence. This is certainly not the
general case of potential scattering. In fact, one can relax the
condition d1=d2 for a given node and ensure global isotropy
by requiring that the scattering to the left and to the right are
equally probable on average �over the nodes�.

Our reformulation of the network model is illustrated in
Fig. 3. We start with specifying scattering matrices at the
nodes of Fig. 2 as systems of four “reflectors” and one junc-
tion, Fig. 3. Each reflector mixes only two channels on the
corresponding link so that its scattering matrix

P0 = ��1 − p0
�p0

− �p0
�1 − p0

� �13�

is 2�2, where p0 is the power reflection coefficient. The

ba

FIG. 3. �Color online� Construction of weakly chiral network
model. �a� Node scattering matrix is decomposed into four “reflec-
tors” and a “junction.” �b� Final network model upon combining
two reflectors on a given link into one reflector.
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junction, Fig. 4, does not transmit or reflect incoming waves,
but rather scatters them either to the left or to the right with
equal probability, 1/2. The corresponding 4�4 scattering
matrix has the form

S0 =�
0 −

1
�2

0 −
1
�2

1
�2

0
1
�2

0

0 −
1
�2

0
1
�2

1
�2

0 −
1
�2

0


 . �14�

It is important to demonstrate that the combination of a junc-
tion and four reflectors which is characterized by a single
parameter, p0, corresponds to the effective node of the scat-
tering matrix with appropriate symmetry. Let us denote with
�i the phase accumulated between the junction and reflector
on the link i, i=1, . . ,4, Fig. 3�a�. For potential scattering

with time-reversal symmetry �TRS� preserved, the phase ac-
cumulated between the reflector and the junction is the same
�i, as for propagation between the junction and reflector.
Then the effective node scattering matrix assumes the form

S =�
R2,4

1 − D1,2 T4,2 D1,4

D2,1 R3,1
2 D2,3 T3,1

T2,4 − D3,2 R4,2
3 D3,4

D4,1 T1,3 − D4,3 R1,3
4

 , �15�

where the deflection, transmission, and reflection coefficients
are defined as

Di,j =
�2�1 − p0�

N
�ei��i+�j� + p0ei�2�−�i−�j�� , �16�

Ti,j = 2i
�p0�1 − p0�

N sin��i − � j�e2i�, �17�

Rj,k
i =

�p0

N

�e2i�i + p0e2i��−�i−�j−�k���e2i�j + e2i�k�

+ 2 + 2p0e2i�� . �18�

In Eqs. �16�–�18�, �=��i is the net phase; normalization
factor is defined as

N = 2 + 2p0
2e2i� + p0�e2i�1 + e2i�3��e2i�2 + e2i�4� . �19�

One can check that the matrix, Eq. �15�, is unitary. For arbi-
trary phases, �i, it does not reduce to the form, Eq. �10�, with
equal reflection, transmission, and deflection probabilities for
all directions of incident channels. Global isotropy is re-
stored upon averaging over �i. For example, if we choose a
particular set, �1=�2=� /4, �3=�4=−� /4, the matrix, Eq.
�15�, assumes the form

Ŝ0 =
1

1 + p0
2�

− �p0�1 + p0� −
i

�2
�1 − p0�2 − i�p0�1 − p0� −

1
�2

�1 − p0
2�

i
�2

�1 − p0�2 − �p0�1 + p0�
1
�2

�1 − p0
2� − i�p0�1 − p0�

− i�p0�1 − p0� −
1
�2

�1 − p0
2� − �p0�1 + p0� −

i
�2

�1 − p0�2

1
�2

�1 − p0
2� − i�p0�1 − p0�

i
�2

�1 − p0�2 − �p0�1 + p0�

 . �20�

This choice favors deflection �d2� over deflection �d1�. The
asymmetry between �d2� and �d1� is compensated by realiza-
tion in which �1=�2=−� /4, �3=�4=� /4; for this realiza-

tion, �d1� and �d2� switch places. It is seen from Eq. �15� that
presence of reflectors eliminates the singular character of
junction matrix S0 by restoring finite forward and backward

a b

FIG. 4. �Color online� �a� Microscopic realization of the junc-
tion matrix, Eq. �14�. The junction is defined by the confinement
potential �shaded area�; rhomboidal scatterer at the center ensures
that each incident wave is deflected only to the left or to the right.
�b� Scattering on a link, described by matrix, Eq. �21�, can be mod-
eled with a point contact.
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scattering probabilities. In other words, the use of the matrix,
Eq. �15�, instead of node matrix, Eq. �10�, would reveal full
localization of electron states at any p0. However, for small
p0, the parametric space of matrices, Eq. �15�, is restricted to
small transmission and reflection, �t�2��r�2� p0, the domain
where the mean-free path, Eq. �12�, is �1. Despite what Eq.
�12� predicts, we will get large values of localization length,
��p0�, in the domain p0
1.

We complete our reformulation of the nonchiral network
model by observing that the random phases on the links be-
tween two neighboring reflectors can be incorporated into �i.
This allows one to combine the two reflectors on the same
link into a single effective 2�2 scatterer on this link, as it is
shown in Fig. 3�b�. The corresponding effective scattering
matrix,

P = ��1 − p �p

− �p �1 − p
� , �21�

has the same form as Eq. �13� with

p =
4p0

�1 + p0�2 . �22�

The resulting network consisting of junctions at nodes and
effective scatterers on the links is shown in Fig. 3�b�. On the
microscopic level, the node S0 corresponds to the junction
with confinement shown in Fig. 4�a�, while the link matrix P
corresponds to point-contact confinement, Fig. 4�b�.

III. ORBITAL ACTION OF A WEAK MAGNETIC FIELD

As was discussed in Sec. I, weak magnetic field in which
delocalization transition takes place, is already strong
enough to drive random phases on the links of the network
Fig. 3�b� into the unitary class. We also need to incorporate
the Lorentz-force effect of magnetic field. For free electrons,
the Lorentz force curves their trajectories. In the network
Fig. 3�b� it affects the properties of junctions only, leading to
imbalance between deflection to the left and deflection to the
right. Note, that general properties of a four-terminal junc-
tion in magnetic field were previously studied in Refs. 60–62
for various forms of confinement potential in relation to
experiments63–67 on the Hall quantization in narrow chan-
nels.

In order to incorporate orbital action of magnetic field
into the general network Fig. 2, one has to place a weakly
chiral S matrix into each node. A possible form of such S
matrix is

Sch =�
r1 d2 t3 D4

D1 r2 d3 t4

t1 D2 r3 d4

d1 t2 D3 r4


 , �23�

where the complex coefficients have absolute values

�ri� = r, �Di� = D, �di� = d, �ti� = t;

r2 + D2 + d2 + t2 = 1. �24�

If magnetic field whirls electrons, say, to the right, one has
D�d. For example, one can choose the following realiza-
tions of the above chiral matrix

Sch =�
r − d − ib− t d + ib+

d + ib+ r − d + ib− t

t − d + ib+ − r − d + ib−

d + ib− t d − ib+ − r

 , �25�

provided that r, d, t, and b� are positive real numbers �t
�r� with

b−

b+
=

t − r

t + r
, r2 + t2 + 2d2 + b+

2 + b−
2 = 1. �26�

We see that the difference between the scattering probabili-
ties to the right and to the left is �b+�2− �b−�2. This difference
is nonzero, as follows from first identity in Eq. �26�. Note
that for the particular choice, Eq. �23�, the ratio, r / t, “con-
trols” the magnetic field strength. Indeed, for r=0 we have
b+=b−.

In general, dimensionless Hall resistance of a junction is
expressed via field-dependent elements of the matrix, Eq.
�10�, as follows:60–62

RH =
2�d1

2 − d2
2�

�2t2 + d1
2 + d2

2�2 + �d1
2 − d2

2�2 . �27�

Note that for the weakly chiral matrix, Eq. �25�, RH is the
same for all directions of incidence. Naturally, the degree of
bending action of magnetic field is represented by the differ-
ence, ��d1�2− �d2�2�. The advantage of our reformulation of the
network model, described in Sec. II, is that controlled chiral-
ity can be incorporated into the network in a natural way
upon replacement of the nonchiral matrix S0, Eq. �14�, by

S =�
0 − �1 − q 0 − �q

�q 0 �1 − q 0

0 − �q 0 �1 − q

�1 − q 0 − �q 0

 . �28�

The matrix S is parameterized by a single number, q=d1
2,

which varies between q=0 and q=1. The Hall resistance is
expressed via q as follows:

RH =
2q − 1

q2 + �1 − q�2 . �29�

It is an odd function of

�1

2
− q� � �c, �30�

i.e., the difference �1 /2−q� can be viewed as a quantitative
measure of the magnetic field strength. Concluding this sec-
tion, the link matrix P, Eq. �21�, parameterized by single
parameter, p, and the node matrices S, Eq. �28�, parameter-
ized by single parameter, q, fully define a minimal network
model, Fig. 3�b�. The advantage of this network is that the
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disorder and the magnetic field can be “tuned” independently
by changing p and q, respectively. We will call this model a
p-q model. Localization properties of this model are studied
below.

IV. p-q MODEL: LIMIT OF STRONG DISORDER

In order to get a qualitative insight into the phase diagram
of the quantum p-q model, we start with artificial limit of
strong disorder. To define the strong disorder, note that in the
original p-q model the values of p and q are the same for all
junctions and point contacts. In other words, distribution
functions of the parameters p and q are

f�pi� = ��pi − p�, f�qj� = ��qj − q� . �31�

By a strong disorder we mean the following distribution of p
and q,

f�pi� = p��1 − pi� + �1 − p���pi� ,

f�qj� = q��1 − qj� + �1 − q���qj� , �32�

so that scattering by the point contact and deflection at the
junction are still p and q on average. However, unlike Eq.
�31�, the point contact reflects fully in p percent of cases, and
transmits fully in the rest �1− p� percent of cases. Similarly,
according to Eq. �32�, the junction deflects only to the right
in q2 percent of cases, deflects only to the left in �1−q�2

percent of cases; in the remaining 2q�1−q� percent of cases
the deflection takes place both to the left and to the right
depending on incoming channel.

In considering a strong disorder, our motivation stems
from the original CC model, in which the nodes of the net-
work are chiral saddle points. If we introduce disorder in the
transmission of saddle points similar to Eq. �32�, then, at
critical energy, 50% of saddle points will fully transmit, and
50% will fully reflect. For such a disorder, quantum-
mechanical interference becomes irrelevant. However, the
state will remain critical,68 separating the phases with �xy
differing by 1. In this limit of strong disorder, quantum de-
localization is replaced by classical percolation transition oc-
curring at the same energy. Our expectation, which will be
later supported by numerical simulations, is that similar to
CC model, considering the limit of strong disorder of the p-q
model will yield the positions of classical delocalization
transitions, which coincide with the positions of quantum
delocalized states in the original p-q model.

The realization with pi=1 corresponds to a “closed” point
contact, which reflects incoming waves from both directions.
Classically, presence of such a reflecting barrier can be inter-
preted as a bond installed between the neighboring forbidden
regions, An,m and An+1,m, of confining potential, Fig. 5. Be-
low we will refer to this bond as a p bond. Similarly, we
introduce q bonds, installed between the forbidden regions,
An,m and An�1,m�1 in Fig. 5. Then, deflection only to the right
corresponds to two crossed q bonds, deflection only to the
left corresponds to the situation when all four forbidden re-
gions An,m, defining the junction, are disconnected. One
right-diagonal q bond describes the situation when the junc-

tion deflects the fluxes incident from the left and from the
right channels to the left, and fluxes incident from the up and
down to the right. Similarly, one left-diagonal q bond signi-
fies reflection from the left and right channels to the right
while the up and down channels are deflected by the junction
to the left. Thus we arrive at the percolation problem of
connectivity of the forbidden regions An,m via p and q bonds,
see Fig. 6. Some limits of this problem are transparent. For
example, for small p and q, the An,m regions are mostly dis-
connected. Also, for p�1 /2, global connectivity exists for
any q. It is intuitively clear that adding small portion of q
bonds facilitates connectivity and shifts the position of per-
colation transition from p=1 /2 to lower values of p. Quan-
titatively, we will search for the boundaries of percolation
transition on the p , q plane by employing the real-space
renormalization-group approach to the 2D percolation.69

A. Real-space renormalization-group analysis of the
percolation problem

The original approach of Ref. 69 applies when q=0, i.e.,
when only p bonds connecting the sites of An,m square lattice
are present. Within this approach, five p bonds are replaced
by one superbond, as shown with full lines in Fig. 7�a�. Prob-
ability, p�, that superbond is present, is expressed via prob-
ability that p bond is present, as

Z1
~

Z1

Z2
~

Z2

Z2 Z5

Z8 Z7

Z6

Z3 Z4

Z1

n+1,m

A n+1,m−1n,m−1

n,m AA

A

p

q q

FIG. 5. �Color online� Left: in two-channel p-q model, electron
motion is restricted to the spaces between forbidden regions An,m.
The centers of forbidden regions form a square lattice. Point con-
tacts on the links describe the backscattering by disorder; bend
junctions at the nodes describe the orbital action of magnetic field.
Right: scattering matrices of the junction and of the point contact.

Ap

p

p n+1,m

n,mA

q q q

FIG. 6. �Color online� Limit of strong disorder. The centers of
forbidden regions, An,m and An,m−1, are connected by the p bond,
while the centers of forbidden regions, An−1,m−1 and An,m, are con-
nected by a q bond. Electron delocalization reduces to the percola-
tion on the lattice consisting of p and q bonds.
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p� = P5�p� + P4�p� + P3�p� + P2�p� + P1�p� + P0�p�

= f0�p� , �33�

where Pn�p� is the partial probability that the superbond is
present when n original bonds are present. A simple counting
of variants yields

P5�p� = p5, P4 = 5p4�1 − p�, P3 = 8p3�1 − p�2,

P2�p� = 2p2�1 − p�3, P1 = 0, P0 = 0. �34�

Remarkable feature of the transformation, Eq. �33�, is that its
fixed point, p�= p, coincides with the exact bond percolation
threshold, p=1 /2, on the square lattice. The q bonds, shown
with dashed lines in Fig. 7. We will incorporate them into
renormalization-group transformation assuming that their
role is the enhancement of connectivity of the superbond.
This enhancement occurs differently depending on how
many original bonds are present. For example, if all five or
four bonds are present, the connectivity of superbond is guar-
anteed even without any q bonds, so that P5 and P4 are not
affected by q bonds. When three p bonds are present, there
are two variants when superbond does not connect. Then the
probability that it connects in the presence of q bonds is
given by

P3�p,q� = P3�p� + 2p3�1 − p�2
2q�1 − q� + q2� . �35�

The second term is the product of probabilities that p con-
nectivity is absent and that q bonds restore it. The factor in
the square brackets accounts the fact that restoration can hap-
pen by installing one q bond �two variants� as well as two q
bonds �one variant�. The expression for P2�p ,q� has a similar
structure,

P2�p,q� = P2�p� + p2�1 − p�3�2 � 4
2q�1 − q� + q2�� . �36�

Overall, there are ten configurations when two p bonds of the
superbond are present. Out of these ten, there are two vari-
ants when the superbond connects; in the remaining eight
variants the superbond does not connect. The factor in the
square brackets in Eq. �36� describes the probability that in
these eight variants q bonds make the superbond connect.
Note that the q dependence of the second term in Eq. �35� is
the same as in the case of P2�p ,q�. This reflects the fact that
in both cases installing either one or two q bonds restore
connectivity. If there is only one p bond, it can be either
“vertical” �one variant� or horizontal �four variants�. In the

first case, probability of restoring connectivity is a product of
the probabilities that it is restored both “to the left” and “to
the right” from the p bond. If the p bond is horizontal, there
are three q bonds that might participate in the restoration of
the connectivity. This yields

P1�p,q� = p�1 − p�4�
2q�1 − q� + q2�2

+ 4
q�1 − q�2 + 3q2�1 − q� + q3�� . �37�

Finally, P0�p ,q� is the probability that the superbond con-
nects via q bonds only. All four q bonds can participate in
restoration, see Fig. 7�a�. In particular, the connectivity can
go through the upper middle site, lower middle site, or both,
resulting in

P0�p,q� = �1 − p�5
2q2�1 − q�2 + 4q3�1 − q� + q4� . �38�

The net probability that the superbond connects is the sum of
P5�p�+ P4�p� and Eqs. �35�–�38�, namely,

f�p,q� = f0�p� + 2p3�1 − p�2
2q − q2� + 8p2�1 − p�3
2q − q2�

+ p�1 − p�4
4q + 8q2 − 8q3 + q4�

+ �1 − p�5
2q2 − q4� . �39�

We determine the line of percolation transitions on the p , q
plane upon equating f�p ,q� to 1

2 . Solution of this equation is
plotted in Fig. 8. At small q the p�q� boundary is linear,

pc�q� =
1

2
−

6

13
q . �40�

In the above procedure we assumed that the effect of q bonds
is a correction to the percolation over p bonds. Consider now
the opposite limit, where q is close to 1/2 and p is small, so
that the percolation is dominated by the q bonds, while the p
bonds constitute a small correction. First we note that for p
=0, the regions An,m with n+m even and n+m odd are de-
coupled. Moreover, q=1 /2 corresponds to bond percolation
threshold in both decoupled sublattices. Now adding small
portion of p bonds facilitates percolation for q�1 /2. To de-
scribe this facilitation quantitatively we turn to Fig. 7�b�.
This figure illustrates that, instead of one missing q bond, a
pair of one horizontal and one vertical p bonds can provide
the connection, and that there are two such variants. Result-

p

a

p’

q q’

p

b

q

FIG. 7. �Color online� �a� Illustration of the real-space
renormalization-group procedure. The connectivity of a superbond
defined by five p bonds is enhanced by q bonds, Eq. �39�. �b�
Percolation picture at small p. p bonds “assist” the connectivity of q
bonds, Eq. �41�.

FIG. 8. �Color online� The line of percolation transitions in the
�p ,q� plane is plotted from Eq. �39� for small q 
red �black� line�
and from Eq. �41� for small p 
green �gray� line�. Dashed and dotted
straight lines are the asymptotes, Eqs. �40� and �44� with �=1,
respectively. Crosses show the positions of quantum delocalization
transition inferred from quantum simulations for five values of
“energies,” p.
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ing shift of the threshold position is determined by the con-
dition

f�p,q� = q� = q + 2�1 − q2�p2 =
1

2
, �41�

where q� is the renormalized probability that q bond con-
nects. The origin of the factor �1−q2� in Eq. �41� is the
following. If the vertical q bond is missing 
with probability
�1−q��, the two p bonds which restore connectivity can ei-
ther share a common site �with probability 2p2�, or two p
bonds can be connected to each other via a horizontal q bond
�with the probability 2p2q�. The sum of probabilities of these
two realizations should be multiplied by �1−q�. The result-
ing from Eq. �41� p�q� dependence,

pc�q� =�1 − 2q

3
, �42�

is plotted in Fig. 8. In fact, as seen from Fig. 8, the
asymptotic behaviors found from Eqs. �39� and �41� match
very closely near q= 1

4 .
Equation �41� describes the situation when percolation oc-

curs in one, e.g., n+m even sublattice while the n+m odd
sublattice play an auxiliary role. This picture is violated near
the degeneracy point p=0, q=1 /2. Upon approaching to this
point, both sublattices should be treated on the equal footing.
Moreover, the position of the boundary on the p , q plane is
governed not by a local arrangement of the bonds but rather
by large-scale behavior of the clusters in both sublattices. We
will discuss percolation transitions in this region in Sec.
IV B, after we establish the relation between percolation and
electron trajectories in magnetic field.

B. Implication of the percolation transition for transport

The prime question is: to what extent the connectivity of
Ai,j regions studied in Sec. IV A governs the transport over
the regions located between the forbidden regions Ai,j. To
emphasize that this question is nontrivial, note that, while p
and q bonds facilitate the connectivity, a combination of two
p bonds at a given junction and one q bond through the same
junction can give rise to localized electron trajectory, circling
around the junction.

To establish the connection between transport and perco-
lation, we start with the simplest case p=0, q=0. It is appar-
ent from Fig. 5 
see also Fig. 9�a�� that in this case electron
trajectories are closed counterclockwise loops around forbid-
den regions Ai,j. In other words, electron executes counter-
clockwise motion along the perimeters of Ai,j. Now let us
switch on a single p bond, say, between An,m and An,m−1, Fig.
9�b�. It is easy to see that installing this bond creates a closed
trajectory encircling two regions, joined by the bond, in such
a way that the forbidden joined region remains on the left.
Thus, from two trajectories along the perimeters of discon-
nected regions we get one trajectory along the perimeter of
the joined region, Fig. 9�b�. The same happens upon install-
ing a single q bond, as shown in Fig. 9�b�. In fact, this
evolution is general: if a portion of p and q bonds connect
several forbidden regions into a cluster, there appears a
closed trajectory along outer perimeter of the cluster. While

moving along this perimeter trajectory, the cluster remains
on the left. For the transport properties of p-q model, the
outer perimeter, which signifies the most delocalized trajec-
tory existing with the given cluster, plays a central role. Note
that in the percolation theory such a perimeter is called a
hull. Thus we see that hulls of the bond percolation, Fig.
9�c�, correspond to the most important electron trajectories
of the p-q model, in the sense, that, upon approaching the
percolation threshold, the hulls of big clusters join into even
bigger hulls. Extent of the region available for electron mo-
tion is determined by the size of the typical cluster, which is
the localization radius of the classical percolation. While lo-
cally the motion occurs along the boundaries of forbidden
regions Ai,j, at large scales the hulls define the extent of the
motion. Now we can identify the point of the percolation
threshold at which Ai,j get connected into infinite cluster with
the point when the hull trajectories become infinite and con-
nect opposite sides of macroscopic sample.

Essentially, hulls can provide a connectivity through an
infinite sample exactly at the percolation threshold. Below
and above this threshold, hulls either do not provide a mac-
roscopic connectivity or establish a trajectory extending
along the macroscopic edges of a sample, depending on
boundary conditions. Being translated into the p-q model
transport properties, this means that a nonzero diagonal con-
ductivity, �xx�0, is possible only at the percolation transi-
tion, which separates two insulating regimes with �xx=0.

We now choose the boundaries of the macroscopic p-q
sample passing through the centers of the end regions Ai,j, as
shown in Fig. 9�a�, and assume full reflection at the bound-
aries. It can be seen that for p=0, q=0, there is a macro-
scopic trajectory spanning near the edges around the sample
in the clockwise direction. Therefore, in the phase a, Fig. 10,
we have nonzero �xy, while �xx=0 because there is no tra-
jectory through the sample at p=q=0 and in the vicinity.

Previous consideration pertains to small enough p and q.
Let us now move along the boundary q=0. In the absence of
q bonds this corresponds to increasing connectivity, p, in
conventional bond percolation problem. It is easy to see that
the edge state disappears when we pass the percolation
threshold p=1 /2. Above this point, the electron trajectories

a c

b

FIG. 9. �Color online� �a� Structure of electron trajectories at
p=q=0. Trajectories either encircle forbidden regions, An,m, �brown
lines�, or constitute a chiral edge state due to reflection from the
boundaries �red line�. �b� Installing one p �vertical� or q �diagonal�
bond creates a trajectory encircling two forbidden regions counter-
clockwise. �c� Example of a finite cluster of p and q bonds. Forma-
tion of trajectory encircling the hull.
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are strongly localized around the junctions �phase b in Fig.
10�, and describe the clockwise motion, unlike counterclock-
wise loops in the phase a.

Now we fix p in the domain �1− p�
1 and move along
the q axis. At this point we note that the p-q model possesses
a duality q→ �1−q�. One transparent way to reveal this du-
ality is to trace the change in strongly localized trajectories,
phase b, upon changing q by �1−q�. One can see that trajec-
tories remain unchanged while the direction changes from
counterclockwise to clockwise. Such a change could be ex-
pected on purely physical grounds, since transformation q
→ �1−q� means that the difference, �1 /2−q�, which repre-
sents magnetic field, changes sign. Naturally, reversal of
magnetic field results in the change in direction in which the
An,m regions are circumvented. Therefore there is one-to-one
correspondence between the strongly localized phase b and
phase d. The same argument, change in direction of the ro-
tation as a result of q→ �1−q� transformation, suggests that
the phase c is mirror image of the phase a, with the opposite
sign of �xy.

C. Vicinity of the degeneracy point p=0, q=1 Õ2

In the close vicinity, �1 /2−q�
1, p
1, of the degen-
eracy point, one has big clusters of q bonds in �n+m� even
and �n+m� odd sublattices, which are statistically equivalent.
Let us start our consideration from some q=q0�1 /2 and p
=0. Connectivity via q bonds can be enhanced either by
adding p bonds or by shifting q closer to 1/2. We argue that,
close enough to the degeneracy point, both operations are
equivalent. This is because the number of “even” q bonds,
i.e., the q bonds from the �n+m�-even sublattice, and the
number of “odd” q bonds, i.e., the q bonds from the
�n+m�-odd sublattice, involved in a typical cluster, is the
same. Once this “equal participation” of two sublattices is
achieved, it is preserved upon increasing both p and q. The
value of p necessary to achieve this equal-participation re-
gime obviously depends on proximity of q to 1/2. A way to

estimate this necessary p is based on the following reason-
ing. The spatial separation between neighboring p bonds is
�1 /�p. If this separation is smaller than the typical size of q
cluster, ��1 /2−q�−4/3, on a given sublattice, i.e.,

p � �1

2
− q�8/3

, �43�

then p bonds connect clusters from different subnetworks.
The way in which equal-participation regime sets in is illus-
trated in Fig. 11. In Fig. 11�a� the condition, Eq. �43�, is not
met; clusters grow independently in each sublattice as q in-
creases. Figures 11�b� and 11�c� illustrate that a typical clus-
ters on one sublattices is overlapped by some other typical
cluster from another sublattice. Therefore, few p bonds per
cluster, see Eq. �43�, are sufficient for formation of a unified
cluster. Percolation boundary, pc�q�, lies above the boundary
of equal-participation regime, Eq. �43�. It is reasonable to
assume that the percolation threshold corresponds to certain
portion of p and q bonds per site. Having in mind that in
equal-participation regime p and q bonds are equivalent
within a factor, the above assumption leads us to

pc�q� � ��1

2
− q� , �44�

with numerical coefficient, ��1. This linear behavior, as
well as the forms, Eqs. �40� and �42�, are in agreement with
the condition, Eq. �43�, which in fact should hold in the
whole domain where we expect delocalization transitions
with the participation of p bonds. The above reasoning, lead-
ing to the linear boundary, Eq. �44�, is by no means rigorous.
We were able to come up with more compelling reasoning
that for the case when half of q bonds are replaced by 1−q,
the percolation transition at small p indeed occurs at p
��1 /2−q�. Note however, that one cannot claim that this
auxiliary problem provides evidence for linear boundary in
our p-q model. This is because approaching the point
�p ,q�= �0,1 /2�, can depend of the direction of the approach,

An,m

q
p

An,m
−

p
1 q

An,m

a c

1−p

1−qq

1−p n,mA

p

q1/2

1

1/2

0

db

FIG. 10. �Color online� Phase diagram �red line� of the p-q
model in the regime of strong disorder. Phases �a� and �c�: electron
predominantly encircles forbidden regions An,m, moving �a� coun-
terclockwise or �c� clockwise. Coupling of neighboring forbidden
regions via p and q bonds is weak. Phases �b� and �d�: electron
predominantly encircles nodes, moving �d� counterclockwise or �b�
clockwise. Coupling of nodes due to absent p bonds is weak. Edge
trajectory disappears upon crossing the boundary �red line�,
�a�→ �b� or �c�→ �d�.

cba

FIG. 11. �Color online� Vicinity of the point p=0, q=1 /2, of the
phase diagram Fig. 10. �a� Two q clusters on the same sublattice
hybridize upon installing a q bond. �b� A q cluster of n+m odd
sublattice �upper� and a q cluster of n+m even sublattice �lower�
overlap. A joined trajectory �thin blue line� is formed upon install-
ing of a single p bond. The blowup illustrates hybridization of tra-
jectories on a microscopic level. �c� Same as �b� but with two p
bonds connecting q clusters. Blue lines illustrate that the hull tra-
jectory and “internal” trajectory are disconnected.
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so that the approach along a path with “balanced” q and 1
−q bond can yield a different boundary.

Moreover, this linear dependence is a source of an appar-
ent doubling of the critical exponent when one approaches
the delocalization point along the horizontal line p=const

1.

D. Doubling of the critical exponent

The shape of the percolation transition line, Eq. �44�, for
which the condition, Eq. �43�, is met, allows one to make
quantitative predictions about the behavior of the localization
radius, ��p ,q�. The reasoning goes as follows. Equation �43�
ensures that the typical clusters on the two sublattices with
sizes ��q� are connected by p bonds. Now, if we keep q
unchanged and approach the critical line, pc�q�, from below,
the localization radius grows as

��p,q� �
��q�


pc�q� − p�4/3 . �45�

While this relation is asymptotically exact near the delocal-
ization line, we assume that it still holds deeper into the
region �a�, Fig. 10. Then, in order to find an explicit depen-
dence ��p ,q�, Eq. �44� can be used in Eq. �45�, yielding

��p,q� �
��q�

���1

2
− q� − p�4/3 . �46�

Note now that Eq. �46� can be interpreted as a doubling of
the critical exponent. As one starts at some point, �p0 ,q�,
such that p0
1 and �1 /2−q��1 and move towards the tran-
sition boundary along the horizontal line p= p0, localization
radius changes as follows:

��p0,q��q�1/2 �
1

�1

2
− q�4/3�1

2
−

p0

�
− q�4/3 . �47�

For �1 /2−q�	 p0 /�, Eq. �47� assumes the form

��p0,q� �
1

�1

2
− q�8/3 , �48�

which means that the subcritical behavior of ��p0 ,q� as a
function of q is similar to the usual �q−qc�−4/3, but with the
doubled critical exponent. Therefore, it is the linear behavior,
Eq. �44�, which leads to the doubling. On the other hand, as
we have reasoned in Sec. IV C, the linearity of the boundary
of the percolation transition is a consequence of the “inter-
action” of two subnetworks.

The remaining question is the behavior of ��p ,q� along
the line q=1 /2. To address this question, note that there are
two delocalization transitions which take place as q is

changed along the line p= p0
1; the first one at q=qc1
�1 /2 and the second at q=qc2�1 /2. By virtue of duality,
qc1 and qc2 are related as qc1+qc2=1. For small p, from Eq.
�44� we have

qc1�p� =
1

2
−

p

�
, qc2�p� =

1

2
+

p

�
. �49�

In the domain q�1 /2 the ��p ,q� dependence can be found
using the above arguments

��p0,q��q�1/2 �
1

�q −
1

2
�4/3�q −

1

2
−

p0

�
�4/3 . �50�

Recall that in Eq. �47�, the factor 
1 /2−q�−4/3 appears as a
length of the unit plaquette in the percolation over p bonds.
Then the second factor, 
1 /2− p0 /�−q�−4/3, can be regarded
as a localization radius associated with the delocalization
transition at qc1�p0�. The general expression which respects
the duality and contains as limits, Eqs. �47� and �50�, reads

��p,q� �
1

�1

2
−

p

�
− q�4/3�1

2
+

p

�
− q�4/3 . �51�

In particular, along the line q=1 /2 this expression predicts
the following behavior of localization radius

��p��q=1/2 �
1

p8/3 . �52�

E. Consequences of the doubling

Below we will demonstrate numerically that Eq. �51� ap-
plies also to the quantum delocalization upon replacement
4/3 by the quantum critical exponent of localization radius.
Here we would like to emphasize the similarity between the
quantum version of Eq. �51� and energy dependence of the
localization radius in the case of close, e.g., spin-split delo-
calized states in strong magnetic field. Behavior of �, similar
to Eq. �51�, was conjectured in Ref. 70 and demonstrated
numerically in Refs. 71 and 72. In our case, two close delo-
calized states correspond to opposite directions of magnetic
field, and thus have opposite chiralities. On the contrary, in
Refs. 70–73, chiralities of both delocalized states, which are
close in energy, are the same. More microscopic demonstra-
tion of doubling in the system with two close in energy de-
localized states with the same chirality can be found in Ref.
74. The situation considered in Ref. 74 was two layers with
smooth random potential coupled by tunneling with ampli-
tude, t0. For a single layer, the transmission of a saddle point
is given by T�E /��= 
1+exp�E /���−1. For two layers, tun-
neling allows to bypass saddle points. Instead, the role of a
saddle point is played by the region where equipotentials
from different layers come close to each other but do not
intersect. It was demonstrated in Ref. 74 that for E outside
the interval �−t0 , t0� the transmission of such an effective

saddle point is given by T̃�E / �̃�=T�E2 / �̃2�, where �̃ de-
pends on t0 as t0

1/4. Therefore, while in the vicinity of delo-
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calized states E= � t0 the critical behavior of localization
length is �� �E� t0�−
, outside the interval �−t0 , t0� we have
�� �E2�−
, which mimics the doubling of the critical expo-
nent.

F. Physical interpretation of the phase diagram, Fig. 10

In physical terms, the p-q boundary in Fig. 10 relates the
backscattering probability, p, and magnetic field, �1 /2−q�, at
which delocalization transition takes place. The parameter p
can be viewed as a measure of disorder and also as a measure
of electron energy, EF; obviously, p decreases monotonously
with increasing EF. Then, the domain q�1 /2 of the phase
boundary in Fig. 10 translates into the low-field region,
�c��1, of the dependence E0��c� in Fig. 1. Correspond-
ingly, the domain q�1 /2 maps onto E0��c� dependence
with reversed sign of the magnetic field. More detailed cor-
respondence between Figs. 1 and 10 can be established upon
identification of �xy values for different phases. As we dem-
onstrated above using percolation language, there is no edge
state in the central phase, which includes regions b and d in
Fig. 10. Since this phase represents the region EF�E0��c� in
Fig. 1, this phase should be identified with the Anderson
insulator. We have also demonstrated, see Fig. 9�a�, that there
is one chiral edge state in the phase a of the phase diagram.
Thus, in the region EF�E0��c� in Fig. 1 we have �xy =1, so
this phase is a quantum-Hall insulator. In the region p
�1 /2 there are no delocalized states in Fig. 10. This region
translates into the strongly localized regime, EF�1 /�, i.e.,
below the minimum of the E0��c� curve.

Linearity of the pc�q� boundary can be rewritten in terms
of observables. Upon identifying p with 1 / �kFl� and �1 /2
−q� with �c�, the position of the boundary can be presented
as �kFl���c��=const. This quantifies the levitation rate, �c�
�1 / �kFl�. Curiously, it coincides with the prediction of scal-
ing theory, Eq. �8�.

For conclusive confirmation of the levitation scenario it
should be demonstrated that the p-q phase boundary retains

its shape in the presence of quantum interference. In fact, the
quantum and “percolation” boundaries almost coincide. The
evidence for that will be presented in the next section.

V. NUMERICAL RESULTS FOR QUANTUM
DELOCALIZATION

A. Transfer matrix

Scattering matrices on the links and at the nodes are given
by Eqs. �21� and �28�, respectively. With regard to numerical
simulations, the p-q model is quite similar to the models
with mixing of two copropagating channels on the links,
studied in Refs. 28, 29, 71, and 72.

The transfer matrix, T, at each node of the network is a
4�4 matrix, which transforms four amplitudes on the left
into four amplitudes on the right. We incorporate the link p
matrices and junction q matrices into T in the way illustrated
in Fig. 12. It follows from Fig. 12 that T matrix can be
parameterized as

T =�
1

�1 − q
0 0 � q

1 − q

0
1
�q

�1 − q

q
0

0 �1 − q

q

1
�q

0

� q

1 − q
0 0

1
�1 − q


�ei�1 0 0 0

0 ei�2 0 0

0 0 ei�3 0

0 0 0 ei�4

�

1
�1 − p

� p

1 − p
0 0

� p

1 − p

1
�1 − p

0 0

0 0
1

�1 − p
� p

1 − p

0 0 � p

1 − p

1
�1 − p



��

ei�1 0 0 0

0 ei�2 0 0

0 0 ei�3 0

0 0 0 ei�4

 . �53�

q

p

p

T =

FIG. 12. Illustration of the transfer matrix, T, Eq. �53�, of the
p-q model. Two q bonds correspond to the first matrix in the prod-
uct Eq. �53�; two p bonds correspond to the third block-diagonal
matrix in the product.
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The second and the fourth matrices in the product describe
random phases acquired between the point contact and the
junction.

Once the transfer matrix is specified, one can find the
transfer matrix of a slice with M nodes in transverse direc-
tion. As usual, to study the critical properties, numerical
simulations are performed on a system with fixed width M
=2k, then repeated for 4, 5, 6, 7, and sometimes even k=8.
By multiplying transfer matrices for a stripe with N slices
and diagonalizing the resulting total transfer matrix, it is pos-
sible to extract the smallest positive Lyapunov exponent �M/2

the eigenvalues of the transfer matrix are exp��iN��. The
localization length, �M, is proportional to 1 /�M/2. The state is
identified as a critical one when the renormalized localiza-
tion length, �M /M, becomes independent of the system
width, M. We consider this as a criterion for a transition
point, that determines the value q=qc, for a fixed value of p.
Practically, q=qc emerges as a maximum in �M /M vs q for
large system widths, when finite-size errors become small.

Close to q=qc, the ratios �M /M should satisfy a one-
parameter scaling

�M

M
= f� ��q�

M
� , �54�

which is commonly used to infer the localization length, �.
We first check that our numerical data support Eq. �54�; to

do so we fit all the data points onto one curve according to
Eq. �54�. The fit is carried out with the help of a special
optimization program. This optimization program runs dif-
ferent critical q values and critical exponents 
 and chooses
the optimal sets, qc and 
, which provides the best agreement
with Eq. �54�.

We now briefly describe the optimization procedure. The
routine determines least-squares polynomial approximation
by minimizing the sum of squares of the deviations of the
data points from the corresponding values of a polynomial.
The argument of the function fitted by the Chebyshev poly-
nomials is M�q−qc�
. To choose the optimal pair, qc and 
,
we run this routine for the wide range of values qc and 
. For
most of the points on the critical line the values of qc, ob-
tained by two methods: �i� searching for q at which �M /M is
constant and �ii� using optimization procedure, agree with
each other.

Note however, that in two limiting cases, p→0 and p
→1 /2, where the data strongly fluctuate, apparent discrep-
ancies arise. For very small values of p the off-diagonal
terms in the transfer matrix are close to 0 �they are ��p�,
leading to strong fluctuations in numerical results. Physi-
cally, enhancement of fluctuations near p=0 is a result of
proximity to two critical points, qc and 1−qc, see Fig. 10,
where the doubling of critical exponent takes place. On the
other hand, when p is close to 1/2, we have qc close to 0.
Strong fluctuations in the data in this case is a consequence
of small denominators, 1 /�q, in the transfer matrix, Eq. �53�.
Altogether, both methods yield close values of qc�p�.

The last remark on simulation procedure is on the bound-
ary conditions in transverse direction. In CC model, the pe-
riodic boundary conditions in transverse direction are insured

upon imposing requirement on the structure of transfer ma-
trix of even slices only. The same is true for the p-q model.
Unlike the CC model, where the reflection and transmission
at the nodes alternate between subsequent slices, the elemen-
tary transfer matrices in the p-q model, Eq. �53�, are the
same for even and odd slices. This equivalence is a result of
symmetry of a single node with respect to 90° rotations in
the p-q model.

B. Zero magnetic field

Zero magnetic field corresponds to the line q=1 /2 on the
p , q plane. Above we identified this line with the vertical
energy axis in Fig. 1. Since the key ingredient of the levita-
tion scenario is that all the states on this axis are localized,
we start with studying localization properties along the line
q=1 /2.

To obtain a scaling plot, �M /M = f
��p� /M�, we analyzed
40 data points: four M values, M =16, 32, 64, and 128, and
ten p values, p=0.05, 0.1, 0.15, 0.2, 0.25, 0.35, 0.45, 0.53,
0.6, and 0.8. By plotting ln��M /M� vs −ln M and shifting
points for different p to fall on the same line, we get the
result shown in Fig. 13. It is seen that the quality of scaling
is high. The scaling function, f , found from the data in Fig.
13, is shown in Fig. 14. The dependence, ��p� inferred in this
way is plotted in Fig. 15 with the black line. Our result

FIG. 13. �Color online� A fit of �M /M data points for the p-q
model at q=1 /2 to a one-parameter scaling form: ln��M /M� vs
ln�� /M�.

FIG. 14. �Color online� One-parameter scaling function, �M /M
= f�� /M�, is plotted from Fig. 13.
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confirms the expectation that the localization length in zero
magnetic field increases rapidly even in log scale as p goes
to zero. Scaling theory predicts the dependence, ln �u
��kFl�2, Eq. �3�. Since we have earlier identified kFl with
1 / p, we expect the dependence, ln ��p��1 / p2. The black
curve in Fig. 15 falls off with p slower, and can be well
approximated with ln ��p�=0.99−4 ln p. One possibility to
account for this discrepancy is that asymptotic 1 / p2 behavior
is achieved at p smaller that 0.05, the minimal p we studied.
Note however that the total range of change in ��p� in the
domain we studied is huge: ��0.05� /��0.8�	5.5�104.

Another prediction of the scaling theory is that the pres-
ence of time-reversal symmetry �TRS� the growth of local-
ization radius with kFl is much slower, ln �o�kFl, Eq. �2�. In
the above simulations we assumed that magnetic field is zero
in the “orbital” sense �q=1 /2� but phases on the links were
“unitary.” This is because the orthogonal-unitary crossover
takes place at exponentially small �1 /2−q�. However, in or-
der to relate closer our calculation to the scaling theory, we
ran simulations with TRS on the links restored. This amounts
to setting �2=−�1, �4=−�3, �2=−�1, and �4=−�3 in Eq.
�53�. The scaling function obtained with TRS is shown in
Fig. 16 and the corresponding ��p� is plotted in Fig. 15 with
the red curve. As could be expected, in the strongly localized
domain, p�0.6, there is no difference between the unitary
and orthogonal cases. Upon decreasing p, orthogonal ��p�
indeed grows much slower than unitary ��p�, so that
��0.05� /��0.8�	48.5. The fact that orthogonal ln ��p� ex-
trapolates at p→0 to a finite value also suggests that diverg-
ing behavior sets in at p smaller than 0.05.

In the above analytical treatment of the p-q model we
considered the limit of strong disorder, which is a strong
spread in the local values of p with average p= �p� fixed.
Consideration was based on the understanding that strong
spread in p eliminates completely the interference effects,

and thus reduces the analysis of the p-q model to the perco-
lation problem, which predicts much smaller localization ra-
dius, ��p��1 / p8/3, Eq. �52�. In order to test this expectation,
we incorporated a strong spread in p into transfer-matrix
calculation. Namely, for a fixed �p� we randomly set the
values p=0.01 or p=0.99 on each link. Our results on ��p�
with and without TRS are shown in Fig. 15 with the blue and
green lines, respectively. We see that our expectation is con-
firmed within the region p�0.5. In this region, the two
curves with disorder are not sensitive to universality class
and are well below the curves without disorder in p. More-
over, their behavior in this region is in accord with prediction
of percolation theory. Indeed, percolation theory predicts
��0.53� /��0.8�= �0.8 /0.53�8/3	3. From the blue and green
curves we get the close values, 3 and 3.67, respectively. Fig-
ure 15 also illustrates that for p�0.5, quantum mechanics
“wins” over disorder: the curves with random p merge with
curves without disorder in p corresponding to their respec-
tive symmetry classes.

The above results pose an acute question: whether the
boundary, pc�q�, of delocalization transitions, which was es-
tablished within the percolation treatment, and extends in the
region p�0.5, is preserved in fully quantum limit. A related
question is whether this boundary is sensitive to the univer-
sality class. We address these questions below.

C. Line of delocalization transitions and critical exponent

Our main result, pc�q� boundary without TRS, is shown in
Fig. 8 with crosses. Five points obtained for p=0.1, 0.15,
0.25, 0.35, and 0.45, essentially fall onto a straight line, p
=1 /2−q. Deviation from this line takes place near p=1 /2,
where the data points match well the results of percolation
treatment �red line�. This confirms our expectation that per-
colation treatment of the p-q model correctly predicts posi-
tion of the quantum delocalization transition. Certainly, the
critical exponent of delocalization transition is different: 

=7 /3 instead of 
=4 /3 for percolation. For smaller p, devia-
tion from the percolation treatment �green line� is notable.
On the other hand, as we explained above, our percolation
estimate is rather rude at small p. We also argued that the
true small-p percolation boundary should be linear. This lin-

FIG. 15. �Color online� Localization radius of the p-q model in
a zero magnetic field �q=1 /2� is plotted vs inverse “energy,” �p� for
the cases: no spread in scattering strengths on the links, p= �p�, and
no TRS on the links �black�, p= �p�, with TRS on the links �red�.
Blue and green curves show ln � with and without TRS, respec-
tively, plotted for the strong disorder in scattering strengths on the
links: p randomly assumes the values 0.01 and 0.99 while the in-
verse energy is the average value, �p�. Gray curve 
ln�� /�0�=
− 8

3 ln p� is the result of the percolation treatment, Eq. �52�. The
constant �0 is chosen to match the data at �p�=0.8.

FIG. 16. �Color online� A fit of �M /M data points for the p-q
model at q=1 /2 with time-reversal symmetry on the links to a
one-parameter scaling form �M /M = f�� /M�.
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earity would mean that the constant, �, in Eq. �44� is �=1.
More numerical results for p-q boundary are presented in

Fig. 17. For comparison, we reproduced the blue crosses
from Fig. 8 in Fig. 17. Red crosses demonstrate that the
boundary is robust against strong disorder in backscattering
strength, p. In the same way as for zero magnetic field, the
disorder in p was incorporated by randomly choosing local
values of p to be 0.99 or 0.01 while keeping �p� fixed. Co-
incidence of the two boundaries indicates that delocalization
transition is governed exclusively by average p but does not
depend on local disorder.

The fact that in the CC model the position of the delocal-
ized state does not depend on the spread in local transmis-
sion coefficients of the nodes �i.e., the spread in saddle-point
heights�, is obvious consequence of duality. On the other
hand, the p-q model does not possess duality, so that coinci-
dence of the two boundaries is by no means obvious. It can
be interpreted as an evidence that, even in magnetic field,
localization properties of the system are governed by zero-
field conductance, �1 / �p�.

Change of the universality class amounts to replacement
1 /�xx �unitary� by a constant �orthogonal� in the first term of
the scaling Eq. �5�. If the scaling theory applies, this replace-
ment should not affect the fixed point, �xy =n. In other
words, only orbital action of magnetic field is sufficient to
drive the system into quantum-Hall insulator state.75 We
were able to check this prediction within the p-q model.
Green crosses in Fig. 17 show the position of p-q boundary
with TRS. Overall, the boundaries with and without TRS
coincide. Discrepancy at p=0.1 is likely due to strong fluc-
tuations of the data at small p.

Together with p-q boundary, optimization procedure pro-
duced the value of critical exponent, 
. The dependence 
�p�
is shown in Fig. 18. Horizontal lines in Fig. 18 are drawn to
illustrate that simulations indicate apparent doubling of the
critical exponent, discussed for classical percolation in the
previous section. As follows from this discussion, the dou-
bling, revealed by numerics, is a consequence of two close
delocalized states. If scaling analysis could be carried our in
the immediate vicinity of a given delocalized state, it would
recover the conventional value, 
	7 /3. Indeed, for p
=0.45, where two delocalized states are far apart, optimiza-
tion yields 
�0.45�=2.3, while for p=0.1, where the fluctua-
tions are strong, we get 
�0.1�=4.9, which is even bigger
than 2�7 /3. What is remarkable about Fig. 18 is that the

apparent growth of 
 upon decreasing p starts quite early,
e.g., for p=0.25 we get 
=2.9. To make sure that optimiza-
tion does not distort the raw data, we have checked the scal-
ing manually and reproduced the largest and smallest values
of 
.

VI. TRIANGULAR p-q MODEL

In the previous consideration, electron motion was re-
stricted to the channels between forbidden regions, An,m, with
centers residing on a square lattice. This consideration led us
to the phase diagram, Fig. 8, containing the line of delocal-
ization transition in the p , q plane. In the present section we
will demonstrate that the same shape of the transition line
emerges when the centers of the forbidden regions constitute
a hexagonal lattice, as shown in Fig. 19. This figure illus-
trates that, similarly to the square p-q model, backscattering
takes place on the links. Figure 19 also illustrates that for
hexagonal arrangement of forbidden regions, a junction cor-
responds to the point where six such regions come close.

By contrast to the square p-q model, a wave incident on a
junction can be scattered not into two but rather into three
directions. Namely, it can proceed forward, or get deflected
by the angles �� /3, Fig. 19. Recall that for the square p-q
model the 4�4 scattering matrix of a junction, Eq. �28�, had

FIG. 17. �Color online� Delocalization points for three different
sets of p: nonrandom p, random p with given �p�, and nonrandom p
with the TRS.

FIG. 18. �Color online� Dependence of the critical exponent 

on p as inferred from optimization procedure, described in the text.
As p decreases from 1/2 to 0, 
�p� grows approximately twice.

FIG. 19. �Color online� Triangular version of the “square” p-q
model, Fig. 5. Point contacts on the links stand for the same 2�2
scattering matrix as in Fig. 5 while the bend junctions are described
by a 6�6 matrix, Eq. �64�. The centers of the forbidden regions
�shaded triangles� constitute a hexagonal lattice.
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a simple form, namely, a direct product of two 2�2 matri-
ces. Correspondingly, the 6�6 junction scattering matrix in
Fig. 19 is a direct sum of two 3�3 matrices 
see Eq. �64�
below�. This is a consequence of the fact that the two chan-
nels on a given link are not mixed by the junction. As a
result, similarly to the square p-q model, upon switching off
the backscattering on the links, the network breaks into two
decoupled fully chiral networks. While for the square p-q
model each chiral network was of CC type, here each chiral
network represents a “triangular” model introduced in Ref.
76. This chiral model, illustrated in Fig. 20, is called trian-
gular because the nodes are arranged on a triangular lattice.
For convenience, we briefly review the triangular network
model, Ref. 76, in Sec. VI A.

A. Fully chiral triangular model

Microscopic picture underlying CC and triangular chiral
models is illustrated in Fig. 21. Fully chiral motion repre-
sents drift of the Larmour circle along equipotential lines of
smooth random potential. In CC model equipotentials meet
pairwise at the saddle points. As the energy, �, passes
through zero, the geometry of equipotentials evolves from

reflection to transmission, as shown in Fig. 21�a�. The scat-
tering matrix describing this evolution near �=0 has the
form39

SCC��� =�
1
�2

+ �
1
�2

− �

−
1
�2

+ �
1
�2

+ �
 . �55�

At �=0 the power reflection and transmission coefficients
are both equal to 1/2.

In triangular model it is assumed that smooth potential
has 120° rotational symmetry. As a result, equipotentials
meet in the groups of three. As � is swept through zero, they
evolve from reflection �shaded regions disconnected� to
transmission �shaded regions fully connected�, see Fig.
21�b�. Near �=0, probabilities of scattering to the left, to the
right and forward, are all finite. Obviously, at �=0 probabili-
ties of the left and right scatterings are equal to each other. In
Ref. 76 it was demonstrated that these probabilities are equal
to 4/9. Correspondingly, the probability of the forward scat-
tering is 1/9. At small but finite � the form of scattering
matrix is dictated by �→−� duality and flux conservation.
Up to �2 terms it is given by

S���� =�
2

3
�1 + �� −

1

3

2

3
�1 − ��

2

3
�1 − ��

2

3
�1 + �� −

1

3

−
1

3

2

3
�1 − ��

2

3
�1 + ��


 . �56�

Recall that in the limit of strong disorder, when the black
regions in Fig. 21�a� are either connected or fully discon-
nected, the CC model reduces to the bond percolation prob-
lem on a square lattice. Correspondingly, the strong-disorder
limit of the chiral triangular model is the site percolation on
a triangular lattice.76 In the strong disorder limit, �=0 corre-
sponds to the equal portion of present and absent sites. In
accord to well-known result, this site percolation problem
possesses a property of self-duality.77

In Ref. 76 the critical exponent of the triangular model,
Fig. 20, was inferred from the real-space renormalization-
group analysis. The result, 
	2.3–2.76, agrees with simu-
lations of the CC model reported in the literature. Here we
present the result of numerical simulations of the triangular
model. Simulations use the slice transfer matrix

T = �
n=N−1

0

L2P2
�n�L1P1

�n�. �57�

Operators L1 and L2 act in “white” and “blue” stripes in Fig.
20, respectively. The operator L1 performs transformation of

the vector of amplitudes, �Zi
�n��, into �Z̃i

�n+1��, while L2 per-

forms transformation of �Z̃i
�n�� into �Zi

�n��, see Fig. 20. For a
particular stripe width, M =8, the matrix forms of L1 and L2
are the following:

(1)~
Z2

(1)~
Z3

(1)~
Z5

(1)~
Z6

(1)~
Z1

(1)~
Z8

(1)Z4

(1)Z2

(1)Z3

(1)Z5

(1)Z6

(1)Z7

(1)Z8

(1)Z

(1)~
Z4

1

(0)
5Z

(0)
4Z

(0)
3Z

(0)
2Z

(0)
1Z

(1)~
Z7

(0)
6Z

Z7
(0)

(0)
8Z

1 20 3 4

4Z

(N)Z1

(N)

(N)
8Z

(N)
7Z

(N)
6Z

(N)
5Z

(N)
2Z

(N)
3Z

L2L2L1L 1

2N2N−12N−2

FIG. 20. �Color online� A slice of triangular network of width
M =8 is shown. Three amplitudes on the links to left of green dot
are related to three amplitudes to the right of green dot via matrix
X. The upper and the lower boundaries of the slice are connected by
dashed-dotted lines manifesting that the amplitudes on these bound-
aries are the same by virtue of cyclic boundary conditions. Upon
passing the white stripe, the vector of the amplitudes �Zi� is multi-

plied by the matrix L1. Upon passing the blue stripe the vector �Z̃i�
is multiplied by L2.

ε = 0 ε > 0

b

a

ε < 0

FIG. 21. �Color online� Evolution of the equipotential lines: �a�
in the CC model and �b� in the chiral triangular model.
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L1 =�
x11 x12 x13 0 · · · ·

x21 x22 x23 0 · · · ·

x31 x32 x33 0 · · · ·

0 0 0 1 · · · ·

· · · · x11 x12 x13 0

· · · · x21 x22 x23 0

· · · · x31 x32 x33 0

· · · · 0 0 0 1


 , �58�

L2 =�
x33 0 · · · · x31 x32

0 1 · · · · 0 0

· · x11 x12 x13 0 · ·

· · x21 x22 x23 0 · ·

· · x31 x32 x33 0 · ·

· · 0 0 0 1 · ·

x13 0 · · · · x11 x12

x23 0 · · · · x21 x22


 �59�

with dots standing for zeroes. In the above relations, �xij�
form a 3�3 matrix, X, which is the node transfer matrix
corresponding to the scattering matrix, Eq. �56�, and up to �2

terms has the matrix form

X = �2�1 + �� − 2�1 + �� 1

2�1 + �� − 3 2�1 − ��
1 − 2�1 − �� 2�1 − ��


 . �60�

Specific form of L2 accounts for the cyclic boundary condi-
tions in the vertical direction. Matrices

P1
�n� = diag�ei�1

�n�
, . . . ,ei�8

�n�
� �61�

and

P2
�n� = diag�ei�1

�n�
, . . . ,ei�8

�n�
� . �62�

account for the random phases on the links.
Similarly to CC model, the critical properties of the trian-

gular model were inferred from the scaling analysis of the
Lyapunov exponents. The scaling plot is shown in Fig. 22. A
high-quality scaling was achieved for 
=2.36, which is in a

good agreement with simulations of the CC model.

B. Numerical results for the triangular p-q model

In the CC model, which is based on the picture of equi-
potentials, the scattering matrix at a node, SCC, is a function
of energy, �. By contrast, in the p-q model, describing low
magnetic fields, the scattering matrix at the node depends on
“magnetic field,” 1 /2−q, while the energy dependence en-
ters via the backscattering probability, p. Still, the structure
of the scattering matrices of the CC model and the p-q model
are the same. It is also the case for the triangular p-q model,
for which we choose the following form of the q-dependent
scattering matrix

S =
1

q2 − q + 1� 1 − q q�q − 1� q

q 1 − q q�q − 1�
q�q − 1� q 1 − q


 . �63�

This matrix is unitary for all 0�q�1. It is critical at q
=1 /2. Indeed, as follows from Eq. �63�, the ratio of prob-
abilities of scattering to the left and to the right is q / �1−q�,
so that at q=1 /2 these probabilities are equal. Their values
are 4/9 in agreement with Eq. �56�. With this parameteriza-
tion, the 6�6 junction scattering matrix in Fig. 19 acquires
the form

1

q2 − q + 1�
0 1 − q 0 q�q − 1� 0 q

1 − q 0 q�q − 1� 0 q 0

0 q 0 1 − q 0 q�q − 1�
q 0 1 − q 0 q�q − 1� 0

0 q�q − 1� 0 q 0 1 − q

q�q − 1� 0 q 0 1 − q 0


 . �64�

Since backscattering in triangular p-q model, Fig. 20, takes place on the links, it is described by the same 2�2 matrix, Eq.
�21�, as in the square p-q model. Thus, by analogy to Eq. �53�, the T matrix of the triangular p-q model has the form

FIG. 22. �Color online� Numerical results for fully chiral trian-
gular network model. A fit of data to a one-parameter scaling form,
�M /M = f��M1/
� yields the critical exponent, 
	2.36.
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T̂ =�
x̃11 0 0 x̃12 x̃13 0

0 x11 x12 0 0 x13

0 x21 x22 0 0 x23

x̃21 0 0 x̃22 x̃23 0

x̃31 0 0 x̃32 x̃33 0

0 x31 x32 0 0 x33


D̂1�
1

�1 − p
� p

1 − p
0 0 0 0

� p

1 − p

1
�1 − p

0 0 0 0

0 0
1

�1 − p
� p

1 − p
0 0

0 0 � p

1 − p

1
�1 − p

0 0

0 0 0 0
1

�1 − p
� p

1 − p

0 0 0 0 � p

1 − p

1
�1 − p


D̂2, �65�

where the diagonal matrices

D̂1 = diag�ei�1, . . . ,ei�6� �66�

and

D̂2 = diag�ei�1, . . . ,ei�6� �67�

account for the random phases on the links. The matrix,
�xij�=X, has the explicit q dependence

X�q� =�
1

q
−

1

q
1

1

q

q2 − q + 1

q�q − 1�
1

q − 1

1
1

1 − q

1

1 − q


 , �68�

and �x̃ij�= X̃ are given by the relation

X̃�q� = X−1�1 − q� . �69�

In the square p-q model, two prominent points on the p , q
plane were � 1

2 ,0� and �0, 1
2 �. They corresponded to the bond

percolation over p and q bonds, respectively. Similarly, in the
triangular p-q model, the point �0, 1

2 � is distinguished. At this
point, due to the absence of p bonds, two decoupled q sub-
networks undergo the site percolation. In triangular p-q
model, the counterpart of the p-bond percolation at � 1

2 ,0� of
the square p-q model is a p-bond percolation on a hexagonal
lattice. This is because the centers of forbidden regions in
Fig. 19 constitute a hexagonal lattice. Thus, the second dis-
tinguished point for triangular p-q model should be �pc ,0�,
where

pc = 1 − 2 sin� �

18
� = 0.6527 �70�

is the threshold of the bond percolation on the honeycomb
lattice.77 Our numerical simulations based on the transfer

matrix, Eq. �65�, confirm this expectation. The points of the
delocalization transition, shown in Fig. 23 follow the line
which smoothly connects the point �0.6527,0� and �0, 1

2 �. The
general shape of the line is quite similar to the above results,
Fig. 8, for the square p-q model. In particular, in the domain
of vanishing magnetic fields, �1 /2−q�
1, the transition
boundary is again linear, in agreement with prediction, Eq.
�8�, of the scaling theory.

In conclusion of this section we would like to make the
following remark. Simplification of the node structure in the
square p-q model was achieved by choosing the matrix, Eq.
�28�, which captures orbital action of magnetic field, but
does not allow forward and backward scattering, which, in-
stead, takes place on the links. Similarly, in the triangular p-q
model, the junction matrix, Eq. �64�, restricts the scattering
options for incident electrons. Namely, out of six possibili-
ties, the electron can be scattered only into three channels.
Again, similarly to the square p-q model, it can access the
three other channels upon backscattering on the links.

VII. STRONGLY LOCALIZED REGION: IMPLICATIONS
FOR INELASTIC TRANSPORT

The presence of a minimum in the line, En��c�, of the
delocalization transitions, Fig. 1, manifests itself in specific

FIG. 23. �Color online� Numerical results for the line of delo-
calization transitions in triangular p-q model. The point q=0 corre-
sponds to p= pc=0.6527 threshold of bond percolation on hexago-
nal lattice.
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behavior of low-temperature magnetoresistance, �xx��c�. For
high enough electron densities, �xx��c� is temperature inde-
pendent at two �low and high� distinct values of magnetic
field. This T independence is a signature of the delocalization
transition. Different experimental groups have studied details
of the behavior of �xx��c ,T� near the high-field
transition,78–81 low-field transition,82,83 or both
transitions.84–89 For Fermi-level position below the minimum
in Fig. 1, the system remains localized upon increasing �c,
see Fig. 24. However, even in this localized regime, proxim-
ity of �c to the position of minimum, �c� �Fig. 24�, should
manifest itself as a precursor of delocalization in the inelastic
transport. Such a precursor of delocalization has actually
been observed in the early papers6,90 in the form of a mini-
mum in �xx��c�, in the regime of the variable-range hopping.
This minimum reflects the increase in localization radius,
���c�, near �c=�c�. The lower is the temperature, the deeper
is minimum, as follows from the Mott’s law:

ln
�xx��c�� �
1


�2��c�T�1/3 . �71�

Theoretical studies of variable-range-hopping magnetoresis-
tance pertained to deeply localized regime, where interfer-
ence effects in a single hopping act constituted a small but
singular in �c correction to the tunneling probability.91,92 The
correction is small because the tunneling probability is
greatly reduced if electron underbarrier trajectory deviates
from the straight line. According to Refs. 91 and 92, inter-
ference responsible for magnetoresistance occurs between
different virtual forward-tunneling trajectories. The other
early theory, Ref. 93, of negative hopping magnetoresistance
was based on the following reasoning. Weak magnetic field,
by changing the universality class and thus inducing delocal-
ization of states with high energies, �1 /�, causes some
growth of � for the states in the deep tail. Note that both
theories, as well as later theory, Ref. 94, were based on the
phase rather than orbital action of magnetic field.

By now there is no theory describing the behavior of lo-
calization radius, ��EF ,�c�, in the domain of intermediate
fields �c��c��1 /� and electron densities �Fermi energies,
EF� at which electron states are localized but not strongly, so
that EF��kFl�1. On the other hand, the p-q model offers a
unique possibility to study localization length in this domain.

To this end, we studied numerically ��p ,q� in the region p
�1 /2 on the p , q plane. The dependence ��p ,q� can be
translated into the ��EF ,�c� dependence. We find that the
phase action of magnetic field does lead to a certain increase
in � at low fields. However, further increase in �c, when the
orbital action sets in, causes a much stronger delocalization
effect.

Our numerical results for ��p ,q� are presented in Fig. 25,
for the values p=0.53, 0.6, and 0.8. In order to illuminate the
role of the mechanism, Refs. 91 and 92, simulations were
performed with and without TRS on the links. The values of
��p ,q� were inferred from the scaling analysis of �M /M,
similarly to the case of zero magnetic field. For p=0.8, the
difference between TRS and no TRS is negligibly small. Still
the interplay of orbital effect and interference leads to en-
hancement of � from weak, q=1 /2, to strong, q=0, magnetic
fields, by a factor of 2. From Eq. �71� it follows that the
corresponding drop-off of log resistance is 22/3, and ln��� is
approximately linear in �1 /2−q�. This allows a comparison
with the experimental data of Ref. 6, where giant negative
hopping magnetoresistance of a degenerate 2D electron gas
was reported. For experimental value of �=250 Å the low-
field log resistance at temperature, T=0.3 K, was 8.7. The
net drop-off of log resistance observed was 2.3. This corre-
sponds to the increase in � by a factor of 1.5. However, at
p=0.8 our numerics suggests a linear change in � with q
while experimentally it changes slower. The possible origin
of this discrepancy lies in the fact that �1 /2−q� is propor-
tional to �c only at low fields. In fact, at higher fields,
�1 /2−q� changes slower than �c.

As p decreases towards 1/2, both phase and orbital
mechanisms of magnetoresistance become stronger. As fol-
lows from Fig. 25, the �zero-field� � increases from TRS to
no TRS by a factor 1.47 and 1.82 for p=0.6 and p=0.53,
respectively. This increase is a quantitative measure of the
phase mechanism. It should result in drop-off of the log re-

FIG. 24. �Color online� Levitation plot for n=0; same as lower
curve in Fig. 1. For electron densities corresponding to EF slightly
below the minimum, inelastic magnetoresistance has a deep mini-
mum near magnetic field, �c=�c�.

FIG. 25. �Color online� Localization radius in the strongly lo-
calized region p�1 /2 is plotted vs magnetic field. The point q=0
represents the field, �c=�c� in Fig. 24. Red and black curves for
p=0.53, and blue and green curves for p=0.6 corresponding to TRS
and no TRS, respectively, merge upon increasing magnetic field.
Light blue curve corresponds to p=0.8. There is no difference be-
tween TRS and no TRS for this deeply localized energy.
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sistance by the factors 1.3 and 1.5, which corresponds to the
resistance drop by several times. The orbital mechanism
causes a significantly bigger reduction in log resistance. The
p=0.6 and p=0.53 curves in Fig. 25 indicate the decrease in
� between q=0 and q=0.5 by factors 11 and 60, respectively.
Both effects are way too strong in comparison with all the
experimental data on hopping transport reported in the litera-
ture. This is because p=0.6 and p=0.53 correspond to very
large values of localization radius, e.g., �=3000 Å in experi-
mental conditions of Ref. 6. Temperatures required to ob-
serve hopping transport with such large � are unreasonably
low.

VIII. CONCLUSION

It is expected on general grounds that, as disordered sys-
tem undergoes a quantum-Hall transition, its behavior is uni-
versal, i.e., in the vicinity of transition this behavior does not
depend on the type of disorder. For quantum-Hall transition
in a strong magnetic field numerics provides a compelling
evidence for such a universality. For example, critical expo-
nent derived from the CC model, based on the picture of a
smooth disorder, and from the simulations95 for the pointlike
scatterers are the same.

Scaling scenario of Ref. 1 suggests that regardless of the
type of the disorder, a single characteristics of the system,
the Drude conductance �, determines the size of the sample,
�o or �u, depending on presence or absence of TRS, at which
the system becomes an insulator. By virtue of scaling sce-
nario, electron moving on the links of the network and scat-
tered at the nodes gets localized, due to interference effects,
in the same way as realistic electron moving on a plane and
scattered by random impurities. Correspondence between
two systems is established by Eq. �12�.

Pruisken’s theory suggests that, in magnetic field, only
two characteristics, the components �xx and �xy of the Drude
conductivity tensor determine what value of quantized Hall
conductivity the system will acquire at large scales, when the
interference effects suppress the diagonal conductivity.

Basing on insensitivity to the character of disorder, we
expect that weakly chiral network of junctions and point con-
tacts represents electron gas in a nonquantizing magnetic
field. To establish the correspondence we need to express the
values of �xx and �xy of our network in terms of parameters
p and q in the Drude regime, i.e., the regime where the
interference can be neglected. Above we have already iden-
tified �kFl�−1 with parameter p of the p-q model. Here we
elaborate on this relation.

Our main idea of modeling a competition between
interference-induced localization and magnetic field induced
orbital curving is to confine the orbital action to a set of
compact spatial regions junctions with asymmetry of scatter-
ing to the left and to the right proportional to magnetic field.
In zero field, these junctions represent strong scatterers of
electrons. These strong scatterers come in addition to weak
“intrinsic” scatterers, that limit the mean-free path, l, of elec-
tron gas. If strong scatterers are sparse, they will not affect
the transport of electron gas at all. On the other hand, if they
are dense, then the mobility will be limited exclusively by

scattering off these strong scatterers. This suggests that the
distance between the scatterers should be chosen on the order
of l. Therefore, as we replace realistic electron motion by a
motion along the links of a network, the dimensionless lat-
tice constant should be chosen as �kFl.

In our p-q network, Fig. 5, in addition to junctions �strong
scatterers� there are point contacts on the links. The role that
these point contacts play is the following. Our junctions Fig.
5 do not provide any backscattering. More precisely, as can
be seen from Fig. 5, an electron starting along a given link,
say, to the right, after several scatterings off the junctions,
will never return to the starting point from the left. Thus, the
junctions alone cannot model the interference effects in real-
istic electron gas, where the probability of such a return is
�1 / �kFl�. It is the point contacts that provide possibility of
backscattering in the p-q network, and parameter p is chosen
1 / �kFl� in order to model the realistic return probability.

From the above reasoning, the diagonal conductivity of
the p-q model is �xx�1 / p. In a finite magnetic field, esti-
mate for �xy can be found from Eq. �29�,

�xy = RH�xx � �1

2
− q��xx �

1/2 − q

p
. �72�

Note now, that the boundary of delocalization transition es-
tablished in the present paper, is ��1 /2−q�= p with ��1.
Then we conclude from Eq. �72� that transition occurs when
the “Boltzmann” value of �xy is �1. On the other hand,
levitation scenario is based on the conjecture that the classi-
cal �xy =1 does not get renormalized upon increasing the
sample size, see Eqs. �5� and �6�. Consistency between delo-
calization condition within p-q model and within scaling
theory2 can be viewed as evidence that the p-q model ad-
equately captures microscopic physics behind the levitation
scenario.

There is a fundamental reason why the picture of the
weak-field quantum-Hall transition is much more complex
than the picture of the strong-field transition. Namely, for
strong-field transition there is an exact duality of electron
states above and below critical energy. By contrast, there is
no such inherent duality in the weak-field transition. This, in
particular, does not allow to employ the quantum real-space
renormalization-group approach76,96–100 to describe this tran-
sition analytically.

Duality with respect to the center, �=0, of the Landau
level in the CC model insures that, with a strong spread in
the saddle-point heights, the scaling region narrows, but de-
localized state remains at �=0. A remarkable outcome of our
numerics is that the same property holds for the weak-field
transition: we have verified that, upon introducing a strong
spread in the local values of the backscattering strength, p,
but keeping �p� fixed, does not effect the position, pc�q�, of
the transition point. On the other hand, upon increasing the
spread in the local values of p, interference effects become
progressively less relevant. This allowed us to uncover a
transparent classical picture of the low-field quantum-Hall
transition, see Figs. 9 and 10, which is a counterpart of the
percolation picture of the strong-field transition.40–42 The fact
that levitation emerges both within the p-q model and from
the scaling Eqs. �5� and �6�, still does not mean that the p-q
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model offers a microscopic support for the Pruisken theory.
After all, phenomenon of levitation follows from a general
argument that delocalized states have nowhere to go but up
in the vanishing magnetic field. In fact, scaling Eqs. �5� and
�6� suggest a stronger message: namely, positions of delocal-
ized states do not change if magnetic field does not exercise
any “phase” action. Neglecting the phase action corresponds
to replacement of the first term in Eq. �5� by a constant. We
emphasize that the p-q model supports this prediction of the
Pruisken theory. This is reflected in the coincidence �within
accuracy of our numerics� of the p-q boundary with and
without TRS.

In closing, we list the questions which were previously
addressed in the frame of fully chiral CC model and are also
pertinent to the weakly chiral p-q model: �i� two-channel
network models of CC type were studied in Refs. 28, 29, 71,
72, and 101–103 in connection with spin-orbit-induced split-
ting of quantum-Hall transition,71,72 disorder-induced “attrac-
tion” of delocalized states from different Landau
levels28,29,101 and quantum-Hall transition in disordered
superconductors.102,103 All these considerations are based on
two copropagating channels on each link. In p-q model, the
two channels are counterpropagating and spinless. It would
be interesting to incorporate spin-orbit coupling into the p-q
model for the following reason. In zero magnetic field and in
the presence of spin-orbit coupling there is a critical energy
above which electron states are delocalized.37,104 On the
other hand, in strong magnetic fields, spin-orbit coupling
splits discrete delocalized states.71,72 Upon decreasing the
magnetic field, both delocalized states are most likely to
head towards zero-field metal-insulator transition point. Mi-
croscopic model describing this scenario must include orbital
action of magnetic field, spin-orbit coupling, and interference
effects. This can be accomplished upon incorporating spin
degree of freedom into the p-q model. A possible application
of the above physics is graphene in a weak magnetic field.105

In the latter case, the intervalley scattering plays the role of
spin-orbit coupling.

�ii� In three-dimensional layered system in zero magnetic
field, arbitrarily weak coupling between the layers delocal-
izes electron states above a certain critical energy. In strong
magnetic field, a weak interlayer coupling smear discrete de-
localized state into metallic band.106 Matching of these two
scenarios takes place in weak magnetic fields. The p-q model
based description can be employed in this domain.

�iii� Interaction-induced dephasing107 is crucial for experi-
mental observability of levitation since the transition is
smeared when localization radius exceeds the dephasing
length. The issue closely related to dephasing is a peculiar
behavior of the nondiagonal resistivity, �xy, in the vicinity of
the high-field transition.108–115 The question about behavior
of �xy near the low-field transition point can be asked and
addressed within “incoherent” p-q model. In addition, the
question about interplay of disorder and interaction previ-
ously studied for high-field transition,116–122 can be redi-
rected to the low-field transition.

�iv� It is known that there is an intimate relation between
delocalization transition in CC model and critical behavior of
superspin chains.123–128 It would be interesting to investigate
whether the p-q model corresponds to any spin model. It is

also known that CC model is related to the Dirac Hamil-
tonian with disorder.129,130 Recall that at degeneracy point,
p=0, q=1 /2, the p-q model falls into two independent CC
models. Modification of the mixing of two counterpropagat-
ing channels on the links transforms the p-q model with q
=1 /2 to the model studied in Ref. 59. This modification
leads to criticality which was studied within the sigma-model
approach.131,132 It would be interesting to investigate such a
modification of the p-q model away from the degeneracy
point. More specifically, the case q�1 /2, in our p-q model,
differs from the model, Ref. 59, primarily in the scattering
matrix of junctions. Our junction matrix, Eq. �28�, describes
scattering, say, to the right, with the same probability q for
all incoming channels, while the nodes in Ref. 59 describe
scattering to the right with the probability q from two oppo-
site channels, and with the probability �1−q� from the other
two opposite channels. In terms of coupling of counterpropa-
gating channels on the links, in Ref. 59 this coupling differs
from our link matrix in following respects: to get the cou-
pling of Ref. 59 one should replace in Eq. �53� the phases �i
should all be put zero, while �i satisfy the relation �1=�2,
�3=�4, which is different even from the case with TRS in
the p-q model.
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APPENDIX

The easiest way to derive Eq. �12� is to notice that with
respect to the motion along the diagonal direction of network
the diffusion has, effectively, a one-dimensional character.133

This is because the motion along the diagonal can be viewed
as a random sequence of transmissions and reflections with-
out deflections. For a given site, the full probability of trans-
mission along the diagonal direction �say, up and to the right�
is T= t2+d2, while the full probability of reflection is 1−T
=r2+d2. Parameter kFl should be identified with ratio, T / �1
−T�. Together with flux-conservation condition, t2+r2+2d2

=1, this ratio reduces to Eq. �12�.
As we pointed out in Sec. II, the point d=1 /�2 is singu-

lar: strong localization predicted by scaling theory with Bolt-
zmann result, Eq. �12�, as an initial condition, contradicts to
the result of Ref. 59. This contradiction can be resolved from
the following reasoning.

The same average �d2� can be realized in two completely
different ways: �i� Boltzmann approach. In the two instances
of scattering at the same node, electron can be deflected both
to the left and to the right with equal probabilities, 50%. �ii�
Percolative approach. A given node scatters always to the left
or always to the right; 50% of the nodes scatter to the left,
and remaining 50% scatter to the right.

Note, that the classical motion of electron is very different
in the above two realizations. In the case �i� this motion is
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diffusive. Then interference will readily localize this motion.
The case �ii� corresponds to classical percolation threshold.
To see this, notice, that the electron predominantly travels in
loops �clusters� and one trajectory is the infinite cluster span-
ning the entire system. In fact, it can be easily seen that
possible trajectories belong to two decoupled bond-
percolation networks. Interference will transform these net-
works to two CC models at the delocalization-transition
points. Since the percolative picture is fully coherent, it cap-
tures properly the quantum delocalization, while “dephased”
Boltzmann picture does not.

Thus the distinguished characteristics of the point d
=1 /�2 is that only at this point there is sensitivity to the
realization of the disorder.

Note that in the case t=r=0 but d1=�1−d2
2 not equal to

1 /�2, prediction of the scaling theory that the Boltzmann
result governs localization properties at large distances is
correct. Although with a strong spread in local d values,
when the network still breaks into two CC networks, the
states of both CC networks are localized with localization
radius, ���d1

2−1 /2�−4/3.
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