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Effect of curvature on the electronic structure and bound-state formation in rolled-up nanotubes
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We analyze the electronic properties of a two-dimensional electron gas rolled up into a nanotube by both
numerical and analytical techniques. The nature and the energy dispersion of the electronic quantum states
strongly depend on the geometric parameters of the nanotube: the typical radius of curvature and the number
of windings. The effect of the curvature results in the appearance of atomic-like bound states localized near the
points of maximum curvature. For a two-dimensional sheet rolled up into an Archimedean spiral, we find that
the number of bound states is equal to the number of windings of the spiral.
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I. INTRODUCTION

As a consequence of relaxation of elastic stresses, a thin
solid film that is subject to compressive strain, curls up after
being partially released from its substrate.> This occurs
when the strain gradient across the film thickness is suffi-
ciently large to overcome the tendency to form wrinkles,
which appear in the opposite limit of small strain gradient.?
The roll up of a thin solid film into a rolled-up nanotube
(RUNT) is particularly exciting since RUNTS have a unique
structure*=® that mimic the cylindrical symmetry of a radial
crystal. This is reflected in their peculiar magnetic®® and
optical'® properties. Moreover, RUNTs are promising candi-
dates for applications in fields ranging from nanofluidics to
optics.!""'* The experimental progress in manufacturing
rolled-up nanostructures triggers the need for a comprehen-
sive theoretical understanding of the quantum carrier dynam-
ics in curved nanomaterials.

The formal description of the quantum motion of a par-
ticle confined to a curved surface was a puzzle for a long
time. The problem arises because Dirac quantization in a
curved manifold leads to operator ordering ambiguities."
The situation was cleared up by da Costa in Ref. 16. The
formal description becomes well defined when the confine-
ment of the particle on a curved n-dimensional manifold
is treated as the limiting case of a particle in a
n+1-dimensional manifold that has a confining force acting
in the normal direction of its n-dimensional surface. Because
of the lateral confinement, quantum excitation energies in the
normal direction become much higher than in the tangential
direction. Henceforth, one can safely ignore the particle mo-
tion in the direction normal to the surface and on the basis of
this deduce an effective, dimensionally reduced Schrodinger
equation. This procedure is obviously the most rigorous and
physically sound one for two-dimensional (2D) curved sys-
tems embedded in an ordinary Euclidean three-dimensional
space. In this case one finds that due to the curvature, a scalar
potential of purely quantum nature appears in the effective
2D Hamiltonian. Its magnitude is related to the local surface
curvature'® so that the quantum mechanics of particles con-
fined to thin curved layers is different from those on a flat
plane. Several studies have analyzed the influence of the
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curvature-induced da Costa scalar potential on the electronic
states'”?3 and the electron-transport properties’*2% of a
number of different curved systems with complex geometri-
cal shapes. Particularly interesting is the interplay of curva-
ture and electron-electron interaction effects.?’

Here we concentrate on rolled-up nanostructures, in par-
ticular, in the form of Archimedean spirals. Although single
material structures have been proposed’”® and even
fabricated,” RUNTs are generally made from bilayer or
multilayer thin films of different materials, e.g., GaAs/
InGaAs. The two-dimensional electron gas (2DEG) in one of
the layers is thus confined on a cylindrical surface whose
cross section can be fairly approximated by an Archimedean
spiral r=1[¢, where r and ¢ are the cylindrical coordinates in
the plane perpendicular to the cylinder axis z and [ is related
to the radial superlattice constant by a,=27l, see Fig. 1(b).
The aim of this work is to investigate the single-particle
states of a 2DEG in a RUNT. The characteristic Coulomb-
type form of the curvature-induced scalar potential*® implies
the appearance of localized, atomic-like states. We investi-
gate how their corresponding binding energies are related to
the length, curvature, and inner radius of the nanotube and
proof that the number of these bound states is equal to the
number of windings of the spiral.

This paper is organized as follows: in Sec. II, we intro-
duce the geometry of the system under study and the corre-
spondent effective Hamiltonian; in Sec. III, the theory is ap-
plied to calculate spectra and wave functions; and we
conclude in Sec. IV.

FIG. 1. (Color online) (a) Sketch of the surface S of a RUNT.
The Cartesian reference frame we use throughout this paper is in-
dicated. (b) Cross section of the RUNT perpendicular to the cylin-
drical axis. R;,, R,,, correspond to the inner and the outer tube
rotation radius, respectively.
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II. HAMILTONIAN OF A 2DEG IN A RUNT

We first derive the effective Hamiltonian for electrons
bound to the surface S of a RUNT. As discussed in the pre-
vious section, electrons in a RUNT are confined to a cylin-
drical surface whose cross section can be approximated by
an Archimedean spiral [see Fig. 1(b)]. Therefore, it is natural
to adopt cylindrical coordinates r={r, ¢,z} and parametrize
the surface S as

x=1¢ cos ¢,
y=l¢sin ¢, (1)
7=z

with z € (—o,%) whereas ¢ e (¢;,, ). The end point of
the Archimedean spiral ¢;, (¢,,,) is related to the inner
(outer) radius of the RUNT by R;, ,,,=1¢hi, our» Where [ is the
typical length scale of the radial superlattice constant a,
=2ml. The maximum radius of the outer tube rotation is in-
stead related to the number of rotations N by

R, =R;, +2mINg,

where Ny is treated, for convenience, as a continuous vari-
able. From Eq. (1), the covariant components of the surface
metric tensor are

8s.0=L(1+¢%),
8zz=1, (2)
84:=8:.4=0,
whereas the covariant components of the Weingarten curva-
ture tensor'® come out
2+ ¢
T ) (3)
a . =ay. =a ,=0.
The mean curvature is then given by M=ay ,/2 whereas the
Gaussian curvature is obviously zero. Following Ref. 31, the

effective 2D Hamiltonian for the tangential motion to the
surface S becomes

A2 1 ( g ) R, A2
H=—=dy| ==|-—aj -, (4
2m V& ¢ \y’g¢’¢ 8m ¢.9 2m ©

where m is the effective mass. Since the translational invari-
ance along z remains unbroken, the surface wave function
separates as

W(h,2) = h(¢) X €=,

where k, is the momentum along the RUNT axis. This leads

to an effective one-dimensional (1D) Hamiltonian for the

() component of the surface wave function,

hZ 2

H1D=]C+VG+ Z, (5)
2m

where K is the kinetic energy operator for a particle con-
strained to move along a planar Archimedean spiral wave-
guide,
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#? & ¥
K=-—|- ¢2+ ¢¢22
2ml 1+¢~ (1+¢7)

(6)

whereas V;; is the attractive geometric potential induced by
the curvature,'®

2+

Vo= BB (14 )

(7

One should note that the kinetic energy term Eq. (6) and
the geometric potential Eq. (7) are different from the expres-
sions derived previously*® by nontrivial numerical factors. In
the following sections, we will find the eigenstates of the
Hamiltonian (5) by imposing on the ¢{(¢®) component of the
surface wave-function Dirichlet boundary conditions at the
inner and the outer radius of the RUNT and requiring, as
usual, square integrability.

III. CURVATURE-INDUCED BOUND STATES

The band structure corresponding to the effective 1D
Hamiltonian for a 2DEG in a RUNT in Eq. (5) consists of
parabolic subbands,

27,2
Z

E, (k)= E)+
2m

with n denoting an integer subband index (n>0). Note that
the zero of the energy has been fixed at the bottom of the
2DEG conduction band in its planar configuration. It is then
obvious that our problem reduces to the motion of a particle
along a planar Archimedean spiral where the subband index
n and Eg, respectively, label the eigenmodes and the corre-
sponding eigenenergies of the Hamiltonian,

HO=K+Vg. (8)

The exact eigenstates of H° can be found by writing the
() component of the total surface wave function as

W) =2 cixi(), (9)
Jj=1

where the x;’s are the eigenstates of the kinetic energy op-
erator. To proceed further, it is convenient to introduce the
arc length of the Archimedean spiral measured from ¢=0,

[ —
s(¢) = E[qﬁ(l +¢7) +log(p+ 1+ ¢)]. (10)

In terms of s, the kinetic energy operator takes the compact
form K:—hzdf/ (2m) and the corresponding eigenstates can
be written as standing waves,

Xx;j(s) = \/%sin[%j(s—sm ] (11)

In the equation above, L indicates the total length of the
Archimedean spiral whereas s;, is the arc length value at the
inner radius of the RUNT. By direct diagonalization of the
Hamiltonian on the basis of the Xj’s, we obtain the eigen-
states and the corresponding energy spectrum for any value
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FIG. 2. (Color online) (a) Electronic spectrum of an

Archimedean spiral with inner radius R;,=3m/ and different num-
bers of rotations. The points are the numerical results of the exact
diagonalization of the Hamiltonian whereas the corresponding con-
tinuous lines are the energies obtained considering the effect of the
geometric potential in first-order perturbation theory. (b) Same for a
RUNT with inner radius R;,=32l.

of R;, and N, choosing [ as the unit length scale. All re-
ported calculations are obtained introducing a cutoff j ..
=100 in the infinite sum Eq. (9), which in all cases is suffi-
cient for convergence.

As shown in Fig. 2, the spectrum consists of two distinct
regions. At high energies, the spectrum has a free-particle-
like quadratic dependence on n (E2~n2). In this regime, a
good approximation consists in retaining the effect of V; in
first-order perturbation theory [continuous lines in Fig. 2].
On the contrary, the low-energy part of the spectrum is domi-
nated by the effect of the geometric potential which therefore
produces a strong mixing of the free-particle states. For in-
teger number of rotations, there is a critical mode that sepa-
rates the two extreme spectral structures corresponding to n
= Ny independent of the inner radius of the RUNT. This
critical state corresponds to a zero-energy state where the
geometric potential energy balance the kinetic energy.

Next we show that the appearance of these two distinct
spectral structures emerges as a natural consequence of the
competition between the confinement due to the Dirichlet
boundary conditions at the inner and outer radius of the
RUNT and the effect of the geometric potential. In order to
make a qualitative analysis of the spectrum, it is convenient
to consider the asymptotic form of the geometric potential
Vg~ —h?/(8ml*>¢?). Apart from a logarithmic correction, the
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FIG. 3. (Color online) Comparison of the exact (full line) and
the asymptotic (dashed line) form of the geometric potential mea-
sured in units of #2/(2mi?) as a function of s//. Inset: same for the
behavior of the arc length as a function of the azimuthal angle ¢ of
the spiral.

arc length of the spiral Eq. (10) grows quadratically with ¢
[see inset of Fig. 3]. Then, it turns out that the asymptotic
form of the geometric potential in terms of s is a Coulomb
one® [see Fig. 3]. It is then clear that the geometric potential
corresponds to an attraction toward the point of maximum
curvature R;, and leads to the appearance of bound states.
The asymptotic form of the Hamiltonian (8) reads

v, #
2m * 16mls’

H= (12)
By restricting to the half space s=0, Eq. (12) is the Hamil-
tonian of a 1D hydrogen atom with a “quantum charge” e,
=fi/(4Vml). The eigenstates and the corresponding eigenen-
ergies are thus well known. However, in the present situa-
tion, we have to meet the Dirichlet boundary condition at s;,
and s;,+L. The effect of these boundary conditions can be
captured in a two-step process. First, the boundary condition
at s;, is met by the infinite set of localized atomic-like states
that, apart from a normalization constant, read

2
(s) = Se_‘v/(%ao)U[l - Wn,Z,_S] (13)
o

where U is the confluent hypergeometric function of the sec-
ond kind and we defined the “Bohr radius” ay=A?/ (mes)
=16/. Finally, the parameters 7,, which depend on s;,, deter-
mine the binding energies,

hZ

EO =
2.2
2ma077n

n (14)
Obviously, for s;,=0, the energy spectrum reduces to the
usual Rydberg series (7,=n). By increasing s;,, the 7,’s
grow linearly with s;, meaning that the binding energies are
inversely related to the inner radius of the RUNT [see inset
of Fig. 4].

Next, we introduce the Dirichlet boundary condition at
the outer radius of the RUNT. The atomic-like states do not
meet this boundary condition since they do not vanish ex-
actly at s,,,=s;,+L. However, if s, resides in their exponen-
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FIG. 4. (Color online) Behavior of the lowest eigenenergies E2
as a function of the quantum number n for a RUNT with R;,=3l
and different number of rotations Ng. The points are the numerical
results whereas the continuous line corresponds to the analytical
behavior of the spectrum of the one-dimensional hydrogen Hamil-
tonian. The inset shows the behavior of the ground-state binding
energy as a function of the inner radius of the RUNT.

tial tail, the effect of the latter boundary condition can be
neglected. This will obviously occur for the lowest-energy
states for which s,,, is much larger than the average arc
length (s). Their corresponding binding energies will be then
accurately predicted by Eq. (14) as shown in Fig. 4. This is
not verified for large n since the atomic-like states are local-
ized over a region much larger than the total length of the
spiral. The confinement due to the Dirichlet boundary condi-
tions will dominate in the latter case and hence we expect the
exact eigenfunctions to be similar to the standing waves of
Eq. (11).

By increasing the number of rotations Ny or equivalently
the total length of the spiral L, one then finds a continuous
evolution from free-particle states where the eigenfunction is
localized over the entire length L, to atomic-like states where
the localization region is on the order of (s) [see Fig. 5].
Accordingly, as shown in the inset of Fig. 5, the eigenvalue
scale with 1/L? in the free-particle region saturating at the
finite negative value given by the binding energies Eq. (14).

Now we can determine the appearance of zero-energy
eigenstates. The asymptotic Hamiltonian (12) admits a zero-
energy eigenstate which has, apart from a normalization con-
stant, the following general form:

s s s s
IJIO(S)Z\/;J1<\/;)+C\/;Y1<\/;>- (15)

In the equation above, J and Y indicate, respectively, the
Bessel functions of the first and second kind whereas C is an
arbitrary constant that can be fixed by requiring Eq. (15) to
meet the Dirichlet boundary condition at the inner radius of
the RUNT. Here it is convenient to write the eigenstate Eq.
(15) in terms of the azimuthal angle of the Archimedean
spiral. Since in the ¢> 1 regime s~ [¢?/2 [see Eq. (10)], we
find
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FIG. 5. (Color online) Ground-state density probability as a
function of s—s;, for a RUNT with R;,=3 !/ performing up to three
rotations. The total length of the spiral corresponds to L~ 80! for
Ngr=1, L~200! for Np=2, and L~ 350! for Np=3. The inset shows
the behavior of the corresponding eigenvalue as a function of the
number of rotations Ng. For Np> 1, the energy of the ground state
saturates at a finite value.

() ~ w@{cos(f—g'f) +C Si“@‘ 3%)] 1o

where we got rid of the Bessel functions appearing in Eq.
(15) by taking advantage of their asymptotic expansion for
large ¢ values.> From Eq. (16), it is immediately clear that
the zero-energy eigenstate meets the second Dirichlet bound-
ary condition at the outer radius of the RUNT only for ¢,,,
= ¢;,+ 2k with k integer and hence for an integer number of
rotations independent of the inner radius of the RUNT. No-
tice that the zero-energy state will have Ny—1 nodes and thus
will represent the Nyth lowest-energy state as indeed numeri-
cally found. Thus the number of curvature-induced bound
states is equal to the number of windings of the Archimedean
spiral.

IV. CONCLUSIONS

In conclusion, we have investigated theoretically the
single-particle states in a rolled-up nanotube and have found
that the effect of the curvature results in the appearance of
atomic-like localized states. Interestingly the number of the
bound states corresponds to the rotation number of the nano-
tube. We have also determined how the binding energies de-
pend on the other relevant geometric parameters, namely, the
radial superlattice constant and the typical radius of the
nanotube.

ACKNOWLEDGMENTS

The authors are pleased to thank V. Fomin, S. Kiravittaya,
and O. G. Schmidt for fruitful discussions. This work was
supported by the Dutch Science Foundation (FOM).

165419-4



EFFECT OF CURVATURE ON THE ELECTRONIC...

V. Y. Prinz, V. A. Seleznev, A. K. Gutakovsky, A. V. Che-
hovskiy, V. V. Preobrazhenskii, M. A. Putyato, and T. A.
Gavrilova, Physica E (Amsterdam) 6, 828 (2000).

20. G. Schmidt and K. Eberl, Nature (London) 410, 168 (2001).

3P Cendula, S. Kiravittaya, Y. F. Mei, C. Deneke, and O. G.
Schmidt, Phys. Rev. B 79, 085429 (2009).

4B. Krause, C. Mocuta, T. H. Metzger, C. Deneke, and O. G.
Schmidt, Phys. Rev. Lett. 96, 165502 (2006).

5C. Deneke, U. Zschieschang, H. Klauk, and O. G. Schmidt,
Appl. Phys. Lett. 89, 263110 (2006).

6C. Deneke, J. Schumann, R. Engelhard, J. Thomas, C. Muller,
M. S. Khatri, A. Malachias, M. Weisser, T. H. Metzger, and
0. G. Schmidt, Nanotechnology 20, 045703 (2009).

7N. Shaji, H. Qin, R. H. Blick, L. J. Klein, C. Deneke, and O. G.
Schmidt, Appl. Phys. Lett. 90, 042101 (2007).

8K.-J. Friedland, R. Hey, H. Kostial, A. Riedel, and K. H. Ploog,
Phys. Rev. B 75, 045347 (2007).

°A. B. Vorob’ev, K.-J. Friedland, H. Kostial, R. Hey, U. Jahn,
E. Wiebicke, Ju. S. Yukecheva, and V. Ya. Prinz, Phys. Rev. B
75, 205309 (2007).

10T, Kipp, H. Welsch, C. Strelow, C. Heyn, and D. Heitmann,
Phys. Rev. Lett. 96, 077403 (2006).

IIC. Deneke and O. G. Schmidt, Appl. Phys. Lett. 85, 2914
(2004).

2R, Songmuang, A. Rastelli, S. Mendach, and O. G. Schmidt,
Appl. Phys. Lett. 90, 091905 (2007).

I3A. Bernardi, S. Kiravittaya, A. Rastelli, R. Songmuang, D. J.
Thurmer, M. Benyoucef, and O. G. Schmidt, Appl. Phys. Lett.
93, 094106 (2008).

14E. . Smith, Z. Liu, Y. F. Mei, and O. G. Schmidt, Appl. Phys.

PHYSICAL REVIEW B 81, 165419 (2010)

Lett. 95, 083104 (2009).

I5B. S. DeWitt, Rev. Mod. Phys. 29, 377 (1957).

I6R. C. T. da Costa, Phys. Rev. A 23, 1982 (1981).

17G. Cantele, D. Ninno, and G. Iadonisi, Phys. Rev. B 61, 13730
(2000).

18, Aoki, M. Koshino, D. Takeda, H. Morise, and K. Kuroki,
Phys. Rev. B 65, 035102 (2001).

19M. Encinosa and L. Mott, Phys. Rev. A 68, 014102 (2003).

20N. Fujita and O. Terasaki, Phys. Rev. B 72, 085459 (2005).

2I'M. Koshino and H. Aoki, Phys. Rev. B 71, 073405 (2005).

22]. Gravesen and M. Willatzen, Phys. Rev. A 72, 032108 (2005).

23B. Jensen, Phys. Rev. A 80, 022101 (2009).

24 A. V. Chaplik and R. H. Blick, New J. Phys. 6, 33 (2004).

25 A. Marchi, S. Reggiani, M. Rudan, and A. Bertoni, Phys. Rev. B
72, 035403 (2005).

26G. Cuoghi, G. Ferrari, and A. Bertoni, Phys. Rev. B 79, 073410
(2009).

2TH. Shima, H. Yoshioka, and J. Onoe, Phys. Rev. B 79,
201401(R) (2009).

28], Zang, M. Huang, and F. Liu, Phys. Rev. Lett. 98, 146102
(2007).

2R. Songmuang, C. Deneke, and O. G. Schmidt, Appl. Phys. Lett.
89, 223109 (2006).

39A. I. Vedernikov and A. V. Chaplik, Sov. Phys. JETP 90, 397
(2000).

31G. Ferrari and G. Cuoghi, Phys. Rev. Lett. 100, 230403 (2008).

32 Handbook of Mathematical Functions with Formulas, Graphs,
and Mathematical Tables, edited by M. Abramowitz and 1. A.
Stegun (Dover, New York, 1964).

165419-5


http://dx.doi.org/10.1016/S1386-9477(99)00249-0
http://dx.doi.org/10.1038/35065525
http://dx.doi.org/10.1103/PhysRevB.79.085429
http://dx.doi.org/10.1103/PhysRevLett.96.165502
http://dx.doi.org/10.1063/1.2424541
http://dx.doi.org/10.1088/0957-4484/20/4/045703
http://dx.doi.org/10.1063/1.2433040
http://dx.doi.org/10.1103/PhysRevB.75.045347
http://dx.doi.org/10.1103/PhysRevB.75.205309
http://dx.doi.org/10.1103/PhysRevB.75.205309
http://dx.doi.org/10.1103/PhysRevLett.96.077403
http://dx.doi.org/10.1063/1.1795973
http://dx.doi.org/10.1063/1.1795973
http://dx.doi.org/10.1063/1.2472546
http://dx.doi.org/10.1063/1.2978239
http://dx.doi.org/10.1063/1.2978239
http://dx.doi.org/10.1063/1.3211115
http://dx.doi.org/10.1063/1.3211115
http://dx.doi.org/10.1103/RevModPhys.29.377
http://dx.doi.org/10.1103/PhysRevA.23.1982
http://dx.doi.org/10.1103/PhysRevB.61.13730
http://dx.doi.org/10.1103/PhysRevB.61.13730
http://dx.doi.org/10.1103/PhysRevB.65.035102
http://dx.doi.org/10.1103/PhysRevA.68.014102
http://dx.doi.org/10.1103/PhysRevB.72.085459
http://dx.doi.org/10.1103/PhysRevB.71.073405
http://dx.doi.org/10.1103/PhysRevA.72.032108
http://dx.doi.org/10.1103/PhysRevA.80.022101
http://dx.doi.org/10.1088/1367-2630/6/1/033
http://dx.doi.org/10.1103/PhysRevB.72.035403
http://dx.doi.org/10.1103/PhysRevB.72.035403
http://dx.doi.org/10.1103/PhysRevB.79.073410
http://dx.doi.org/10.1103/PhysRevB.79.073410
http://dx.doi.org/10.1103/PhysRevB.79.201401
http://dx.doi.org/10.1103/PhysRevB.79.201401
http://dx.doi.org/10.1103/PhysRevLett.98.146102
http://dx.doi.org/10.1103/PhysRevLett.98.146102
http://dx.doi.org/10.1063/1.2390647
http://dx.doi.org/10.1063/1.2390647
http://dx.doi.org/10.1134/1.559116
http://dx.doi.org/10.1134/1.559116
http://dx.doi.org/10.1103/PhysRevLett.100.230403

