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We address the problem of spin-resolved scattering through spin-orbit nanostructures in graphene, i.e.,
regions of inhomogeneous spin-orbit coupling on the nanometer scale. We discuss the phenomenon of spin-
double refraction and its consequences on the spin polarization. Specifically, we study the transmission prop-
erties of a single and a double interface between a normal region and a region with finite spin-orbit coupling,
and analyze the polarization properties of these systems. Moreover, for the case of a single interface, we
determine the spectrum of edge states localized at the boundary between the two regions and study their
properties.
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I. INTRODUCTION

Graphene1,2—a single layer of carbon atoms arranged in a
honeycomb lattice—has attracted huge attention in the phys-
ics community because of many unusual electronic, thermal,
and nanomechanical properties.3,4 In graphene the Fermi sur-
face, at the charge-neutrality point, reduces to two isolated
points, the two inequivalent corners K and K� of the hexago-
nal Brillouin zone of the honeycomb lattice. In their vicinity
the charge carriers form a gas of chiral massless quasiparti-
cles with a characteristic conical spectrum. The low-energy
dynamics is governed by the Dirac-Weyl �DW� equation5,6 in
which the role of speed of light is played by the electron
Fermi velocity. The chiral nature of the quasiparticles and
their linear spectrum lead to remarkable consequences for a
variety of electronic properties as weak localization, shot
noise, Andreev reflection, and many others. Also the behav-
ior in a perpendicular magnetic field discloses new physics.
Graphene exhibits a zero-energy Landau level, whose exis-
tence gives rise to an unconventional half-integer quantum-
Hall effect, one of the peculiar hallmarks of the DW physics.

Driven by the prospects of using this material in spin-
tronic applications,7,8 the study of spin transport is one of the
most active field in graphene research.9–14 Several experi-
ments have recently demonstrated spin injection, spin-valve
effect, and spin-coherent transport in graphene, with spin-
relaxation length of the order of few micrometers.10,14 In this
context a crucial role is played by the spin-orbit interaction.
In graphene symmetries allow for two kinds of spin-orbit
coupling �SOC�.15 The intrinsic SOC originates from carbon
intra-atomic SOC. It opens a gap in the energy spectrum and
converts graphene into a topological insulator with a quan-
tized spin-Hall effect.15 This term has been estimated to be
rather weak in clean flat graphene.16–19 The extrinsic Rashba-
type SOC originates instead from interactions with the sub-
strate, presence of a perpendicular external electric field, or
curvature of graphene membrane.16–18,20 This term is be-
lieved to be responsible for spin-polarization21 and
spin-relaxation22,23 physics in graphene. Optical-conductivity
measurements could provide a way to determine the respec-
tive strength of both SOCs.24

In this paper we address the problem of ballistic spin-
dependent scattering in the presence of inhomogeneous spin-
orbit couplings. Our main motivation stems from a recent
experiment that reported a large enhancement of Rashba
SOC splitting in single-layer graphene grown on Ni�111� in-
tercalated with a Au monolayer.25 Further experimental re-
sults show that the intercalation of Au atoms between
graphene and the Ni substrate is essential in order to observe
sizable Rashba effect.26,27 The preparation technique of Ref.
25 seems to provide a system with properties very close to
those of freestanding graphene in spite of the fact that
graphene is grown on a solid substrate. The presence of the
substrate does not seem to fundamentally alter the electronic
properties observed in suspended systems, i.e., the existence
of Dirac points at the Fermi energy and the gapless conical
dispersion in their vicinity.

These results suggest that a certain degree of control on
the SOC can be achieved by appropriate substrate engineer-
ing, with variations in the SOC strength on submicrometer
scales, without spoiling the relativistic gapless nature of qua-
siparticles. This could pave the way for the realization of
spin-optics devices for spin filtration and spin control for
DW fermions in graphene. An optimal design would require
a detailed understanding of the spin-resolved ballistic scat-
tering through such spin-orbit nanostructures, which is the
aim of this paper.

The problem of spin transport through nanostructures
with inhomogeneous SOC has already been thoroughly stud-
ied in the case of two-dimensional electron gas �2DEG� in
semiconductor heterostructures with Rashba SOC.28–30 Here
the Rashba SOC �Ref. 31�—arising from the inversion asym-
metry of the confinement potential—couples the electron
momentum to the spin degree of freedom and thereby lifts
the spin degeneracy. In this case, a region with finite SOC
between two normal regions has properties similar to biaxial
crystals: an electron wave incident from the normal region
splits at the interface and the two resulting waves propagate
in the SO region with different Fermi velocities and
momenta.28 This effect—analogous to the optical double
refraction—produces an interference pattern when the elec-
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tron waves emerge in the second normal region. Moreover,
electrons that are injected in a spin-unpolarized state emerge
from the SO region in a partially polarized state.

Here we shall focus on the two simplest examples of SO
nanostructures in graphene: �i� a single interface between
two regions with different strengths of SOC and �ii� a SOC
barrier, or double interface, i.e., a region of finite SOC in
between two regions with vanishing SOC.

Our analysis shows—in analogy to the case of 2DEG—
that the ballistic propagation of carriers is governed by the
spin-double refraction. We find that the scattering properties
of the structure strongly depend on the injection angle. As a
consequence, an initially unpolarized DW quasiparticle
emerges from the SOC barrier with a finite spin polarization.
In analogy to the edge states in the quantum-spin-Hall
effect,15 we also consider the possibility of edge states local-
ized at the interface between regions with and without SOC.

This paper is organized as follows. In Sec. II we introduce
the model and the transfer-matrix formalism used in the rest
of the paper. In Sec. III we discuss the scattering problem at
a single interface and the spectrum of edge states. In Sec. IV
we address the case of a double interface—a SOC barrier—
and the final Sec. V is devoted to the discussion of results
and conclusions.

II. MODEL AND FORMALISM

We consider a clean graphene sheet in the xy plane with
SOCs �Refs. 15, 16, 21, 32, and 33� inhomogeneous along
the x direction. We shall restrict ourselves to a single-particle
picture and neglect electron-electron interaction effects. The
length scale over which the SOCs vary is assumed to be
much larger than graphene’s lattice constant �a=0.246 nm�
but much smaller than the typical Fermi wavelength of qua-
siparticles �F. Since close to the Dirac points �F�1 / �E�, at
low energy E this approximation is justified. This assumption
ensures that we can use the continuum DW description, in
which the two valleys are not coupled. Yet close to a Dirac
point we can approximate the variation in SOCs as a sharp
change. Focusing on a single valley, the single-particle
Hamiltonian reads

H = vF� · p + HSO, �1�

HSO =
��x�

2
�� � s�z + ��x��zsz, �2�

where vF�106 m /s is the Fermi velocity in graphene. In the
following we set �=vF=1. The vector of Pauli matrices �
= ��x ,�y� �respectively, s= �sx ,sy�� acts in sublattice space
�respectively, spin space�. The term HSO contains the extrin-
sic or Rashba SOC of strength � and the intrinsic SOC of
strength �. While experimentally the Rashba SOC can be
enhanced by appropriate optimization of the substrate up to
values of the order of 14 meV,25 the intrinsic SOC seems at
least two orders of magnitude smaller. Yet, the limit of large
intrinsic SOC is of considerable interest since in this regime
graphene becomes a topological insulator.15 Thus in this
paper we shall not restrict ourselves to the experimentally

relevant regime ��� but consider also the complementary
regime.

The wave function � is expressed as

�T = ��A↑,�B↑,�A↓,�B↓� ,

where the superscript T denotes transposition. Spectrum and
eigenspinors of Hamiltonian �1� with uniform SOCs are
briefly reviewed in Appendix. The spectrum consists of four
branches E�,	�k� labeled by the two quantum numbers 	
= 
1 and �= 
1. Here, the first distinguishes particle and
hole branches, and the second gives the sign of the expecta-
tion value of the spin projection along the in-plane direction
perpendicular to the propagation direction k. The spectrum
strongly depends on the ratio

� =
�

�
. �3�

For ��1 /2 a gap separates particle and hole branches. The
gap closes at �=1 /2 and for �1 /2 one particle branch and
one hole branch are degenerate at k=0 �see Fig. 8 in Appen-
dix�.

We now briefly summarize the transfer-matrix approach
employed in this paper to solve the DW scattering
problem.34–37 We assume translational invariance in the y
direction, thus the scattering problem for the Hamiltonian �1�
reduces to an effectively one-dimensional �1D� one. The
wave function factorizes as ��x ,y�=eikyy��x�, where ky is
the conserved y component of the momentum, which param-
eterizes the eigenfunctions of the Hamiltonian of given en-
ergy E.

For simplicity we consider piecewise constant profiles of
SOCs and solve the DW equation in each region of constant
couplings. Then we introduce the x-dependent 4�4 matrix
��x�, whose columns are given by the components of the
independent, normalized eigenspinor of the 1D DW Hamil-
tonian at fixed energy.38 Due to the continuity of the wave
function at each interface between regions of different SOC,
the wave function on the left of the interface can be ex-
pressed in terms of the wave function on the right via the
transfer matrix

M = ���x0
−��−1��x0

+� , �4�

where x0 is the position of the interface and x0

=x0
� with

infinitesimal positive �. The condition det M=1 guarantees
conservation of the probability current across the interface.
The generalization to the case of a sequence of N interfaces
at positions xi, i=1, . . . ,N, is straightforward since the trans-
fer matrices relative to individual interfaces combine via ma-
trix multiplication

M = �
i=1

N

���xi
−��−1��xi

+� . �5�

From the transfer matrix it is straightforward to determine
transmission and reflection matrices, which encode all the
relevant information on the scattering properties.
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III. N-SO INTERFACE

First we concentrate on the elastic scattering problem at
the interface separating a normal region N �x0�, where
SOCs vanish, and a SO region �x�0�, where SOCs are finite
and uniform. We consider a quasiparticle of energy E with E
assumed positive for definiteness and outside the gap possi-
bly opened by SOCs. This quasiparticle incident from the
normal region is characterized by the y component of the
momentum, or equivalently, the incidence angle � measured
with respect to the normal at the interface, see Fig. 1. Con-
servation of ky implies that

ky
N = E sin � = E� sin �� = ky

SO, �6a�

kx
N = E cos � , �6b�

kx�
SO = E� cos ��, �6c�

where �= 
1 and E�=	�E−���E+�−���. The refraction
angles �� are fixed by momentum conservation along the
interface in Eq. �6a� and read

�� = arcsin
 E

E�

sin �� . �7�

Figure 1 illustrates the refraction process at the N-SO inter-
face. The incident wave function, assumed to have fixed spin
projection in the z direction, in the SO region splits in a
superposition of eigenstates of the SOCs Hamiltonian corre-
sponding to states in the different branches of the spectrum.
These eigenstates propagate along two distinct directions
characterized by the angles ��, whose difference depends on
SOC and is an increasing function of the incidence angle, see
Fig. 2. The angles �� coincide only for normal incidence or
for �=0.

Equation �7� implies that there exists a critical angle for
each of the two modes given by

�̃� = arcsin
E�

E
� . �8�

For � larger than both critical angles �̃�, the quasiparticle is
fully reflected, since there are no available transmission
channels in the SO region. For � in between the two critical
angles the quasiparticle transmits only in one channel.39

After this qualitative discussion of the kinematics, we
now present the exact solution of the scattering problem. In
the N region x0 a normalized scattering state of energy
E�0, incident from the left on the interface with incidence
angle � and spin projection s is given by

�N�x� = ��↑,s�↑� + �↓,s�↓��
 1

ei� � eikxx

	2vF
x

+ �r↑s�↑� + r↓s�↓��

�
 1

− e−i� � e−ikxx

	2vF
x

, �9�

where kxkx
N �cf. Eq. �6b��. Here the index s= ↑ ,↓ specifies

the spin projection of the incoming quasiparticle with �↑ �
and �↓ � eigenstates of sz and �i,j is the Kronecker delta. The
velocity vF

x =cos � is included to ensure proper normaliza-
tion of the scattering state. The complex coefficients rs�s are
reflection probability amplitudes for a quasiparticle with spin
s to be reflected with spin s�. The associated matrix �N�x�
reads

�N�x� =
1

	2vF
x�

eikxx e−ikxx 0 0

ei�kxx+�� − e−i�kxx+�� 0 0

0 0 eikxx e−ikxx

0 0 ei�kxx+�� − e−i�kxx+��
� .

Similarly the wave function in the SO region �x�0� can be
expressed in general form as

�SO�x� =
1

	v++
x

�t+�++�x� + r+�̄++�x�� +
1

	v−+
x

�t−�−+�x�

+ r−�̄−+�x�� , �10�

where t
 �respectively, r
� are complex amplitudes for right-
moving �respectively, left-moving� states. The coefficient t�

represents the transmission amplitude into mode �. The
wave functions ��+ and the Fermi velocities v�+

x in the SO
region are obtained from the expressions given in Appendix
with the replacement kx→kx�

SO, where for notational simplic-

ity the label SO will be understood. The wave functions �̄�+
are in turn obtained from ��+ by replacing kx�→−kx�. The
matrix �SO�x� then reads

N region SO region
ky

kx

ky

kxφ

E k +
k -

ξ+ ξ-

FIG. 1. �Color online� Illustration of the kinematics of the scat-
tering at an N-SO interface in graphene. The circles represent con-
stant energy contours.
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FIG. 2. �Color online� Refraction angles as function of the inci-
dence angle for fixed energy and fixed SOCs. Panel �a�: E=5, �
=0.5, and �=2; and panel �b�: E=5, �=2, and �=0.5.
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�SO�x� = �
e−i�+−�+/2 − ei�+−�+/2 e−i�−−�−/2 − ei�−−�−/2

e�+/2 e�+/2 e�−/2 e�−/2

ie�+/2 ie�+/2 − ie�−/2 − ie�−/2

iei�+−�+/2 − ie−i�+−�+/2 − iei�−−�−/2 ie−i�−−�−/2�
��

N+eikx++x 0 0 0

0 N+e−ikx+x 0 0

0 0 N−eikx−x 0

0 0 0 N−e−ikx−x
� ,

�11�

where in the second matrix the normalization factors are de-
fined as N�=1 / �2	v�+ sinh ���.

According to Eq. �4� the transfer matrix for the single
interface problem is given by the matrix product M
= ��N�0−��−1�SO�0+�. From M we obtain the transmission
and the reflection probabilities for a spin-up or spin-down
incident quasiparticle

T+s = � M33�s,↑ + M13�s,↓

M13M31 − M11M33
�2

�+��� , �12�

T−s = � M31�s,↑ + M11�s,↓

M13M31 − M11M33
�2

�−��� , �13�

R↑s = �M31M23 − M33M21

M13M31 − M11M33
�2

�s,↑

+ �M13M21 − M11M23

M13M31 − M11M33
�2

�s,↓, �14�

R↓s = �M31M43 − M33M41

M13M31 − M11M33
�2

�s,↑

+ �M13M41 − M11M43

M13M31 − M11M33
�2

�s,↓, �15�

where �����=���̃�−�����̃�+�� with ��x� the Heaviside
step function. Here, T�s is the probability for an incident
quasiparticle with spin projection s to be transmitted in mode
� in the SO region. Of course, probability current conserva-
tion enforces T+s+T−s+R↑s+R↓s=1.

Figures 3�a�–3�c� show the angular dependence of the
transmission probabilities for an incident spin-up quasiparti-
cle into the �+� and �−� modes of the SO region for different
values of the SOCs. Panel �a� refers to the case of vanishing
intrinsic SOC ��=0�. Here the �+� and the �−� energy bands
are separated by a SOC-induced splitting �Eext=�. Therefore
at fixed energy the two propagating modes in the SO region
have two different momenta, which gives rise to the two
different critical angles �cf. Eq. �8� with �=0�. Panel �b�
refers to the case �=0, where the SOC opens a gap �Eint
=2� between the particle and the hole branches, however the
�+� / �−� modes remain degenerate. Therefore at fixed energy
these modes have the same momentum and, as a conse-

quence, the same critical angles �cf. Eq. �8� for �=0 and �
�0�. When both SOCs are finite—the situation illustrated in
panel �c�—the transmission probabilities exhibit more struc-
ture. For incidence angles smaller than �̃+ no particular dif-
ferences with the cases of panels �a� and �b� are visible.
When the �+� mode is closed, an increase �respectively, de-
crease� in the �−� mode transmission is observed for positive
�respectively, negative� angles, before the transmission drops
to zero for incidence angles approaching �̃−. The asymmetry
between positive and negative angles is reversed if the spin
state of the incident quasiparticle is reversed.

These symmetry properties can be rationalized by consid-
ering the operator of mirror symmetry through the x axes.40

This consists of the transformation y→−y and at the same
time the inversion of the spin and the pseudospin states. It
reads

Sy = ��x � sy�Ry , �16�

where Ry transforms y→−y. The operator Sy commutes with
the total Hamiltonian of the system �Sy ,H0+HSO�=0, there-
fore allows for a common basis of eigenstates. For the scat-
tering states in the SO region in Eq. �10� we have Sy�+��+�
=�+��+� and Sy�−��−�=−�−��−�. Instead, it induces the fol-
lowing transformation on the scattering states in Eq. �9� in
the normal region: Sy�s���=i�−s�−��. By comparing the
original scattering matrix with the Sy transformed one we
find that

T�,s��� = T�,−s�− �� �17�

with �=
 and s= ↑ ,↓, which is indeed the symmetry ob-
served in the plots. The asymmetry of the transmission coef-
ficients occurs only when both SOCs are finite.

Edge states at the interface

In addition to scattering solutions of the DW equation, it
is interesting to study the possibility that edge states exist at
the N-SO interface, which propagate along the interface but
decay exponentially away from it. The interest in these types
of solutions is connected to the study of topological insula-
tors. It has been shown—first by Kane and Mele15—that a
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FIG. 3. �Color online� Angular dependence of the transmission
probabilities T+↑ �blue dashed line� and T−↑ �red solid line� at en-
ergy E=2.5. The SOC are fixed as follows: �a� �=0.1 and �=0, �b�
�=0 and �=0.1, and �c� �=0.5 and �=0.1.
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zigzag graphene nanoribbon with intrinsic SOC supports dis-
sipationless edge states within the SOC gap. In fact, similar
states are always expected to exist at the interface between a
topologically trivial and a topologically nontrivial insulator.
In our case, the latter is represented by graphene with intrin-
sic SOC. Of course SOC-free graphene is not an insulator,
however it is topologically trivial and edge-state solutions do
arise for �ky�� �E�. When E is within the gap in the SO region
the corresponding mode is evanescent along the x direction
on both sides of the interface. Note that the edge state we
find is different from the one discussed in Refs. 15 and 32
where zigzag or hard-wall boundary conditions at the edge of
the SOC region were imposed.

The wave function on the N side then reads

�N�x� = � 1

− iq + iky

E
��A�↓� + B�↑��eqx �18�

with q=	�ky�2−E2. In the SO region the wave function can
be written as

�SO�x� = C�
�− q+ + ky�
i�E − ��

E − �

i�q+ + ky�
�e−q+x + D�

�q− − ky�
− i�E − ��

E − �

�q− + iky�
�e−q−x

with q�=	ky
2− �E−���E+�−���. The continuity of the

wave function at the N-SO interface leads to a linear system
of equations for the amplitudes A to D. The matrix of coef-
ficients must have a vanishing determinant for a nontrivial
solution to exist. This condition provides a transcendental
equation for the energy of possible edge states, whose solu-
tions are illustrated in Fig. 4 for different values of the in-
trinsic and extrinsic SOCs. The condition �ky�� �E� implies
that solutions only exist outside the shadowed area. In addi-

tion, they are allowed only in the case SOCs open a gap in
the energy spectrum, which occurs when ��1 /2 �see Ap-
pendix and Eq. �3��. As can be seen in Fig. 4 the result is
quite insensitive to the precise value of the extrinsic SOC.

Edge states exist only for values of the momentum along
the interface larger than the intrinsic SOC, i.e., ky �ky

min=�.
The apparent breaking of time-reversal invariance �the dis-
persion is not even in ky� is due to the fact that we are
considering a single-valley theory. The full two-valley SOC
Hamiltonian is invariant under time-reversal symmetry that
interchanges the valley quantum number. This invariance im-
plies that solutions for negative values of ky can be obtained
by considering the Dirac-Weyl Hamiltonian relative to the
other valley. The two counterpropagating edge states live
then at opposite valleys and have opposite spin state and
realize a peculiar 1D electronic system.

As mentioned in Sec. I, the intrinsic SOC is estimated to
be much smaller than the extrinsic one, therefore in a realis-
tic situation one would not expect the opening of a signifi-
cant energy gap and the presence of edge states. It would be
interesting to explore the possibility to artificially enhance
the intrinsic SOC, thereby realizing the condition for the oc-
currence of edge states.

IV. N-SO-N INTERFACE

The analysis of the scattering problem on an N-SO inter-
face of the previous section can be straightforwardly gener-
alized to the case of a double N-SO-N interface �SO barrier�.
Here the transmission matrix D is given by Eq. �5� with N
=2. The transmission and the reflection probabilities in the
case of a spin-up or spin-down incident quasiparticle read

T↑s = � D33�s,↑ + D13�s,↓

D13D31 − D11D33
�2

, �19�

T↓s = � D31�s,↑ + D11�s,↓

D13D31 − D11D33
�2

, �20�

R↑s = �D31D23 − D33D21

D13D31 − D11D33
�2

�s,↑ + �D13D21 − D11D23

D13D31 − D11D33
�2

�s,↓,

�21�

R↓s = �D31D43 − D33D41

D13D31 − D11D33
�2

�s,↑ + �D13D41 − D11D43

D13D31 − D11D33
�2

�s,↓.

�22�

In this case there is an additional parameter which con-
trols the scattering properties of the structure, namely, the
width d of the SO region. In order to compare this length to
a characteristic length scale of the system, we introduce the
spin-precession length defined as

�SO = 2�
�vF

� + 2�
. �23�

The intrinsic SOC alone cannot induce a spin precession on
the carriers injected into the SO barrier—an injected spin

0 1 2 3 4 50

1

2

3

4

5
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E(
k y)

FIG. 4. �Color online� Energy dispersion of the edge state at the
N-SO interface as a function of the momentum along the interface
ky for different values of SOCs. Solution of the transcendental equa-
tion is allowed only for �ky�� �E� �white area�. In all three cases
shown ��1 /2: �=1 and �=0.4 �lower-red line�, �=1.5 and �
=0.7 �middle-blue line�, and �=2 and �=0.9 �upper-green line�.
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state, say up, is obviously never converted into a spin-down
state. Figure 5�a� shows the angular dependence of the trans-
mission in the case of injection of spin-up. The behavior of
the transmission as a function of the injection angle depends
sensitively on the width d compared to the spin-precession
length. For small width d�SO �dashed line� the transmis-
sion is a smooth decreasing function of � and stays finite
also for � larger than the critical angle. In the case d��SO
�dotted and solid lines� instead the transmission probability
exhibits a resonant behavior and drops to zero as soon as the
injection angle equals the critical angle.

When only the extrinsic SOC is finite, the transmission
behavior changes drastically. Two different critical angles
appear—the biggest coincides usually with � /2. The extrin-
sic SOC induces spin precession because of the coupling
between the pseudospin and the real spin. This is illustrated
in Figs. 5�b� and 5�c�. In Panel �b� we consider the case of
spin-up injection with d=�SO /2. At normal incidence the
transmission is entirely in the spin-down channel �dashed
line�. Moving away from normal incidence, the transmission
in the spin-up channel �solid line� increases from zero and,
after the first critical angle, the transmissions in spin-up and
spin-down channels tend to coincide. In panel �c� the width
of the barrier is set to d=�SO. Here, the width of the SO
region permits to an injected carrier at normal incidence to
perform a complete precession of its spin state—the trans-
mission is in the spin-up channel. For finite injection angles
the spin-down transmission �dashed line� also becomes fi-
nite. For ���̃+ the transmission in the spin-up channel is
almost fully suppressed while that in the spin-down channel
is large. Finally, for ���̃+ the two transmission coefficients
do not show appreciable difference.

In the case where both extrinsic and intrinsic SOC are
finite, the transmission probability exhibits a richer structure.
We focus again on the case of injection of spin-up quasipar-
ticles. Moreover we fix the width of the SO region so that it

is always equal to the spin-precession length d=�SO. Figure
6 illustrates the transmission probabilities Ts↑ for three val-
ues of the ratio � /�=1 /4,1 /2,1. Notice that from panels
�a�–�c� the width of SO region decreases.

The symmetry properties of the transmission function can
be rationalized by using the symmetry operation in Eq. �16�.
Proceeding in a similar manner as in the case of the single
interface, for the SO barrier we find the following symmetry
relations:

Ts,s��� = Ts,s�− �� , �24a�

Ts,−s��� = T−s,s�− �� , �24b�

which are confirmed by the explicit calculations.
So far we have considered the injection of a pure spin

state—the injected carrier was either in a spin-up state or a
spin-down state. Following Ref. 30 we now address the
transmission of an unpolarized statistical mixture of spin-up
and spin-down carriers. This will characterize the spin-
filtering properties of the SO barrier. In the injection N re-
gion, an unpolarized statistical mixture of spins is defined by
the density matrix

�in =
1

2
��↑���↑� +

1

2
��↓���↓� , �25�

where ��s��s� � ��� with ���= �1 /	2��1,ei�� corresponds to
a pure spin state. When traveling through the SO region, the
injected spin-unpolarized state is subjected to spin preces-
sion. The density matrix in the output N region can be ex-
pressed in terms of the transmission functions in Eq. �19� as

�out =
1

2
T↑��↑���↑� +

1

2
T↓��↓���↓� , �26�

where the coefficients Ts=T↑s+T↓s are the total transmissions
for fixed injection state. The spinor part is defined as

��s� =
1

	Ts


t↑s

t↓s
� � ��� , �27�

where ts�,s are the transmission amplitudes for incoming �re-
spectively, outgoing� spin s �respectively, s��. The output
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FIG. 5. �Color online�. Panel �a�: angular plots for T↑↑ as a
function of the injection angle for E=2, �=1, and �=0. The three
lines correspond to different distance between the interfaces: d
=� /2 �dashed black�, d=� �dotted red�, and d=2� �solid blue�.
The spin-precession length is �SO=�. When �=0 the transmission
probability in the spin state opposed to the injected spin is always
zero. Panels �b� and �c�: angular plots of T↑↑ �solid blue� and T↓↑
�dashed red� as a function of the injection angle for E=2, �=1, and
�=0. The distance between the two interfaces is d=� in panel �a�
and d=2� in panel �b�. The spin-precession length is �SO=2�.
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FIG. 6. �Color online�. Angular plot of T↑↑ �solid blue� and T↓↑
�dashed red� as a function of the injection angle for E=2, �=1 and
�a� �=� /4 and �b� �=� /2, and �=�. The distance between the
two interfaces is kept fixed to d=�SO.
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density matrix is used to define the total transmission

T =
T↑ + T↓

2
�28�

and the expectation value of the z component of the spin
polarization

Pz =
1

2
�T↑↑ + T↑↓ − T↓↑ − T↓↓� . �29�

In Fig. 7 we report the total transmission �panel �a�� and
the z component of the spin-polarization �panel �b�� as a
function of the injection angle for fixed energy and width of
the SO region. We observe that for an unpolarized injected
state the transmission probability is an even function of the
injection angle T���=T�−��. Moreover, for injection angles
larger than the first critical angle ���̃+, the transmission
has an upper bound at T=1 /2. On the contrary Pz is an odd
function of the injection angle Pz���=−Pz�−��. It is zero
when at least one SOC is zero. When both SOC parameters
are finite Pz is finite and reaches the largest values for �

��̃+. The maxima in this case increase as a function of the
intrinsic SOC.

To experimentally observe this polarization effect the
measurement should not involve an average over the angle
�, which, otherwise—due to the antisymmetry of Pz—would
wash out the effect. To achieve this, one could use, e.g.,
magnetic barriers,36,41 which are known to act as wave-
vector filters.

V. CONCLUSIONS

In this paper we have studied the spin-resolved transmis-
sion through SO nanostructures in graphene, i.e., systems
where the strength of SOCs—both intrinsic and extrinsic—is
spatially modulated. We have considered the case of an in-
terface separating a normal region from a SO region, and a

barrier geometry with a region of finite SOC sandwiched
between two normal regions. We have shown that—because
of the lift of spin degeneracy due to the SOCs—the scatter-
ing at the single interface gives rise to spin-double refraction:
a carrier injected from the normal region propagates into the
SO region along two different directions as a superposition
of the two available channels. The transmission into each of
the two channels depends sensitively on the injection angle
and on the values of SOC parameters. In the case of a SO
barrier, this result can be used to select preferential directions
along which the spin polarization of an initially unpolarized
carrier is strongly enhanced.

We have also analyzed the edge states occurring in the
single interface problem in an appropriate range of param-
eters. These states exist when the SOCs open a gap in the
energy spectrum and correspond to the gapless edge states
supported by the boundary of topological insulators.

A natural follow up to this work would be the detailed
analysis of transport properties of such SO nanostructures.
From our results for the transmission probabilities, spin-
resolved conductance, and noise could easily be calculated
by means of the Landauer-Büttiker formalism. Moreover we
plan to study other geometries, as, e.g., nanostructures with a
periodic modulation of SOCs. The effects of various types of
impurities on the properties discussed here is yet another
interesting issue to address. We hope that our work will
stimulate further theoretical and experimental investigations
on spin-transport properties in graphene nanostructures.
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APPENDIX: GRAPHENE WITH UNIFORM SPIN-ORBIT
INTERACTIONS

In this appendix we briefly review the basic properties of
DW fermions in graphene with homogeneous SO
interactions.21 The energy eigenstates are plane waves �
���k�eik·r with � a four-component spinor and eigenvalues
given by �vF=�=1�

E�,	�k� =
��

2
+ 		kx

2 + ky
2 + 
� −

��

2
�2

, �A1�

where �=
 and 	=
. The energy dispersion as a function
of kx at fixed ky =0 is illustrated in Fig. 8 for several values of
� and �. The index 	=
 specifies the particle/hole branches
of the spectrum. The eigenspinors ��,	�k� read

��,	
T �k� =

1

2	cosh ��

�e−i�−	��/2,	e	��/2,i�	e	��/2,i�ei�−	��/2� ,

where T denotes transposition and
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FIG. 7. �Color online�. Panel �a�: total transmission T as a func-
tion of the injection angle for E=2, d=2�, and several values of
SOCs: �=1 and �=0 �blue-solid line�, �=0 and �=0.5 �red-dotted
line�, �=1 and �=� /4 �yellow-dashed line�, �=� /2 �orange-
dashed-dotted line�, and �=� �black-dotted-dotted-dashed line�.
Panel �b�: z component of the spin polarization Pz as a function on
the injection angle for E=2 and d=2� and the following values of
the SOCs: �=1, �=0 and �=0, �=1 �same black-dashed line�, �
=1 and �=� /4 �red-dotted�, �=� /2 �blue-dotted-dashed line�, and
�=� �green-solid line�.
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sinh �� =
��/2 − �

k
, �A2�

ei� =
kx + iky

k
, �A3�

with k=	kx
2+ky

2. The spin operator components are expressed
as Sj =

1
2sj � �0. Their expectation values in the eigenstate

��,	 read

�Sx� =
− 	� sin �

2 cosh ��

, �A4a�

�Sy� =
	� cos �

2 cosh ��

, �A4b�

�Sz� = 0, �A4c�

which shows that the product 	� coincides with the sign of
the expectation value of the spin projection along the in
plane direction perpendicular to the direction of propagation.
For vanishing extrinsic SOC, the eigenstates ��,	 reduce to
linear combinations of eigenstates of Sz.

Similarly, the expectation value of the pseudospin opera-
tor � is given by

��x� =
	 cos �

cosh ��

, �A5a�

��y� =
	 sin �

cosh ��

. �A5b�

Since the SOCs in graphene do not depend on momentum,
the velocity operator still coincides with the pseudospin op-
erator: v= ṙ=i�H ,r�=�. Thus the velocity expectation value
in the state ��,	 is given by Eqs. �A5a� and �A5b�. Alterna-
tively, it can be obtained from the energy dispersion as

v�,	 = �kE�,	 =
	k

	k2 + 
� −
��

2
�2

. �A6�

The group velocity is then independent of the modulus of the
wave vector if either the SOCs vanish or �=�� /2.
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