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We evaluate free-induction decay for the transverse components of a localized electron spin coupled to a
bath of nuclear spins via the Fermi-contact hyperfine interaction. Our perturbative treatment is valid for special
�narrowed� bath initial conditions and when the Zeeman energy of the electron b exceeds the total hyperfine
coupling constant A: b�A. Using one unified and systematic method, we recover previous results reported at
short and long times using different techniques. We find an unexpected modulation of the free-induction-decay
envelope, which is present even for a purely isotropic hyperfine interaction without spin echoes and for a single
nuclear species. We give subleading corrections to the decoherence rate, and show that, in general, the deco-
herence rate has a nonmonotonic dependence on electron Zeeman splitting, leading to a pronounced maximum.
These results illustrate the limitations of methods that make use of leading-order effective Hamiltonians and
re-exponentiation of short-time expansions for a strongly interacting system with non-Markovian �history-
dependent� dynamics.
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I. INTRODUCTION

The hyperfine interaction of a quantum-dot-confined elec-
tron spin with surrounding nuclear spins and the resulting
decoherence of electron-spin states has been a focus of re-
search in the last several years because of potential applica-
tions in spintronics1–3 and quantum-information
processing.4–6 Hyperfine-induced electron-spin decoherence
is one of the most significant obstacles to viable quantum
computation with confined electron spins in, e.g., III-V semi-
conductor quantum dots, at phosphorus donor impurities in
silicon, in nitrogen vacancy centers in diamond, and in mo-
lecular magnets. It is therefore of central importance to un-
derstand this decoherence mechanism so that schemes can be
developed to suppress it.

One of the most promising strategies to suppress spin de-
coherence is to prepare the nuclear-spin system in a less-
noisy “narrowed” state.7–10 Once such a state is prepared, it
can be maintained over an astonishingly long time scale,
exceeding hours,11 since spin-diffusion processes are highly
suppressed near confined electron spins.12 Recently, great
progress has been made in experimentally realizing such
state narrowing,11,13–18 as well as single-spin readout and co-
herent control,19–24 which we expect to lead to improved
coherence-time measurements in the very near future.

In the absence of refocusing pulses, and at time scales that
are short compared to the relevant time scale for the nuclear
dipolar interaction, the spin of a confined electron interacting
with a narrowed nuclear-spin environment decoherence due
to dynamics induced by flip-flop processes between the elec-
tron and nuclear spins mediated by the hyperfine interaction.
In the presence of a large Zeeman splitting due to an applied
magnetic field, direct electron spin flips are energetically for-
bidden, giving rise to pure dephasing of the electron spin.
Under these conditions, the electron-spin dynamics pass
through various stages with a zoo of different decay laws,

obtained by various methods �see, e.g., Fig. 5 of Ref. 28�: an
exact solution for a fully polarized nuclear system and
leading-order generalized master equation �GME� have both
shown a short-time �partial� power-law decay,7,29,30 an
effective-Hamiltonian and short-time-expansion approach
shows that the initial partial decay is followed by a quadratic
decay shoulder,31,32 and a Born-Markov approximation ap-
plied to the same effective Hamiltonian shows that the ma-
jority of the decay is typically exponential in the high-field
�perturbative� regime.25,26,33 Finally, an equation-of-motion
approach has shown a long-time power-law decay to
zero.34,35

In this paper, we show that each of these results can be
obtained in a systematic way from a single unified approach,
by extending the GME introduced in Ref. 7 to higher order.
In addition to recovering previous results at all time scales,
we find important qualitatively new features, including a
modulation of the decay envelope �even for a fully isotropic
hyperfine interaction�. Moreover, we give subleading correc-
tions �in the inverse electron Zeeman splitting 1 /b� to the
decoherence rate 1 /T2 calculated previously.25 These correc-
tions suggest an interesting nonmonotonic dependence of
1 /T2 on b. Neither the envelope modulations nor the sub-
leading corrections to 1 /T2 can be found from dynamics un-
der the effective Hamiltonian alone. The results presented
here therefore show limits to the validity of some previous
approaches based on high-order expansions of a leading-
order effective Hamiltonian.

The rest of this paper is organized as follows: in Sec. II
we introduce the relevant Hamiltonian, initial conditions, and
exact equation of motion �GME� for the electron spin. Sec-
tion III contains a review of the systematic expansion for the
electron-spin self-energy �memory kernel� in powers of
electron-nuclear flip flops Vff, and gives the result up to
fourth order in Vff. In Sec. IV we evaluate the full non-
Markovian spin dynamics for an electron in a two-
dimensional quantum dot. We recover previously known re-
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sults found using various other methods and additionally
present results for the envelope modulation and corrections
to the exponential decoherence rate 1 /T2. In Sec. V, we ex-
plore the behavior of the fourth-order solution in the nonper-
turbative regime and comment on the range of validity of
this technique and possible extensions to higher order. We
conclude in Sec. VI with a summary of the results found here
and a comparison of these results with those that have been
presented in the literature. Technical details are given in Ap-
pendices A and B.

II. HAMILTONIAN AND GENERALIZED MASTER
EQUATION

We consider the Hamiltonian for a localized electron spin-
1/2 �with associated spin operator S�, interacting with a bath
of nuclear spins Ik via the Fermi-contact hyperfine interac-
tion. We allow generally for a Zeeman splitting b=g�BB of
the central spin S and site- �or species-� dependent Zeeman
splitting b�k in the bath for a nuclear spin Ik at site k. The
Hamiltonian for this system is �setting �=1�

H = bSz + b�
k

�kIk
z + S · h; h = �

k

AkIk, �1�

where the hyperfine coupling constant at site k is given by
Ak=v0Ajk���rk��2 if the nucleus at site k is of isotopic species
jk with associated total hyperfine coupling constant Ajk, ��rk�
is the electron envelope wave function, evaluated at site rk
�the position of the kth nuclear spin�, and v0 is the atomic
volume.

In Eq. �1� we have neglected the nuclear dipole-dipole
interaction, which can give rise to additional internal dynam-
ics in the nuclear spin system, and consequent decay of the
electron spin.31,33,36–38 Dipole-dipole-induced nuclear spin
dynamics are highly suppressed in the presence of an inho-
mogeneous quadrupolar splitting39,40 or Knight-field gradient
in a small quantum dot �the “frozen-core” or diffusion-
barrier effect, see Ref. 41 for a review�. The relevant deco-
herence rate due purely to the hyperfine interaction is en-
hanced for a small dot �1 /T2�1 /N for a quantum dot
containing N nuclear spins�, whereas the dipole-dipole-
induced nuclear dynamics are suppressed for a small dot due
to the frozen-core effect. Thus, there will always be some dot
size N where the nuclear dipolar interactions can be ne-
glected, even up to times that are long compared to the
electron-spin decoherence time.

A. Initial conditions

We choose product-state initial conditions

��0� = �S�0� � �I�0� , �2�

where �I�S�=TrS�I�� is the reduced density matrix for the
nuclear �electron� system. Such an initial state can be pre-
pared through fast strong pulses applied to the electron spin
or by allowing an electron to tunnel rapidly into a localized
orbital.7

Typically, nothing will be known about the nuclear-spin
system at the beginning of an experiment and the density

matrix �I�0� will be well characterized by a completely ran-
dom �infinite temperature� mixture. Randomized initial con-
ditions for the nuclear-spin bath result in a rapid Gaussian
decay of the transverse electron spin in the presence of a
strong Zeeman splitting b.7,19,29,42–44 This rapid decay, due to
static fluctuations in the initial conditions, can be removed
by performing a measurement of the z component of the
slowly varying nuclear field hz.7 There have been several
theoretical proposals8–10 to measure the nuclear-spin system
into an eigenstate of hz and there are now several experi-
ments where similar state preparation has been achieved
through dynamical pumping.11,14–18 After preparing the nu-
clei in an eigenstate of the operator hz, the nuclear system
will be described most generally by an arbitrary mixture of g
degenerate hz eigenstates �ni� �i=1,2 , . . . ,g�

�I�0� = �
i

�ii�ni��ni� + �
i�j

�ij�ni��nj� , �3�

where

hz�ni� = hn
z �ni� ∀ i . �4�

In this paper, we will assume that there is no “special” phase
relationship between the different hz eigenstates, which al-
lows us to approximate �I�0� by the diagonal part of Eq. �3�

�I�0� � �
i

�ii�ni��ni� , �5�

where, for any particular i, the state �ni� is given by a product
of Ik

z eigenstates

�ni� = �
jkj

�Ijk
mk

i � �6�

with spin operator Ijk
z associated with the nuclear spin of

isotopic species j at site kj: Ikj

z �Ijmkj
�=mkj

i �Ijmkj
� and where

Ij�mkj

i � Ij.
We will find it convenient to define the average of an

arbitrary function of Iz eigenvalues f j�m� for the subset of
nuclear spins of species j by

��f j�m��� 	 �
i

�ii�ni�f j�Ikj

z ��ni� , �7�

where we assume a uniformly polarized nuclear-spin system
throughout this paper, making the average on the right-hand
side independent of kj. Specifically, this condition will be
satisfied whenever a sufficiently large number g�1 of de-
generate hz eigenstates contribute to the average so that �i�ii
can be replaced by the same probability distribution �mPj�m�
for all sites kj �see also Appendix B of Ref. 7�

�
i

�ii�ni�f j�Ikj

z ��ni� = �
m=−Ij

Ij

Pj�m�f j�m� . �8�

B. Generalized master equation

In this section we derive an exact equation of motion for
the transverse components of the electron spin alone, taking
the dynamics of the coupled electron-nuclear spin system
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into account. Our starting point is the von Neumann equation
for the full density matrix �̇=−i
H ,��=−iL�. To find the
reduced dynamics of the electron spin alone, we rewrite the
von Neumann equation in the form of the Nakajima-Zwanzig
generalized master equation.45,46 Introducing a projection
superoperator P that preserves the initial condition
P��0�=��0�, the Nakajima-Zwanzig generalized master
equation can be written as

P�̇�t� = − iPLP��t� − i�
0

t

dt�	̂�t − t��P��t�� , �9�

	̂�t� = − iPLQe−iLQtQLP. �10�

Additionally, the projector P must satisfy P2=P and
is typically chosen to preserve all system variables S
:
Tr S
��t�=Tr S
P��t�. Here, Q is the complement projector:
Q=1−P. For the special case of Hamiltonian 
Eq. �1�� and
the initial condition in Eq. �5�, we choose the projection
superoperator P=�I�0�TrI and find that the exact equation of
motion for the transverse electron spin �S�=Sx� iSy� is of
the form7

d

dt
�S+�t = i�n�S+�t − i�

0

t

dt�	�t − t���S+�t�, �11�

	�t� = Tr
S+	̂�t�S−�I�0�� , �12�

where �n=b+hn
z .

C. Rotating frame

We define the coherence factor xt, which measures the
transverse components of electron spin in a frame corotating
with the spin at frequency �n+� through

xt = 2e−i��n+��t�S+�t �13�

and the associated self-energy

	̃�t� = e−i��n+��t	�t� �14�

with Lamb shift � due to virtual excitations of the bath

� = − Re�
0

�

dt	̃�t� . �15�

This gives an equation of motion for xt

ẋt = − i�xt − i�
0

t

dt�	̃�t − t��xt�. �16�

Equation �16� is an exact equation of motion for the coher-
ence factor xt and therefore serves as an important starting
point for systematic approximations in the rest of this paper.

III. SELF-ENERGY EXPANSION

In the absence of an exact closed-form expression for

	̃�t�, we must resort to an approximation scheme. For a large
electron-spin Zeeman splitting b, and due to the large differ-

ence between the magnetic moments of electron and nuclear
spin ��k�10−3�, it is appropriate to separate the Hamiltonian

Eq. �1�� into an unperturbed piece that preserves Sz and a
flip-flop term, which induces energy nonconserving flip flops
between electron and nuclear spins: H=H0+Vff, where

H0 = �Sz + b�
k

�kIk
z ; � = b + hz, �17�

Vff =
1

2
�h+S− + h−S+� . �18�

We can then write 	̃�t� in powers of Vff by performing a
Dyson-series expansion of Eq. �10� and inserting the result
into the definition 
Eq. �12�� �Ref. 7�

	̃�t� = 	̃�2��t� + 	̃�4��t� + O�Vff
6 � . �19�

Progressively higher-order terms in the expansion involve a
larger number of flip flops between the electron and nuclear
bath spins. Consequently, higher-order terms are suppressed
by the energy cost for such flip flops, provided by the elec-
tron spin splitting b for an unpolarized nuclear bath. In par-
ticular, up to factors of order unity and an overall common
prefactor, the size of the 2�n+1�th-order term is given by
�see also Appendix A of Ref. 7�

	̃�2
n+1���t� �  I�I + 1�A
b

�n

. �20�

For a nuclear spin of order unity �I�1�, the condition for the
validity of a perturbative expansion in terms of Vff 
i.e., the
condition for convergence of the series in Eq. �19�� is then
given approximately by7,25,34

b� A . �21�

In the Born approximation, the self-energy 	̃�t� is re-
placed by the leading-order nonvanishing term in the expan-

sion of Eq. �19�: 	̃�t�� 	̃�2��t�. To understand the evolution
of xt within the Born approximation, it is convenient to in-

troduce the function ��t�=�t
�dt�	̃�2��t��, which allows us to

rewrite the equation of motion 
Eq. �16�� as45

ẋt = − i���0� + ��xt +
d

dt
R�t� , �22�

where R�t�= i�0
t dt���t− t��xt�. In a standard Born-Markov ap-

proximation, the dynamics induced by R�t� are neglected.
The real part of ��0� cancels any remaining precession:
−Re��0�=� 
see Eq. �15�� and the imaginary part of ��0�
gives rise to a purely exponential decay of xt with decay rate
�=−Im ��0�. In a previous calculation, it has been shown
that the decay rate for this system within a Born-Markov
approximation vanishes: �=0.7 Within a Born approxima-
tion, all nontrivial dynamics in the rotating frame are there-
fore induced by the non-Markovian remainder term R�t�. The
remainder term R�t� has been investigated in detail
previously7,29,30 and leads to a partial decay of the coherence
factor of order7 �R�t���O
 1

N � A
b �2� on a time scale �N /A with

long-time power-law tails. In the rest of this paper, we in-
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clude the effects of the Born approximation in inducing the
Lamb shift 
Eq. �15�� but neglect the �O�1 /N� corrections
due to R�t� in the perturbative regime. Additionally, we will
go beyond the Born approximation by including the fourth-
order correction to the self-energy in the expansion of Eq.
�19�, which we show induces a more dramatic decay, albeit
at a longer time scale.

We now approximate the self-energy by including all
terms at second and fourth order in electron-nuclear spin flip
flops

	̃�t� � 	̃�2��t� + 	̃�4��t� . �23�

Inserting Eq. �23� into Eq. �16� we find, neglecting the dy-
namics with amplitude suppressed by �1 /N in the perturba-
tive regime due to R�t�

ẋt = − i�
0

t

dt�	̃�4��t − t��xt�, �24�

�� − Re�
0

�

dt	̃�2��t� . �25�

The integrodifferential equation 
Eq. �24�� is difficult to
solve, in general. However, in terms of Laplace-transformed
variables, this equation becomes an algebraic equation,
which can be solved directly. Introducing the Laplace trans-
form of some function f�t�

f�s� = �
0

�

dt e−stf�t�, Re�s�� 0, �26�

we rewrite Eqs. �24� and �25� as

x�s� =
x0

s + i	̃�4��s�
, �27�

�� − Re 	̃�2��s = 0+� . �28�

Here, the initial value of the coherence factor is denoted by

x0=xt �t=0. We have calculated the self-energy 	̃ in Appendix
A, including terms up to fourth order in Vff.

The dominant contributions to 	̃�s� occur for �s�� ��n� in
the rotating frame �high frequency, s� i�n in the lab frame�.
We have expanded the second- and fourth-order self-energies
in this limit, as described in Appendix A. Corrections to this
expansion are smaller than the retained contributions by a
factor of A /N�n�1. For explicit calculation, it is
useful to specialize to the case of a homonuclear system
�where �k=� for all k� and a two-dimensional quantum dot
with Gaussian envelope function, leading to coupling
constants7,25 Ak= �A /N�e−k/N. Performing the continuum limit
��k→�dk� and evaluating the relevant energy integrals for a
uniformly polarized nuclear spin system leads to

	̃�4��s − i�� = i

F+�s�J+�s� + F−�s�J−�s� − s� , �29�

�� − 	̃�2��s = 0+� =
1

8
�c+ + c−�

A

�n

A

N
�30�

with


 =
c+c−

24
� A

�n
�2

�31�

and where c�= I�I+1�− ��m�m�1��� are the coefficients in-
troduced in Ref. 7 with ��¯ �� indicating an average over the
mixture of Ik

z eigenvalues, described by Eq. �7�. Additionally,
we have introduced the functions

F��s� = �N

A
�2�s� i

A

N
�2�s� 2i

A

N
� , �32�

J��s� = log�s� i
A

N
� − log�s� . �33�

After inserting Eq. �29� into Eq. �27�, we find that the
Laplace-transformed coherence factor has three branch
points and if the principle branch is chosen for all branch
cuts and at large electron Zeeman splitting �b�A�, there is
one pole at s=s0 �see Fig. 1�. These nonanalytic features
determine the dynamics of the coherence factor �see below�.
The equation-of-motion method adopted in Refs. 34 and 35
bears some similarity to the current approach. However, the
excitation bandwidth �distance between branch points� found
in Refs. 34 and 35 is half that found here �A /2N rather than
A /N�, leading to a difference �by a factor of 2� for relevant
decay time scales. We comment on other differences, below.

IV. SPIN DYNAMICS

We find the time-dependent coherence factor by evaluat-
ing the Bromwich inversion integral

Im[s]

β−

β0

β+

∆ω

A
N

Re[s]

s0

CB

FIG. 1. Contour used to evaluate the Bromwich inversion inte-
gral 
in the rotating frame defined by Eq. �13��. The dynamics of the
coherence factor xt are determined by a single pole at s0=−1 /T2 and
three branch cuts �see main text�. The pole is offset from the branch
cuts by the Lamb shift � and the excitation bandwidth �separation
between branch points� is given by the size of the hyperfine cou-
pling to a single nucleus at the center of the quantum dot, A /N.
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xt = lim
�→0+

1

2�i
�
�−i�

�+i�

dsestx�s� , �34�

which can be rewritten in terms of an integral over the closed
contour CB and branch-cut integrals � j, j=0,+ ,− �see Fig. 1�

xt =
1

2�i
�

CB

dsestx�s� − �
j

� j�t�

= Res
estx�s�,s = s0� − �
j

� j�t� . �35�

In Eq. �35�, we have applied the residue theorem to write the
integral over CB in terms of a residue at the pole s0.

Since the rotating frame is chosen to give s0=−1 /T2
purely real, we find the general result

xt = P0e−t/T2 − �
i

�i�t� �36�

with P0 given by Eq. �46�, below. The coherence factor is
characterized by two terms: an exponential, which dominates

in the perturbative regime �A�b, see Fig. 2�, and a sum of
branch-cut integrals, which give rise to modulations of the
decay envelope and a dominant long-time power-law decay
�see Fig. 3�.

A. Envelope modulations and long-time decay

From direct asymptotic analysis of the branch-cut inte-
grals, we find ���t��1 / t3 while �0�t��1 / t2 at long times.
Since the pole contribution decays exponentially, the leading
long-time asymptotics of xt are thus given by �0�t�.
Evaluating the prefactor, we find the long-time limit
�valid for t�max
1 /� , �6
 /��ln�N� /6
A���

�0�t� � −
6
x0

�2�
A/N − i��2

e−i�t

t2 , �37�

which gives the long-time behavior of the coherence factor
with initial condition x0=1 �see Fig. 4�

Re
xt� �
C cos��t + ��

t2 , �38�

where

C =
6


�2�
A/N�2 + �2 , �39�

� = − 2 arctan� �N

2�
A
� . �40�

The modulations at a frequency � in Eq. �38� can be
understood on physical grounds in the following way: the
short-time dynamics of the electron spin are controlled by
nuclear spins near the center of the dot, which are coupled
most strongly. The effective precession frequency of the
electron spin is therefore renormalized by the shift � due to
virtual flip-flop processes with nuclei near the center for
most of the decay envelope. The long-time decay, however,
is controlled by weakly coupled nuclei far from the center of
the dot, which cannot strongly shift the electron-spin preces-
sion frequency. The long-time dynamics therefore occur at
the “bare” precession frequency �n. The difference in fre-
quency between the dominant �short-time� and subdominant

0

0.3

0.6

0.9
R

e
[x

t
]

R
e
[x

t
]

0 10 20 30 40

t (N/A)t (N/A)

Re
[
P0e

−t/T2 − ∑
i βi(t)

]

Re
[
P0e

−t/T2
]

x0e
−(t/τ)2

x0(1 − (t/τ)2)

FIG. 2. �Color online� Comparison of the contribution from the
pole at s0 in Fig. 1 with exponentially decaying residue
�blue dashed line� with the full fourth-order result, obtained
numerically �red solid line�. For comparison, the re-exponentiated
short-time quadratic decay is also shown �black dotted line� with a
parabolic decay having the same time scale �orange dash-dotted
line�. We take the initial condition x0=1, assume an unpolarized
nuclear spin system 
with �n=b, c�= 2

3 I�I+1�, which follows from
��m2��= I�I+1� /3 if all Zeeman levels have equal population�, and
have chosen I=3 /2 and A /b=1 /3.

0

0.005

0.01

R
e
[x

t
]

R
e
[x

t
]

40 60 80 100

t (N/A)t (N/A)

Re
[
P0e

−t/T2 − ∑
i βi(t)

]

Re
[
P0e

−t/T2
]

FIG. 3. �Color online� Long-time decay. At long times, the ex-
ponential decay envelope is modulated by branch-cut contributions
at a frequency given by the Lamb shift �. Parameters are as in
Fig. 2.

−0.05

0

0.05

0.1

0 20 40 60

t (N/A)t (N/A)

−∑
i Re [βi(t)]

C cos(∆ωt+φ)
t2

FIG. 4. �Color online� Comparison of the full numerical branch-
cut integral −�iRe
�i�t�� with the long-time asymptotic expression
given by Eq. �38�. Parameters are as in Fig. 2.
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�long-time� behavior leads to a relative beating at the fre-
quency difference �. We note that the physical origin of
this envelope modulation is completely different from the
more typical case of electron spin-echo envelope modula-
tion, which is often observed in systems with an anisotropic
hyperfine interaction.47–50 The modulations described here
occur even in the present case of a purely isotropic interac-
tion and without spin echoes. The two cases can be experi-
mentally distinguished through a difference in the magnetic-
field dependence of the modulation frequency. Finally, we
note that the modulations found here are reminiscent of
modulations in branch-cut contributions that have been high-
lighted previously for the spin-boson model.51

Another striking feature of Eq. �38� is the long-time
power-law tail. This differs from the long-time exponential
decay found by other authors26,32,33 using resummation and
re-exponentiation techniques. The same long-time power-law
decay ��1 / t2� has previously been predicted in Refs. 34 and
35 based on an equation-of-motion method but without men-
tion of the phase shift or envelope modulations predicted by
Eq. �38�. To compare the results given here directly with
Refs. 34 and 35, we consider the case of I=1 /2 with an
unpolarized nuclear-spin bath. This gives

C =
4

�A/N�2�1 + O�A

b
�2�� , �41�

� = − � + O�A

b
�3� . �42�

Although the power law found here matches that reported in
Refs. 34 and 35, and the modulations or phase shift
can be ignored in the limit A /b�1, the prefactor C
�which is52 C=O
�b /A�2� in Refs. 34 and 35� is qualitatively
different. In particular, here we find that the power-law con-
tribution with modulations can have substantial weight
�of order unity� in the perturbative regime A�b. This is clear
from Fig. 4, where we show that the branch-cut contributions
can contribute approximately 10% of the total decay ampli-
tude.

B. Decay shoulder

For small t, we perform a Taylor-series expansion of xt

xt = xt�t→0+ + ẋt�t→0+t +
1

2
ẍt�t→0+t2 + ¯ . �43�

From Eq. �24� and the initial value theorem we find

ẋt �t→0+ =0 and ẍt �t→0+ =−i	̃�4��t=0�=−i lims→� s	̃�4��s�.
Inserting Eq. �A18� for 	̃�4��s� and choosing x0=1 gives

xt � 1 −
t2

�2 , ��� 2�n
2

c+c−��
k

Ak
2�2

. �44�

Equation �44� gives the same short-time decay reported in
Ref. 32, which was taken to describe a Gaussian coherence
decay: xt�x0 exp
−�t /T2,A�2�. Here we note that the Gauss-
ian approximation is only valid for times less than the actual

decay time �t��� in the perturbative regime �b�A� since
the dominant decay is exponential in this regime for a typical
�two-dimensional parabolic� quantum dot, as emphasized in
Ref. 25, and illustrated here in Fig. 2. Re-exponentiation also
fails for the fourth-order solution at lower magnetic field, as
we show in Sec. V, below.

For a uniform unpolarized nuclear spin system and for an
electron with Gaussian envelope function in two dimensions,
we find

��
6�2

I�I + 1�
� b

A
��N

A
� . �45�

We compare the initial decay found using this formula with
the full non-Markovian solution in Fig. 2. While the short-
time decay shoulder is well described by a Gaussian, the full
decay envelope is much better described by the dominant
exponential solution. At larger Zeeman splitting b, the dis-
tinction between Gaussian and exponential becomes signifi-
cantly more pronounced.

C. Exponential decay

We evaluate the residue at the pole s0 in Fig. 1, giving

P0 =
1

1 + i d
ds 	̃

�4��s��s=−1/T2

. �46�

For a two-dimensional parabolic quantum dot, with an unpo-
larized nuclear system, we find P0=1+O�
 A

b �2ln
 A
b ��. Thus,

when A�b, a Markov approximation is justified �resulting in
a dominant exponential decay�, in agreement with the con-
clusions of Refs. 25, 26, and 33.

In the Markovian regime, the decay rate for the
exponentially decaying pole can be determined through25

1 /T2=−Im 	̃�4��0+�. From the self-energy given in Eq.
�A18�, this gives

1

T2
=
�c+c−

4�n
2 �

k,k�

Ak
2Ak�

2 ��Ak − Ak� − �� . �47�

We note that the decoherence rate vanishes in the limit of full
polarization p→1 �consistent with the exact solution in this
limit29� since 1 /T2�c+c− and, e.g., c+c−� �1− p2� for I=1 /2.

The Markovian decay rate 
Eq. �47�� depends on the den-
sity of states for pair flips at an energy determined by the
Lamb shift ��A /�n. The presence of � in the energy-
conservation condition can be understood physically as aris-
ing from the rapid initialization that we assumed, giving rise
to the product-state initial condition 
Eq. �2��. At the instant
the flip-flop interaction Vff is “turned on,” the electron spin
experiences only the bare precession frequency �n. However,
after an interaction time scale t�1 /�n �see Appendix C�, the
renormalized precession frequency �n+� gives the elec-
tron energy splitting, and so the correct energy-conservation
condition for nuclear-spin pair flips contains the difference in
these two quantities �i.e., ��. The dependence on �
shown in Eq. �47� results in an interesting �in general, non-
monotonic� dependence of 1 /T2 on magnetic field.53 In con-
trast, the effective-Hamiltonian approach that was adopted in
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Refs. 25, 26, and 31–33 incorporates the leading-order fre-
quency shift as an additive constant directly into the
electron-spin Zeeman splitting and so it does not enter into
the formula for 1 /T2. The Lamb shift that comes out of the
same procedure used here, but starting from the effective
Hamiltonian, has a higher-order dependence �� �A /�n�2


see the discussion following Eq. �C20� of Ref. 25�, so the
effective-Hamiltonian treatment does not recover the correct
magnetic-field dependence given by Eq. �47�, although the
leading-order ��0 behavior is recovered correctly. This is
not surprising, since the effective Hamiltonian is only strictly
valid to leading order in A /�n. Through explicit calculation
at higher orders, we have checked that the leading correction
to the Markovian decay rate at sixth order in Vff is
O
�A /�n�4� �see Appendix B�, and so the expression given
here is at least correct up to and including terms of order
O
�A /�n�3�.

Specializing to a two-dimensional quantum dot with
Gaussian envelope function and evaluating the energy inte-
grals in the continuum limit gives

1

T2
=

8�c+c−

3�c+ + c−�2

A

N
��5 − 3�3 + 2�2���1 − �� , �48�

where

� =
c+ + c−

8
� A

�n
� . �49�

First, we note that the subleading contribution to 1 /T2 in Eq.
�48� ���3� is suppressed only by one power of A /�n �up to
corrections of order unity�. Second, this subleading correc-
tion has the opposite sign of the leading ���2� term, poten-
tially leading to a nonmonotonic dependence of 1 /T2 on the
electron Zeeman splitting when ��1. This nonmonotonic
dependence can be understood in the following way: as the
electron Zeeman energy decreases from a large value b�A,
the perturbative Lamb shift ��1 /b increases, eventually
reaching the edge of the band of single nuclear pair-flip ex-
citations when ��A /N, at which point there are no more
energy-conserving flip-flop processes. For still lower mag-
netic fields, higher-order processes are required to conserve
energy, but we find that these processes are further sup-
pressed by the small parameter c+c− for a polarized nuclear
spin system 
c+c−� �1− p2� for nuclear spin I=1 /2� �see Ap-
pendix B�. The qualitative nonmonotonic magnetic-field de-
pendence described by Eq. �48� will therefore apply at least
in the case of a polarized nuclear spin system, even when
higher-order terms in Vff are taken into account.

It is straightforward to extend the analysis of this section
to the case of a heteronuclear system. Provided the difference
in nuclear Zeeman energies exceeds the excitation bandwidth
����i−� j�b��A /N�, the decoherence rate is given by a sum
of contributions from each nuclear species i: 1 /T2=�i�i,
where, for a two-dimensional quantum dot with Gaussian
envelope function, we find

�i = ��i
2
i��i

3 − 3�i + 2�
Ai

N
��1 − �i� , �50�

�i = �N�

Ai �, � = �
i

�i

�c+
i + c−

i �
8�n

Ai

�n

Ai

N
�51�

and where we have introduced


i =
c+

i c−
i

24
� Ai

�n
�2

�52�

with coefficients c�
i = Ii�Ii+1�− ��mi�mi�1��� for each isoto-

pic species i. We show the magnetic-field dependence of the
decoherence rate 1 /T2 from Eq. �50� in Fig. 5 for a GaAs
quantum dot, and in Fig. 6 for an InGaAs quantum dot with
a typical indium doping of x=0.3. The dependence of the
1 /T2 curve on indium doping x for an InGaAs quantum dot
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FIG. 5. �Color online� Decoherence rates �i from Eq. �50� and
total decoherence rate 1 /T2=�i�i for an electron spin in a GaAs
quantum dot containing N=105 nuclei with g factor �g�=0.4. The
decoherence rate shows a nonmonotonic behavior, reaching a pro-
nounced maximum. This is in contrast to the leading-order result
�Ref. 25� and in contrast to the results from other higher-order ex-
pansions �Ref. 26�. We have used hyperfine coupling constants

A
69Ga=74 �eV, A

71Ga=96 �eV, and A
75As=86 �eV and relative

abundances �69Ga=0.3, �71Ga=0.2, and �75As=0.5, which have been
estimated in Ref. 27 �see Table I of Ref. 28�.
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FIG. 6. �Color online� Total decoherence rate 1 /T2=�i�i �solid
line� with �i from Eq. �50� for an electron spin in a InxGa1−xAs
quantum dot containing N=105 nuclei with g factor �g�=0.5 and In
doping x=0.3. We show individual contributions from �75As �dot-
ted� and �In �dashed�. Contributions from the gallium isotopes are
not visible on this scale. For this plot, we have taken hyperfine
coupling constants for the gallium and arsenic isotopes as in Fig. 5

and have used A
113In=A

115In=AIn=110 �eV from Ref. 32 �see
Table I of Ref. 28�.
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is illustrated in Fig. 7, where we see that the position of the
maximum in the 1 /T2 curve depends strongly on the concen-
tration of the large-spin isotope �indium�. An experimental
confirmation of this dependence of the maximum in 1 /T2 as
a function of indium doping would be a strong confirmation
of this theory.

V. NONPERTURBATIVE REGIME: b›A

Although the expression we have given for the self-
energy is strictly valid only in the perturbative regime
�b�A�, here we explore the non-Markovian dynamics of this
solution outside of the regime of strict validity and comment
on where the results become unphysical.

We find the positions of poles and evaluate residues and
branch-cut integrals numerically to find the coherence factor
in this regime. We consider the case of an unpolarized homo-
nuclear spin system with spin I=3 /2, appropriate to GaAs.
As the electron Zeeman splitting b is lowered from b�A, we
find there is a critical value of b �near b�2A�, below which
there is a second pole �at s=s1� with exponentially decaying
residue. The coherence factor xt is then given by a sum over
two pole contributions and three branch-cut integrals

xt = �
i=0,1

Pi�t� − �
j=0,+,−

� j�t� . �53�

For b=2A �top panel of Fig. 8�, there are two exponentially
decaying pole contributions, giving rise to a biexponenatial
decay with strong envelope modulations corresponding to
the difference in the imaginary part of the two poles. At

smaller Zeeman energy A /2�b�A �e.g., b=A in the center
panel of Fig. 8�, the pole at s=s0 leaves the continuum band
and merges with the imaginary axis, leading to a constant
contribution P0�t�= P0, independent of t. For still lower Zee-
man splitting b�A /2 �b=A /2 in the lower panel of Fig. 8�,
the second pole at s=s1 leaves the continuum band at lower
frequency and also merges with the imaginary axis. In this
regime, the only decay in the fourth-order solution is due to
the small contribution from branch cuts, although envelope
modulations remain.

The effects in the two lower panels of Fig. 8 demonstrate
the danger of re-exponentiation of short-time behavior for a
system where strong non-Markovian �history-dependent� ef-
fects become important. The nondecaying fractions shown in
Fig. 8 are, however, unphysical consequences of extending
the solution to a regime of electron Zeeman splitting where it
does not apply. We expect higher-order corrections to the
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FIG. 7. �Color online� Decoherence rate 1 /T2 for an electron
spin in a InxGa1−xAs quantum dot containing N=105 nuclei with g
factor �g�=0.5 and In doping of x=0, x=0.3, and x=0.5. Hyperfine
coupling constants are as given in the caption of Fig. 6. The expo-
nential decay rate shown here will be an accurate description of the
full decay in the Markovian regime T2��c, where �c is the bath
correlation time. This regime is reached without nuclear polariza-
tion �p=0� whenever the perturbative self-energy expansion is valid
�Ref. 25�: A�b ��c�N /A for A�b�. At finite polarization, 1 /T2

will be further reduced �e.g., 1 /T2�1− p2 for a system with nuclear
spin I=1 /2�, resulting in a dominant exponential decay even at
lower electron spin splitting. Thus, at least for large nuclear polar-
ization p→1, the qualitative behavior shown here will accurately
describe the magnetic-field dependence of coherence decay. The
behavior at b�A cannot be accurately determined for p=0 without
including higher-order corrections.
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values of b, the subdominant exponential pole has a vanishing de-
cay rate �bottom, b=A /2�, leading to sustained oscillations. All
plots correspond to an unpolarized narrowed nuclear bath with
I=3 /2. Insets illustrate the approximate relative positions of poles
�circles� and branch points �crosses� in each case.
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self-energy to broaden the continuum band as higher-order
nuclear pair flips are included, resulting in several exponen-
tial decay time scales as the electron Zeeman energy is low-
ered. Nevertheless, we have found that processes that can
broaden the continuum band will be suppressed even at small
electron Zeeman splitting b�A, provided the nuclear-spin
system is polarized �see Appendix B�, and so some of this
behavior will survive at least for a polarized nuclear-spin
environment. Whether perturbation theory can be controlled
at any polarization for b�A through an adequate resumma-
tion of relevant terms and short-time approximation, as sug-
gested in Refs. 26 and 33, is still unclear with the present
method.

VI. CONCLUSIONS

We have investigated transverse-spin dynamics for an
electron confined to a quantum dot, interacting with a bath of
nuclear spins via the Fermi-contact hyperfine interaction. Us-
ing one unified technique, we have recovered results that
have previously been reported using several different meth-
ods. These results include an initial partial decay, followed
by a quadratic shoulder, a dominant exponential decay, and a
long-time power-law tail. Our results for the long-time be-
havior differ from those of Refs. 26 and 31–33. Here, we
have found a long-time power-law decay ��1 / t2�, in contrast
to the long-time exponential decay found by those authors.
While the decay law �1 / t2 matches that found previously
using an equation-of-motion approach,34,35 the prefactor
found in the present work has a qualitatively different depen-
dence on magnetic field. In contrast to earlier works, which
argue in favor of a regime of Gaussian decay,31,32 here we
find that re-exponentiation of the short-time quadratic decay
shoulder is never justified. In the perturbative regime b�A,
the system is Markovian,25 being well described by a single-
exponential decay. As the electron Zeeman splitting is low-
ered to b�A, we find strong non-Markovian effects �sus-
tained oscillations and multiple decay rates�, which once
again invalidate re-exponentiation of the short-time decay
shoulder.

In addition to recovering previous results, we have found
qualitatively new behavior, including modulations of the de-
cay envelope and subleading corrections to the decoherence
rate for the dominant exponential decay. Our calculation
gives an interesting nonmonotic dependence of the decoher-

ence rate 1 /T2 on magnetic field. These two results �enve-
lope modulations and a nonmonotonic dependence of the
decoherence rate on magnetic field, both of which should be
readily accessible in experiment� are not recovered in dy-
namics under a leading-order effective Hamiltonian, suggest-
ing caution should be exercised in interpreting results of
high-order expansions involving the effective Hamiltonian.
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APPENDIX A: SELF-ENERGY EXPANSION

Here we give the explicit self-energy up to
fourth order in Vff. The full self-energy is given by
	�s�=	�2��s�+	�4��s�+O�Vff

6 �, where

	�2��s� = − i Tr
S+LVG�s�LVS−�I�0�� , �A1�

G�s� =
1

s + iL0
, �A2�

L0O = 
H0,O� , �A3�

LVO = 
Vff,O� �A4�

and the fourth-order result is

	�4��s� = i Tr�S+
1 − iL0QG�s��LVG�s�LVQ

�G�s�LVG�s�LVS−�I�0�� . �A5�

More explicitly, using Eq. �5� for the initial nuclear state we
find 	�p��s�=�l�ll	l

�p��s�, where

	l
�2��s� = −

i

4�
k
� 
h−�nlk


h+�knl

s + i��kn − i�knl

I +

h+�nlk


h−�knl

s + i��kn + i�knl

I � ,

�A6�

	l
�4��s� =

i

16 �
k1k2k3

�
h+�nlk1

h−�k1k2


h+�k2k3

h−�k3nl


G↑�k1nl

G+�k2nl


G↑�k3nl
�1 − �nlk2

�

+ 
h−�nlk1

h+�k1k2


h−�k2k3

h+�k3nl


G↓�nlk3

G+�nlk2


G↓�nlk1
�1 − �nlk2

�

+ 
h−�nlk1

h+�k1k2


h+�k2k3

h−�k3nl

�1 − i�
L0
+�k2k2

− 
L0
+�nlnl

�
G+�k2k2
�

�
�
G↓�k2k1

G+�k2nl


G↑�k3nl
+ 
G↑�k3k2


G+�nlk2

G↓�nlk1

��1 − �nlk2
� + �
G↑�k3k2

+ 
G↓�k2k1
�
G−�k3k1

�
G↑�k3nl
+ 
G↓�nlk1

��� .

�A7�
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Here, we denote matrix elements 
h��nk= �n�h��k�. Further,
��nk= 1

2 �hn
z −hk

z� and �nk
I = �n��I�n�− �k��I�k�, where

�I=b�k�kIk
z, and we have introduced


G
�kk� =
1

s + i
L0

�kk�

�A8�

with

L0�↓��↑��k��k�� = 
L0
+�kk��↓��↑��k��k�� , �A9�

L0�↑��↓��k��k�� = 
L0
−�kk��↑��↓��k��k�� , �A10�

L0�↑��↑��k��k�� = 
L0
↑�kk��↑��↑��k��k�� , �A11�

L0�↓��↓��k��k�� = 
L0
↓�kk��↓��↓��k��k�� . �A12�

The dominant contributions to the self-energy occur at high
frequency �s� i�n� in the lab frame. For �s− i�n���n, and
�n���nk and �n��nlk

I , we have


G↑�knl
� 
G↓�knl

=
1

i�n
�1 + O A

N�n
�� , �A13�

which allows us to approximate Eqs. �A6� and �A7� by their
high-frequency forms for a uniformly polarized system. We

additionally go to the rotating frame; from the definition of 	̃
in Eq. �14�, we have

	�s + i�n� = 	̃�s − i�� , �A14�

which gives

	̃�2��s − i�� � −
1

4�n
�

i

�i�c+
i + c−

i ��
k

�Ak
i �2. �A15�

In the above expression, the sum over i indicates a sum over
different nuclear-spin isotopes with abundances �i and hyper-
fine coupling constants Ak

i . The high-frequency form of the
fourth-order self-energy is then

	̃�4��s − i�� =
− i

16�n
2�

ij

�i� jc−
i c+

j �
k1k2

�Ak1

i �2�Ak2

j �2 1

s + ix12
ij − i�ij

+
1

s − ix12
ij − i�ij

+ � s

s + i2�ij
�� 2

s + i2x12
ij −

1

s + ix12
ij + i�ij

�
+ � s

s − i2�ij
�� 2

s + i2x12
ij −

1

s + ix12
ij − i�ij

�� , �A16�

where x12
ij = �Ak1

i −Ak2

j � /2, �ij =b��i−� j�, and the coefficients
c�

i are

c�
i = Ii�Ii + 1� − ��m�m� 1��� �A17�

with the average ��¯ �� defined in Eq. �7�. For a homo-
nuclear system, we have �ij =0 and x12

ij =x12= �Ak1
−Ak2

� /2,
and replace �ij�i� j→1. In this case, assuming a uniformly
polarized nuclear-spin system, the self-energy is given sim-
ply by

	̃�4��s − i�� = − i
c+c−

4�n
2 �

k,k�

Ak
2Ak�

2

s − i�Ak − Ak��
. �A18�

This self-energy differs from that found previously at leading
order in an effective-Hamiltonian treatment,25 where the
Lamb shift � is incorporated directly into the bare preces-
sion frequency �n. In addition, we stress that the more gen-
eral self-energy for a heteronuclear system 
Eq. �A16�� is not
recovered with the effective Hamiltonian 
compare with Eq.
�C19� of Ref. 25�.

Assuming a two-dimensional parabolic quantum dot
�with Gaussian envelope function� leads to coupling
constants Ak= �A /N�e−k/N �see, e.g., Ref. 25�. Performing the
continuum limit, i.e., replacing �k1,k2

→�dk1dk2, and evalu-
ating the resulting energy integrals, we arrive at Eq. �29� of
the main text.

APPENDIX B: HIGHER-ORDER CORRECTIONS

All results in this paper are valid up to fourth order in the
electron-nuclear flip-flop terms Vff. As the electron Zeeman
splitting is lowered from b�A, higher-order corrections to
the self-energy may become relevant. In this appendix, we
give explicit conditions under which higher-order corrections
may be neglected, even for b�A. As in Appendix A, the
self-energy at any order may be approximated by its high-
frequency form �at s� i�n� whenever A /Nb�1 
cf. Eq.
�A13��. This allows for a significant simplification in the
high-order expansion in terms of Vff. With corrections to the
self-energy that are smaller by factors of order 1 /N�1 and
A /Nb�1, we find the high-frequency form of the self-
energy to be given by

TrI	̂�s� � − i TrI�G+
−1Q−1 +

i

2
L�

+�� 1

1 + �
�I�0�� ,

�B1�

where we have introduced

G+ =
1

s −
i

2
L�

+

, �B2�
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� = −
iQ

4�n
G+�HL + HR� �B3�

defined in terms of the superoperators �which act on an arbi-
trary operator O�

HLO = h+h−O , �B4�

HRO = Oh−h+, �B5�

L�
+O = ��,O� , �B6�

where �,� indicates an anticommutator.
The high-frequency form of the self-energy can now be

found directly from Eq. �B1� with a more moderate con-
straint on the electron Zeeman splitting �A /Nb�1�. A direct
evaluation of Eq. �B1� at arbitrary order and resummation is
nontrivial but we can generate arbitrary higher-order terms
with the geometric series

1

1 + �
= 1 − � + �2 − ¯ . �B7�

Every factor of � is associated with a nuclear-spin pair
flip, giving rise to a factor of c+ or c−, which depend on the
nuclear polarization, and a factor of the small parameter
A /�n. The term at �2k�th order in Vff contains k factors of �
and consequently k powers of A /�n. This suggests that the
sixth-order self-energy can in general give corrections of or-
der ��A /�n�3, which may modify the subleading corrections
of this size given by the Markovian decay formula 
Eq.
�47��. However, by direct calculation using the above expan-
sion, we find the leading contributions to the Markovian de-
cay rate at sixth order to be

− Im 	�6��s = i�n + 0+� = O� A

�n
�4� . �B8�

Furthermore, we find that the 	�6� corrections do not lead to
a broadening of the continuum band. The first nonvanishing
corrections to the Markovian decay rate which do lead to a
broadening of the continuum band contain two nuclear-spin
pair-flip excitations. These terms occur first at eighth order in
Vff and are suppressed by the factor �c+c−�2—which is
smaller than the fourth-order corrections by a factor c+c− for
a polarized nuclear-spin system 
e.g., c+c−� �1− p2� for
nuclear spin I=1 /2�. This result demonstrates that the quali-
tative decrease in the decoherence rate at low-electron Zee-
man splitting shown in Figs. 5–7 will not be significantly
modified by higher-order corrections, at least in the case of a
large polarization, where perturbation theory still applies at a
smaller value of the electron Zeeman splitting.

APPENDIX C: INTERACTION TIME

Here we clarify the time scale at which various terms in
the generalized master equation can become relevant. In par-

ticular, we intend to quantify the time scale over which the
Lamb shift attains its full value �the “interaction time” indi-
cated in Sec. IV C�. Our starting point is Eq. �9� for the
transverse components of the electron spin in the lab frame.
After expanding the self-energy: 	�t�=�n	

�n��t�, this be-
comes

d

dt
�S+�t = i�n�S+�t − i�

0

t

dt�	�2��t − t���S+�t�

− i�
0

t

dt�	�4��t − t���S+�t� + ¯ . �C1�

The first term on the right-hand side gives rise to a rapid
precession of �S+�t at the frequency �n. Going to a rotating

frame at this frequency 
�S̃+�t=e−i�nt�S+�t , K̃�t�=e−i�nt	�2��t��
and neglecting the higher-order corrections �	�4�, etc., we
find

d

dt
�S̃+�t � − i�

0

t

dt�K�t − t���S̃+�t�. �C2�

At short times t�1 /�, where � gives the typical ampli-
tude of the right-hand side of Eq. �C2�, we can approximate
the spin expectation value by a constant in the integrand:

�S̃+�t���S̃+�0. Within the range of validity of this approxima-
tion, integrating the equation of motion gives

�S̃+�t � e−i��t��S̃+�0, �C3�

��t� = �
0

t

dt��
0

t�
dt�K̃�t�� . �C4�

At times shorter than the self-energy correlation time
t��c�N /A, and for �n�A /N, the memory kernel can be

well approximated by K̃�t��−i�n�
�2�ei�nt with second-

order Lamb shift ��2�=−Re�0
�dtK�t�. Inserting this approxi-

mation for K̃�t� and performing the remaining integrals gives

��t� � − i��2��1 − ei�nt

�n
+ it� . �C5�

After a very short time scale �t�1 /�n�, the t-linear term
dominates, giving a purely real phase

��t� � ��2�t, t� 1/�n. �C6�

The long-time limit t�1 /�n is consistent with the earlier
assumed short-time approximations t�����2� and
t�N /A, whenever A /N, ���n.

From the above analysis, the Lamb shift attains its full
value on a very short time scale �1 /�n provided �n��.
Within the sudden approximation, the interaction time is
therefore determined by t�1 /�n.
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52 A /b in this paper is equivalent to N / in the dimensionless units
of Refs. 34 and 35.

53 This nonmonotonic dependence of 1 /T2 on the electron-spin
splitting is reminiscent of a similar effect found in the

spin-boson model. There, a nonmonotonic dependence of
the decoherence rate as a function of energy splitting is
found when properly accounting for renormalization factors
�Ref. 51�.
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