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Recent revival of interest in high-temperature �T� thermoelectrics has made it necessary to understand in
detail the T dependence of different transport coefficients, and different processes contributing to this tempera-
ture dependence. Since PbTe is a well-studied prototypical high-temperature thermoelectric, we have carried
out theoretical studies to analyze how different physical sources contribute to electronic transport coefficients
in this system over a wide T and concentration �n� range; 300 K�T�900 K and 1�n /no�10, where no

=1019 cm−3, extending earlier works on this problem. We have used Boltzmann equation within energy-
dependent relaxation time approximations. Although the T dependence of the electrical conductivity � comes
from several sources �band structure parameters, chemical potential �, relaxation time ��, we find that the T
dependence of � dominates. We fit the T and the energy ��� dependence of the total relaxation time �tot by a
simple function ��aT−p / �b+c�r�, where a, b, c, p, and r are T and � independent parameters but depend on
n. Using this function, we find that for concentration range of interest, changing r which governs the energy
dependence of scattering does not appreciably affect the T dependence of �. Electronic thermal conductivities
both at constant current J and constant electric field E were calculated using this � to reexamine the validity of
Wiedemann-Franz �WF� law in PbTe, extending the earlier work of Bhandari and Rowe to higher temperatures.
We find that using standard WF law to obtain the electronic contribution of the thermal conductivity ��el�
usually overestimates this contribution by more than 0.5 WK−1 m−1. Therefore the value of the lattice thermal
conductivity obtained by subtracting this �el from the total thermal conductivity is underestimated roughly by
the same amount.

DOI: 10.1103/PhysRevB.81.165203 PACS number�s�: 72.10.Di, 71.20.Nr, 72.20.Pa

I. INTRODUCTION

Thermoelectric devices are generally made from heavily
doped narrow band-gap semiconductors and are used both as
generators and refrigeration devices without any moving
parts or bulk fluids.1 The efficiency of thermoelectric �TE�
energy conversion depends on the transport coefficients of
the constituent materials through the figure of merit �FOM�
ZT=�S2T / ��l+�el,J�, where � is the electrical conductivity
and S is the thermopower �Seebeck coefficient�. The quantity
in the denominator is the total thermal conductivity; it is
given by the sum of contributions from the electronic carriers
at constant electrical current J ��el,J� and the lattice contri-
bution �l. Z has units of inverse temperature, so it is gener-
ally quoted as ZT, with T the average operating temperature
of the TE device.2 From the definition of the ZT it is clear
that to increase ZT we have to decrease the thermal conduc-
tivity of the material and/or increase the thermopower and
the electrical conductivity. Among the four quantities in-
volved in ZT, three ��, S, and �el,J� are mainly related to the
electronic structure of the material and the fourth one ��l�
primarily depends on the lattice. One possible way to im-
prove the FOM is to reduce �l without significantly altering
the electronic properties of the materials, referred to as elec-
tron crystal phonon glass concept.3 This approach has been
explored extensively in the past4,5 through the enhancement
of phonon scattering. The other way to increase FOM is to
increase the power factor �S2 by varying the doping concen-
tration and manipulating the electronic structure in the neigh-
borhood of the chemical potential.6,7 In this paper we focus
on the second approach taking PbTe as an example. Before
one can increase the power factor in this system by manipu-

lating its electronic structure one must understand in detail
how the electronic structure and different scattering mecha-
nisms affect � and S in PbTe itself. Also we look at elec-
tronic contributions to the thermal conductivity �el,J to see
under what conditions it becomes small.

PbTe is a narrow band-gap semiconductor and is well
known for its excellent thermoelectric properties. It is used
for power generation in the temperature range 400–800 K.8

Iodine and PbI2 are the dopants used to optimize the carrier
concentration in n-type PbTe.1 However the lattice thermal
conductivity of PbTe with these dopants is usually too high
and limits its application �ZT is �0.9 at 650K�.1 Therefore
many methods have been used to reduce its �l, such as hot
pressing and spark plasma sintering �SPS�.9 The value of �l
for samples prepared by hot pressing is about 2 WK−1 m−1,
which is still higher than the ideal value of 1 WK−1 m−1

needed for good thermoelectric materials.10 Although there
are many successful examples of reducing the thermal con-
ductivity in Pb1−xSnxTe �Bi1−xSbx�2Te3 solid solutions,10 re-
cently, novel bulk quaternary systems AgPbmSbTem+2
�LAST-m� with special m values,11 PbSeTe/PbTe quantum
dot �QD� superlattices,12 have been found to give a large
ZT�1.5–2 in the temperature range �400–800 K�.

A different approach to increase ZT by increasing the
power factor has been suggested recently by Heremans and
collaborators13 and by Kanatzidis and collaborators.14 The
idea is to alter the energy dependence of the carrier scattering
rate by inserting metallic nanoparticles such as Pb or Sb
inside bulk PbTe. The precise effect of these nanoparticles
��30–50 nm size� on electronic and phononic transport
properties is not known. One of the motivation of the present
work is to see whether changing the energy dependence of
the effective scattering time �rather than individual scattering
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processes� affects the T dependence of electronic conductiv-
ity. From the theoretical side, several calculations of the
transport coefficients �mainly � and S� of PbTe and related
systems have been reported over the years.6,13,15–17 These
calculations have been performed using Boltzmann transport
equation within the energy-dependent relaxation time and the
nonparabolic Kane model for energy dispersion �k� vs k�. The
energy and temperature dependence of different scattering
mechanisms were incorporated in these calculations. De-
pending on the temperature range, different scattering
mechanisms �such as from impurities, acoustic and optical
phonons� made dominant contribution to the relaxation time.
At high temperatures when optical phonons dominate the
scattering mechanism, it was found that both polar and de-
formation coupling with optical phonons played equally im-
portant role �see Zayachuk18 and Freik et al.19�. Earlier work
by Bhandari and Rowe16 focused on the electronic thermal
conductivity �el,J �Ref. 16�; they pointed out that the inclu-
sion of nonparabolicity in energy dispersion had a pro-
nounced effect on the electronic contribution to the thermal
conductivity and neglecting it would overestimate �el,J. Also
they pointed out that acoustic phonon scattering was the
dominant carrier scattering mechanism in PbTe at room tem-
perature �RT�. In a later work, Bilc et al.15 focused on the
power factor at high temperatures, and showed that the
strength of the deformation coupling constant had to be re-
duced by �30% from its earlier value �used in fitting to the
RT data� to get a better quantitative fit to the high T transport
data.

All these earlier work did not explore the relationship
between the energy and temperature dependence of the ef-
fective relaxation rate and the T dependence of �, �el,J and
�el,E. Also a careful analysis of the difference between these
two types of electronic thermal conductivities �constant E vs
constant J� and its impact on the Wiedemann-Franz �WF�
law �see below� was not made. In this paper we address these
issues by focusing on �i� a careful analysis of the energy and
T dependence of � to develop a simple analytic form, �ii�
understanding the relation between the energy dependence of
� and the T dependence of �, S and the power factor ��S2�,
and �iii� finding out the difference between electronic ther-
mal conductivity at constant E and at constant J and reexam-
ine the validity of WF law �el��el,E=L0�T, where the Lor-
entz number L0=2.45�10−8 W� /K.

Although the validity of using WF law to estimate elec-
tronic thermal conductivity at high temperatures has been
questioned in the literature,16 it is still widely used to esti-
mate the lattice thermal conductivity from the total experi-
mental thermal conductivity. The lattice thermal conductivi-
ties estimated this way are turning out to be very small, well
below the so called alloy limit. This reduction has been at-
tributed to the enhanced phonon scattering from the nano-
structures present in the samples. Thus to have a more defi-
nite estimate of the phonon contribution to the thermal
conductivity one must critically examine the use of WF law.
Furthermore the difference between constant J and constant
E electronic thermal conductivities in PbTe has not been ad-
dressed properly although the fact that the experimentally
measured electronic thermal conductivity �el appearing in
the expression for ZT is �el=L�T, and the modified Lorentz

number L is different from L0 is well known.16

The arrangement of this paper is as follows. In Sec. II, we
discuss the transport coefficients using the Boltzmann equa-
tion and define the transport functions. In Sec. III, we briefly
review the nonparabolic Kane model for the energy band
dispersion. In Sec. IV, we introduce transport coefficients in
the Kane Model. In Sec. V, we describe the different scatter-
ing mechanisms contributing the total relaxation time in
PbTe. In Sec VI, we discuss the total thermal conductivity
and the different types of electronic contributions. In Sec
VII, we present our results and discussions and, finally, we
give a brief summary in Sec. VIII. We give the main equa-
tions in the text. The detailed expressions for different con-
tributions to the relaxation time obtained using the Kane
model are given in Appendixes A and B.

II. TRANSPORT COEFFICIENTS USING THE
BOLTZMANN EQUATION

A standard method to deal with charge and energy trans-
port is to use the Boltzmann transport equation.20 In the re-
laxation time approximation, the different transport coeffi-

cient tensors, �J electrical conductivity, SJ thermoelectric
coefficient or thermopower, and �Jel,E electronic thermal con-
ductivity at zero electric field E� rather than at zero current J�
are given by20

�J =
e2

V
�

k�
�−

� fk�

��k�
��k�v�k�v�k� , �1�

SJ = ��J�−1AJ , �2�

�Jel,E =
1

VT
�

k�
�−

� fk�

��k�
���k� − ��2�k�v�k�v�k� , �3�

where AJ tensor is given by

AJ =
e

VT
�

k�
�−

� fk�

��k�
���k� − ���k�v�k�v�k� . �4�

In Eqs. �1�, �3�, and �4�, e is electronic charge, V is the
volume in real space, �k� is the crystal momentum k� depen-
dent relaxation time, v�k� is the velocity of charge carriers, and
fk� is the equilibrium Fermi distribution function at tempera-
ture T and � is the chemical potential.

III. NONPARABOLIC KANE MODEL FOR ENERGY
DISPERSION

The band structure of PbTe is very well studied. Since the
transport properties of interest depend on the band structure
near the conduction band minima and valence band maxima
there have been several attempts to describe the band struc-
ture using effective mass models. The most widely used ef-
fective mass model is that of Kane, called the Kane model.21

In this section we will briefly review the Kane model valid
near the band extrema which occur at the L point of the
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Brillouin zone �BZ�. In narrow band-gap semiconductors
�i.e., lead chalcogenides� the energy region of interest of an
electron as measured from the band edge is comparable to
the band gap Eg. Because of this, the dependence of the
energy on crystal momentum is nonparabolic and the effec-
tive masses are functions of the energy. The nonparabolic
Kane model was introduced to describe the deviations from
the quadratic dependence of energy on the crystal momen-
tum. In this model, the longitudinal effective mass ml and the
transverse effective mass mt depend only on the interaction
between the lowest conduction band and the highest valence
band and the contributions of other bands are assumed to be
small. Here longitudinal and transverse are defined parallel
and perpendicular to the vector joining the center of the BZ
to the L point. For a simple anisotropic parabolic model the
energy dispersion can be expressed as

�k� =
	2

2
�2kt

2

mt
+

kl
2

ml
� , �5�

where �k� is the energy, and kl and kt are the magnitudes of
the longitudinal and transverse components of k�, measured
from the band extrema. In the Kane model the energy dis-
persion is given by21

�k��1 +
�k�

Eg
� =

	2

2
�2kt

2

mt
+

kl
2

ml
� , �6�

where Eg is the band gap. Also in this model the effective
masses and the mass anisotropy coefficients of electrons and
holes are equal. The constant energy surfaces are ellipsoids,
and ml and mt have the same energy dependence.

IV. TRANSPORT COEFFICIENTS IN THE KANE MODEL

In order to calculate the transport coefficients using the
Kane model we have to compute different quantities appear-
ing in Eqs. �1�–�4�, which include the carrier velocity v�k� and
the relaxation time �k�. The expressions for the transport co-
efficient have been obtained by Ravich et al.22,23 and Bilc et
al.15 The basic expressions are given below and the detailed
equations are given in Appendixes A and B.18,19,22,23

PbTe is cubic and therefore the components ��v, S�
, and
��el,E��v of the electrical conductivity and thermopower ten-
sors can be expressed as

��v = ��v� , �7�

S�v = ��vS , �8�

��el,E��v = ��v�el,E, �9�

where �, S, and �el,E are related to the trace of �J, SJ, and

�Jel,E tensors and are given by: �= 1
3Tr �J; S= 1

3Tr SJ; �el,E

= 1
3Tr �Jel,E. For the cubic system, Tr �J, Tr �J, and Tr �Jel,E are

related to v�k�v�k� =v�k�
2 terms. Using simple scaling transforma-

tions �see Appendix A� one can calculate the transport coef-
ficients. The three transport coefficients �, S, and �el,E can be
expressed in terms of a single transport function ����, i.e.,

� = e2�
0




d��−
� f

��
����,T� , �10�

S =
e

T�
�

0




d��−
� f

��
����,T��� − �� , �11�

�el,E =
1

T
�

0




d��−
� f

��
����,T��� − ��2, �12�

where ��� ,T�= 1
V�k����k� −���k�v�k�v�k� is given by

���,T� =
2

3
�

�2md��
1/2

�2	3 	��1 +
�

Eg
�3/2�1 +

2�

Eg
�−1
���,T� .

�13�

The parameter � is the degeneracy of the conduction and
valence bands md� is an average effective mass parameter
defined in Appendix A. Some of the T dependence of the
transport function comes indirectly from the T dependence of
these parameters. The relaxation time ��� ,T� depends on en-
ergy and temperature; the T dependence comes indirectly
from the T dependence of the electronic structure and �.

The concentration of carriers n for the Kane model is
given by

n =
21/2

�2	3�md�
3/2�

o


 	��1 +
�

Eg
�
1/2�1 +

2�

Eg
�d�

exp�� − �

kBT
� + 1

�14�

The expression �md�
3/2 can be expressed in terms of a single

effective mass parameter md
3/2=�md�

3/2, where md is called
density of state effective mass because it takes into account
the degeneracy of the conduction �valence� band. The deri-
vation of the relations between scaling mass parameter �md��,
the density of state effective mass md and longitudinal and
transverse effective masses �ml ,mt� are discussed in Appen-
dix A. The scaling mass parameter md�= �mlmt

2�1/3 and md
=�2/3md�=�2/3�mlmt

2�1/3.

V. RELAXATION TIMES IN THE KANE MODEL

Different scattering mechanisms of charge carriers in lead
chalcogenides have been extensively discussed in many
papers.17,19,22,23 The total scattering rate 1 /�tot is expressed as
a summation of different contributions: acoustic phonons �a�,
optical phonons with deformation coupling �o�, optical
phonons with polar coupling �po�, vacancies �v�, and cou-
lomb scattering from charged impurities �C�,

1

�tot
=

1

�a
+

1

�o
+

1

�po
+

1

�v
+

1

�C
. �15�

The expressions for different contributions to the relaxation
time within the Kane model were first worked out by Ravich
and collaborators and later extended by Zayachuck and Freik
et al.19,22,23 They are available in the literature. We give the
final expressions for different scattering mechanisms in Ap-
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pendix B. Here we discuss the fundamental parameters in-
volved in the calculations of different relaxation rates and
analyze their relative significance for the PbTe system.

In general, it is found that the dominant scattering mecha-
nisms contributing to �tot are from the point defects and ther-
mal phonons. At low temperatures �liquid helium�, charge
carriers are scattered mostly by charged vacancies. At low
densities n�5�1018 cm−3, scattering by Coulomb potential
of the vacancies dominates, whereas for high carrier densi-
ties n�1019 cm−3, the Coulomb potential gets screened out
and scattering by the short range potential of vacancies
dominates. As the temperature increases, the relative impor-
tance of the charged vacancies decreases and scattering by
thermal phonons increases. For temperatures above 300 K,
scattering by acoustic phonons and optical phonons �both
polar and deformation potential coupling� contribute to �tot.

The parameters we have used to calculate the relaxation
time were taken from Ref. 18 where the transport data were
fitted in the temperature range 300 K�T�900 K. They are
given in Table I. Experimentally, one finds that the energy
gap Eg and the density of states effective mass md are tem-
perature dependent.24 This comes from strong electron-
phonon coupling. Following the work of Bilc et al.,15 we
have incorporated the T-dependent Eg and md using the ex-
perimental data. It turns out that the temperature dependence
of md is very important to get a good agreement between
theoretical and measured values of the transport coefficients
� and S.15 Experimentally, it is found that Eg increases lin-
early with temperature for T�400 K and above 400 K, it
remains constant. The temperature dependence of the band
gap Eg �Ref. 24� can be approximately given as

Eg = 0.19 + �0.42 � 10−3�T for T � 400 K, �16�

Eg = 0.358 for T � 400 K �17�

The temperature dependence of the density of states effective
mass md comes primarily from the temperature dependence

of the transverse effective mass mt and this is taken from
experiment,25,26

mt

m
= 0.02459 + �8.659341 � 10−5�T , �18�

where m is the bare electron mass. In Eqs. �16� and �17�, the
energies are in eV and the coefficient of T is in eV/K. Simi-
larly the coefficient of T in Eq. �18� is in the units of 1/K.

Before discussing the detail results of our present study
we make a few brief comments on the work of Bhandari and
Rowe16 and Bilc et al.15 Bhandari et al. considered the de-
formation potential of acoustic phonon as the dominant scat-
tering mechanism ��a� at room temperature although they
claimed that scattering by polar optical modes might not be
insignificant. On the other hand, Bilc et al.15 focused on the
high temperature transport coefficients �but considered only
� and S� and included all the scattering contributions. The
latter authors did not however explicitly explore the energy
and T dependence of the relaxation time and how they con-
tributed to the T dependence of � and S. In this paper we
address this specific question.

In Table II, we give the contribution of each scattering
mechanism to the scattering rate for different temperatures
�T�300 K� and different values of the carrier energy �.
Scattering by acoustic phonons and optical phonons �both
polar and deformation potential coupling� make significant
contributions at temperatures above 300 K. The contribution
of the vacancies both due to their short range deformation
potential ��v� and their long range Coulomb potential ��C� at
are small and insignificant in this temperature range. At low
energies ���0.10 eV�, the polar scattering by optical
phonons ��po� dominates, whereas in the energy range �0.1
���0.30� eV scattering by acoustic phonons and optical
phonons �both polar and deformation potential coupling� are
comparable. For higher energies ���0.30 eV�, the acoustic
phonon scattering is dominant. At constant temperature, the
contributions from �a and �o increase with � whereas the
contribution from �po decreases with �.

In Fig. 1, we plot the inverse relaxation time associated
with the three dominant scattering mechanisms ��a, �o, and
�po� as a function of carrier energy �, for different T �300,
600, and 900 K� for carrier density n=5�1019 cm−3. The
chemical potential � was calculated for each T �T depen-
dence of � will be discussed latter in Sec. VI�. Also, we have
drawn �−�f0 /���, in order to see the energy range � that
contribute to the transport coefficients and hence check the
scattering mechanisms that contribute in this range. We can
see from Fig. 1 that, in the range �0���0.3 eV�, it is not
appropriate to ignore the deformation potential ��0

−1� and po-
lar ��po

−1� scattering by optical phonons to get a correct under-
standing of the transport coefficients and subsequent com-
parison with experiment �see Ref. 15�. At room temperature
T=300 K where �=0.146 eV, we find that �a and �po are
comparable and �o is not insignificant. Increasing tempera-
ture reduces � and therefore shifts the �−�f0 /��� peak to-
ward a lower energy, as shown from Figs. 1�b� and 1�c�. This
increases the contribution of the polar scattering by optical
phonons to the net scattering rate.

TABLE I. Parameters used to calculate the relaxation times for
PbTe �Refs. 15 and 18�.

Parameter Unit of measurement Value

ml /m 0.24

�0 400

�
 32.6

Cl N /m2 0.71�1011

�0 eV 0.0136

a Å 6.461

� g /cm3 8.24

Z 0.14

Eac eV 15

Nv cm−3 2.5�1019

Eoc eV 15

Uvc Erg cm3 3�10−34

Ka ,Ko ,Kv for n-type 1.0

Ka ,Ko ,Kv for p-type 1.5
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VI. THERMAL CONDUCTIVITY

The total thermal conductivity �tot is usually defined and
measured at constant current �J� and is a sum of the lattice
contribution �l and the electronic part �el,J. It is given by

�tot = �l + �el,J, �19�

=�l + �el,E − T�S2, �20�

where �el,E is the electronic thermal conductivity at constant
electric field �E�. This �tot appears in the definition of ZT.2 In
the literature some times one uses �el without explicitly tell-
ing whether it is a constant J or constant E. For degenerate
metals where S is very small or for semiconductors with very
small carrier concentration and hence �, the quantity T�S2 is
very small and �el,J��el,E��el. But for good thermoelec-
trics T�S2 is quite large and the two thermal conductivities
differ. In fact, for a thermally stable electronic system both
�el,E ,�el,J�0. The dimensionless figure of merit for a ther-
moelectric is given by

ZT =
T�S2

�l + �el,E − T�S2 , �21�

and can be optimized by manipulating �el,E. Sofo and
Mahan26 found that for a given lattice thermal conductivity
�l, the best thermoelectric is when �el,E=T�S2, which is
equivalent to �el,J=0. If we look at Eqs. �10�–�12� this equal-
ity occurs when ��� ,T�=A���−�0�, i.e., the energy and
charge transport take place in a single energy channel, �
=�0, i.e., perfect energy filtering. Even in this case one has to
adjust the chemical potential such that ��−�0��2.5kBT to
maximize ZT. In this case ZT→
 when the lattice thermal
conductivity is ignored ��l=0�. In a recent work Humphrey
and Linke27 explored a similar energy filtering idea, but for
an inhomogeneous system. They have shown that in the pres-
ence of a temperature gradient, if one can construct a graded
thermoelectric such that the quantity (��r��−�) /kBT�r�� re-
mains constant throughout the sample, then the energy and

charge transport is adiabatic, which gives rise to perfect Car-
not efficiency. This correspond to ZT=
, when �l=0. In this
limit the thermoelectric efficiency given by2

� =
Thot − Tcold

Thot 
 �1 + ZT − 1

�1 + ZT +
Tcold

Thot
� → �Thot − Tcold�/Thot

= �carnot. �22�

VII. RESULTS AND DISCUSSIONS

As mentioned in Sec. V, we have taken into account the
temperature dependence of the energy gap Eg and the density
of states effective mass md, which are given in Eqs.
�16�–�18�. In PbTe, the gap occurs at the L point in the fcc
BZ and the degeneracy parameter �=4. At high concentra-
tions, n�1019 cm−3, which are required for a good thermo-
electric, the n- or p-type PbTe can be described using a
single �either conduction or valence� band model since for
these concentrations, contributions to transport come prima-
rily from one type of carrier. �Note that for p-type transport
all transport equations have to be interpreted in terms of hole
occupation function.� Here we give the results for the n-type
PbTe. Figure 2 shows the temperature dependence of the
chemical potential � for concentrations n=5�1019 cm−3

and n=5�1020 cm−3. The change in � over the temperature
range of 300–900 K is quite significant. This plays an impor-
tant role in the observed T dependence of � ,S and �el,E over
this temperature range. In Fig. 3 we compare our theoretical
results for � and S with experiment, taken from Ref. 28. The
parameters used to calculate �tot were taken from Bilc et
al.’s. work.15 Our theoretical results for �el,E and �el,J will be
discussed below �Sec. VII B�.

A. Energy and temperature dependence of the relaxation time

The temperature and energy dependence of the total re-
laxation time �tot is shown in Fig. 4. The �tot decreases with

TABLE II. Inverse of the relaxation time of different scattering mechanisms in PbTe for different tem-
peratures T and different carrier energies �.

1 /�a

�1011 sec−1�
1 /�o

�1011 sec−1�
1 /�po

�1011 sec−1�
1 /�v

�1011 sec−1�
1 /�c

�1011 sec−1�
�

�eV�

300 K 14.90 7.12 75.70 0.996 0.25

600 K 45.10 21.50 198.00 1.51 0.22 0.02

900 K 129.00 61.70 315.00 2.88 0.09

300 K 36.60 17.50 56.60 2.44 0.02

600 K 109.00 51.80 136.00 3.62 0.02 0.10

900 K 246.00 118.00 221.00 5.48 0.02

300 K 63.60 30.30 48.60 4.24 0.01

600 K 183.00 87.20 112.00 6.10 0.01 0.20

900 K 400.00 191.00 186.00 8.91 0.01

300 K 97.10 46.30 45.70 6.48 0.004

600 K 272.00 130.00 103.00 9.08 0.004 0.30

900 K 587.00 280.00 172.00 13.10 0.004
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increasing � for a given T and decreases with increasing T
for a given �. We have scaled �tot for different temperatures
in order to see how the scaled �tot depends on �. Figure 5

shows that for different T, the energy dependence of �tot is
almost the same; therefore we fit �tot�T=300 K,�� to find
the energy dependence of �tot �see Fig. 6�. After that it is
straight forward to find the T dependent of the parameter
F�T� that appears in the fitted analytic expression for �tot �see
below and Fig. 7�. The total relaxation time of PbTe can be
approximated extremely well by a scaling function

�tot =
aT−p

�b + c�r�
, �23�

where a, b, c, p, and r are T and � independent parameters
but depend only on the carrier concentration n. We have used
this expression to check the calculated electrical conductivity
� and the thermopower S, �see Figs. 8 and 9�. The scaling
expression for �tot gives excellent agreement �within 5%�
with the values of � and S calculated directly by considering
contributions from different scattering mechanisms.

To check how sensitive the electrical conductivity � is to
the energy dependence of �tot, we plot � for different values
of the parameter r �see Eq. �23�� in Fig. 10. The absolute
values of � change with r. As r increases from 0 scattering in
the energy range of interest �0.0–0.3 eV as discussed in Sec.
V� gets suppressed leading to an increase in � for all T.
However, after scaling the values of � for different tempera-
tures, we notice that the T dependence ��T−2.2 is not sen-

FIG. 1. Energy dependence of the inverse of the relaxation time
of the three dominant scattering mechanisms ��a, �o, and �po� in
PbTe for electron carrier density n=5�1019 cm−3 at different tem-
peratures �a� 300 K, �b� 600 K, and �c� 900 K. The smooth curves
gives the �−�f0 /��� indicating the energy region contributing to the
transport at different temperatures.

FIG. 2. Temperature dependence of the chemical potential � for
n-type PbTe at different concentrations n=5�1019 cm−3 and n
=5�1020 cm−3.

FIG. 3. Temperature dependence of the electrical conductivity �
and thermopower S for n-type PbTe at concentration n=5
�1019 cm−3. The experimental values are shown as solid points.

FIG. 4. Energy dependence of the total relaxation time �tot, cal-
culated from Eq. 5.80, for n-type PbTe at concentration n=5
�1019 cm−3 for different temperatures.

SALAMEH AHMAD AND S. D. MAHANTI PHYSICAL REVIEW B 81, 165203 �2010�

165203-6



sitive to the energy dependence of �tot in the temperature and
concentration range of interest. In order to understand both
the temperature dependence of � and why it is so weekly
dependent on the parameter r, we look in detail the different
physical quantities that give rise to the observed T depen-
dence of �. The scaling form �Eq. �23�� gives �tot�T−p, p
=1.4. This power-law dependence comes from two sources,
T−1 dependence from the phonon occupation number at high
T �kBT�	��, �−1��kBT� / �	�� and a T−0.4 dependence from
the temperature dependence of the density of states through
the parameter md0 �see Sec. V for different phonon induced
relaxation rates�. The question is where the additional T−0.8

dependence of � comes from. In order to answer this, we
made a simple calculation. We assumed �tot to be constant
and then calculated the T dependence of � coming from
other sources. We find that ��T−0.8, the T dependence of the
chemical potential � playing a crucial role in this T depen-
dence. In this respect, PbTe at the doping levels of thermo-
electric interest, differs qualitatively from both highly degen-
erate limit and the nondegenerate limit,1 and is somewhere in
between.

B. Electronic thermal conductivity and the validity of
Wiedemann-Franz law

We will now use the full T and � dependence of the ef-
fective relaxation time �using our scaled form, Eq. �23��, T
dependence of chemical potential and other parameters to

look at the electronic thermal conductivity. This is a gener-
alization of the earlier work by Bhandari and Rowe16 who
looked at this problem but only with acoustic phonon scat-
tering. They found that the acoustic phonon scattering was
the dominant scattering mechanism in PbTe at high tempera-
ture. Our calculations for �tot, as we discussed earlier in Sec.
V, show that it is not appropriate to ignore the deformation
potential �o and polar �po scattering by optical phonons if one
wants to have a proper understanding of the transport coef-
ficients at temperatures of interest. �Our results for the elec-
tronic thermal conductivity agrees perfectly with their results
if we only consider the acoustic phonon scattering.� In Fig.
11 we give the T dependence of �el,E and �el,J. Both decrease
with T, but the difference increases with T. One question is
how close PbTe is to a perfect thermoelectric ZT=
 when
�l=0 �see Eq. �22��. In this limit, ZT= ��S2T� /�el,J
= ��el,E /�el,J�−1. We plot this quantity in Fig. 12, it goes
from �0.1 at 300 K �metallic limit� to �3 at 900 K. PbTe
does approach a perfect thermoelectric at high temperatures
but is far from it.

Next we address the validity of Wiedemann-Franz �WF�
law. The first question is whether �el,E=L0�T or �el,J
=L0�T where the Lorentz number L0=2.45�10−8 W� /K2.
For a metal or a highly degenerate semiconductor it is the
first equation that is correct.2,20 One can use the calculated �
�Fig. 8� and this equation to estimate �el,E. However there is

FIG. 5. Energy dependence of the scaled �to 300 K� total relax-
ation time �tot at different temperatures.

FIG. 6. Energy dependence of the total relaxation time �tot for
T=300 K.

FIG. 7. Temperature dependence of the total relaxation time �tot

at �=0.1 eV.

FIG. 8. A comparison between the electrical conductivity � us-
ing the scattering mechanisms of the relaxation time with the scaled
formula.
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a fundamental problem. If we use this �el,E and then estimate
�el,J using the calculated values of � and S �the plot L0�T
−S2�T in Fig. 11�, we find that for T�700 K, �el,J�0. But
since �el,J is a response function it must be positive definite.
So we cannot use the equation �el,E=L0�T to estimate �el,E
from experimental � and then calculate �el,J using the ex-
perimental value of � and S.

The next thing we can do is to use the second equation,
�el,J=L0�T. This appears to be more reasonable and is closer
to the values of properly calculated �el,J. This is what is
usually done in the estimation of electronic contribution to
the total thermal conductivity �tot using experimental values
of � and S. As we can see in Fig. 11, the use of WF law
overestimates the electronic contribution �el��el,J and there-
fore underestimates the lattice contribution. The proper lat-
tice contribution should be actually higher �by more than
0.5 W K−1 m−1�.

In order to find the temperature dependence of electronic
thermal conductivity at constant current ��el,J�, one defines
an effective Lorentz number as29

L =
�el,J

�T
. �24�

Figure 13 shows the effective Lorenz number vs temperature
for different carrier concentrations. As we can see, the effec-

tive Lorenz number L approaches L0 �metallic like electric
thermal conductivity� with increasing concentration and de-
creasing temperature. As pointed out in Sec. V, for a perfect
thermoelectric �el,J=0, i.e., L=0.

VIII. SUMMARY

Transport calculations using the nonparabolic Kane model
for energy dispersion in PbTe show that the deformation po-
tential of acoustic phonons ��a�, the deformation potential of
optical phonons ��o�, and the polar scattering by optical
phonons ��po�, are comparable and make significant contri-
butions at temperatures above 300 K. Temperature and en-
ergy dependence of the total relaxation time �tot calculations
show that the T dependence comes from two sources, one
from the high-T limit of the phonon occupation number and
the other from the density of states associated with the car-
riers. In the temperature range 300 K�T�900 K, the con-
ductivity � for n-type PbTe �T−2.2. This T dependence
comes from several sources such as band structure param-
eters, i.e., effective mass, chemical potential �, and relax-
ation time �tot. The T dependence of �tot however dominates,
the other important source being a strong T dependence of �.

FIG. 9. A comparison between the thermopower S using the
scattering mechanisms of the relaxation time with the scaled
formula.

FIG. 10. �a� Temperature dependence of �, using the scaling
formula of the total relaxation time for different r parameter. �b�
Temperature dependence of the scaled � �to r=1.74�.

FIG. 11. Temperature dependence of the electronic thermal con-
ductivity ��el� at constant electric field E��el,E� and at constant cur-
rent density J��el,J� using Boltzmann transport equations. We also
give their values using WF law.

FIG. 12. Temperature dependence of ZT for n-type PbTe at con-
centration n=5�1019 cm−3 assuming �l=0.
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It turns out that energy dependence of �tot�T ,�� does not
seem to control the T dependence of � in this temperature
range and for carrier concentration n��1–10��1019 cm−3.
This should have implications on the current attempts to
change the energy dependence of electron scattering to con-
trol the T dependence of �. Careful electronic thermal con-
ductivity calculations were done using the same model and
parameters which were used to fit � and S. Our calculations
show that using WF law ��el,J=L0�T� to estimate this con-
tribution of the thermal conductivity will overestimate the
electronic contribution and hence underestimate the lattice
contribution to the total thermal conductivity. This suggests
that the very low values of lattice thermal conductivity found
using WF law may not be quite right and should only pro-
vide a lower bound on the values of thermoelectric FOM,
ZT, quoted in the literature.
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APPENDIX A

The Kane model for energy dispersion �Eq. �6� of the text�
contains two types of effective masses and in order to sim-
plify the calculations the following substitutions can be
made:

kt
2 =

mt

md�
kt�

2, �A1�

kl
2 =

ml

md�
kl�

2, �A2�

where md�= �mlmt
2�1/3 is a scaling mass parameter.15

Using the new variables kl� and kt�, Eq. �6� can be rewrit-
ten as

�k��1 +
�k�

Eg
� =

	2

2md�
�2kt�

2 + kl�
2� �

	2

2md�
k�2. �A3�

The carrier velocity is given by

	v�k�� =
1

	

��k��

�k��
=

	

md�

k��

1 +
2�

Eg

. �A4�

Using the above equation, the vk��
2 =vk�� .vk�� term in the trans-

port equations can be expressed as

vk��
2 =

2

md�

��1 +
�

Eg
�

�1 +
2�

Eg
�2 . �A5�

Using Eq. �A3�, the infinitesimal unit volume in reciprocal
space d3k�� can be expressed as

d3k�� = 4�k�2dk� = 4�
21/2md�

3/2

	3 	��1 +
�

Eg
�
1/2�1 +

2�

Eg
�d� .

�A6�

In terms of the new variable k��, with changing the sums into
integrals, and taking into account the spin degeneracy and
band degeneracy �, for the cubic system one obtains the Eqs.
�13�–�15� of the text.

APPENDIX B

The expressions for the relaxation times from different
mechanisms using the nonparabolic Kane model for PbTe are
given below.

�i� Deformation potential of acoustic phonons ��a�,

�a =

�0,a�T��� +
�2

Eg
�−1/2

�1 + 2
�

Eg
���1 − A�2 − B�

, �B1�

A =

�

Eg
�1 − Ka�

�1 + 2
�

Eg
� , �B2�

B =

8
�

Eg
�1 +

�

Eg
�Ka

3�1 + 2
�

Eg
�2 , �B3�

�0,a�T� =
2�	4Cl

Eac
2 KBT�2md0�3/2 , �B4�

where Eac is the acoustic deformation potential coupling con-
stant for the conduction band, Cl is a combination of elastic

FIG. 13. Temperature dependence of the scaled effective Lorenz
number �L /L0� for n-type PbTe at different concentration n �L0

=2.45�10−8 W� K−2�.
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constants, Ka is the ratio of the acoustic deformation poten-
tial coupling constants for the valence and conduction bands
Ka=Eav /Eac with the values Ka=1 for n-type PbTe and Ka
=1.5 for p-type PbTe, and md0 is the density of states effec-
tive mass for a single ellipsoid ��=1�.

�ii� Deformation potential of optical phonons ��o�,

�o =

�0,o�T��� +
�2

Eg
�−1/2

�1 + 2
�

Eg
���1 − A�2 − B�

, �B5�

A =

�

Eg
�1 − Ko�

�1 + 2
�

Eg
� , �B6�

B =

8
�

Eg
�1 +

�

Eg
�Ko

3�1 + 2
�

Eg
�2 , �B7�

�0,o�T� =
2	2a2��	�0�2

�Eoc
2 KBT�2md0�3/2 , �B8�

where a is the PbTe lattice constant, � is the PbTe density, �0
is the frequency of the optical phonons, Ko is the ratio of the
optical deformation potential coupling constants for valance
and conduction bands, Ko=Eov /Eoc, which are taken to be
the same as for the acoustic phonons, Ka.

�iii� Polar scattering by optical phonons ��po�,

�po =
�� +

�2

Eg
�1/2

F−1

e2�2md0�1/2KBT��

−1 − �0

−1��1 + 2
�

Eg
� , �B9�

F = 1 − � ln�1 + �−1� −

2
�

Eg
�1 +

�

Eg
�

�1 + 2
�

Eg
�2 �1 − 2� + 2�2 ln�1

+ �−1�� , �B10�

� = �2kr0�−2, �B11�

where �0 and �
 are the static and high frequency dielectric
constants, k is the carrier wave vector, and r0 is the screening
length of the optical phonons. The parameters k and r0 are
given by

k2 =

2md0�� +
�2

Eg
�

	2 , �B12�

r0
−2 =

23/2e2md
3/2

�	3�


�0L1
1/2� , �B13�

where nLl
m is the generalized Fermi integral

nLl
m��,Eg� = �

0


 � � f

��
��n	��1 +

�

Eg
�
m�1 +

2�

Eg
�l

d� .

�B14�

�iv� Short range deformation potential of vacancies ��v�,

�v =

�0,v�T��� +
�2

Eg
�−1/2

�1 + 2
�

Eg
���1 − A�2 − B�

, �B15�

A =

�

Eg
�1 − Kv�

�1 + 2
�

Eg
� , �B16�

B =

8
�

Eg
�1 +

�

Eg
�Kv

3�1 + 2
�

Eg
�2 , �B17�

�0,v�T� =
�	4

Uvc
2 md0�2md0�1/2Nv

, �B18�

where Nv is the vacancy density, Kv is the ratio of the short
range deformation potential coupling constants of vacancies
for valence and conduction bands, Kv=Uvv /Uvc which are
taken to be the same as for acoustic phonons, Ka.

�v� Coulomb potential of vacancies ��C�,

�C =

�0
2�2md0�1/2�� +

�2

Eg
�3/2

��Ze2�2Nv�ln�1 + �� − �/�1 + ����1 + 2
�

Eg
� ,

�B19�

� = �2krv�−2, �B20�

where Ze is the vacancy charge, and rv is the screening ra-
dius of the vacancy potential given by

rv
−2 =

4�e2

�0
D��� , �B21�

D��� =
21/2�md0�3/2

�2	3 �� −
�

Eg
�1/2�1 + 2

�

Eg
� , �B22�

D��� being the density of states at the chemical potential.
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