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We consider a quantum ring connected to leads and the current which is excited by biasing the circuit in the
absence of external magnetic field. The magnetic moment Mring that arises in this way depends on the current
distribution inside the ring. We perform a thought experiment in which Mring is determined by measuring the
torque due to an infinitesimally small probe magnetic field. This leads to a definition Mring, which is given by
the derivative of the grand-canonical energy of the quantum ring with respect to an external magnetic flux in
the zero flux limit. We develop the many-body formalism by Green’s-function techniques and carry on illus-
trative model calculations. The resulting theory predicts that at small bias the current in the ring is always
laminar, that is, the magnetic moment vanishes in linear-response theory. The approach most naturally lends
itself to include induction effects by a self-consistent procedure.
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I. INTRODUCTION

There is widespread interest in systems containing meso-
scopic and nanoscopic rings where quantum coherence ef-
fects are important. The persistent currents1 in mesoscopic
metallic rings2 have been investigated in depth. Recent
progress in connecting aromatic molecules to metallic leads
brought the ringlike topology into the nanoworld.3 The quan-
tum behavior of electrons and fundamental paradigms such
as Aharonov-Bohm oscillations,4,5 quantum interference pat-
tern of the total current,6–8 and of the ring bond currents9–12

have received considerable attention.
Many state-of-the-art computations of ring magnetic mo-

ments produced by the current excited by the bias have al-
ready been reported by several authors.7,13–16 The established
quantum transport theory17–22 yields the currents flowing on
each bond as quantum averages of the current operators. This
paper deals with the current distribution inside multiply con-
nected circuits excited by the bias and their magnetic effects
but we focus on the physical interpretation of those results
and on the relation to an actual magnetic measurement per-
formed on the ring. Indeed we argue that different experi-
mental setups will measure markedly different quantities;
therefore, we aim to an operational definition suitable to
nanorings of molecular dimensions, when one must consider
the possibility that the measurement perturb the system.

Below for the sake of definiteness we specialize the dis-
cussion to circuits containing one tight-binding ring con-
nected to biased leads. The continuum counterpart deserves a
similar discussion. We consider a system which consists of a
left �L� and right �R� biased leads connected to a polygonal
ring with N sites, see Fig. 1, described by the Hamiltonian23

Ĥ = Ĥring + ĤL + ĤR + ĤT + Ĥbias. �1�

Here, for the quantum ring we use the tight-binding Hamil-
tonian

Ĥring = �
m�n=1

N

hmncm
† cn + H.c. �2�

with hopping integrals hmn=0 if m and n are not nearest

neighbors. Further, in Eq. �1� Ĥ� represents the unperturbed

�=L,R lead while ĤT stands for the tunneling Hamiltonian
connecting the leads to the ring. The occupation of the sys-
tem in equilibrium is fixed by the chemical potential �. The
system is driven out of equilibrium by the bias term

Ĥbias = ULN̂L + URN̂R �3�

with N̂� the total number operator for electrons in lead �.
Eventually it reaches a steady state which is17 a Slater deter-
minant of current-carrying eigenstates of Eq. �1� with left-
going/right-going states populated up to the electrochemical
potential �+UR/L of the right/left lead. This interplay of
equilibrium and out-of-equilibrium terms is also familiar in
the partition-free time-dependent formulation19 where the
contribution of the current-carrying states is weighted by the
Fermi functions which assign the occupations before the ex-
ternal potential is applied.

It is intuitively clear that the current pattern must be a
superposition of a circulating current which produces the
ring moment and a laminar one which relates to the interac-
tion of the bias with the external circuit. How to calculate the
magnetic moment and hence the circulating current is the
main contribution of this work.

The classical definition of the ring magnetic moment
Mring is24

Mring =
1

2N
�

m�n=1

N

Imn�r�m ∧ r�n� , �4�

where r�m is the position of the m site of the ring, R is the
radius of the ring, and Imn is the current flowing along the
m-n bond. For example, in the interesting special case when
the ring is a regular N-sided polygon, we may write,
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Mring =
R2

2
sin

2�

N
�

m�n=1

N

Imn =
S

N
�

m�n=1

N

Imn, �5�

where S= 1
2R2N sin2�

N is the area of the ring. In order to
evaluate Mring we need to know the currents Imn in the in-
ternal wires. In quantum mechanics18,23

Ĵmn = − i�hmncm
† cn − hnmcn

†cm� �6�

is the electron current operator between sites m and n con-
nected by a bond with hopping integral hmn. Such interpre-
tation naturally stems from the continuity equation

d

dt
n̂m = �

n

Ĵmn �7�

in which the rate of change in the density n̂m on site m is
seen as the sum of the currents flowing from site m to all
connected sites n. �In a similar way one obtains the familiar
formula for the current density in a continuum system.� We

shall call Ĵmn the bond current operator since it depends on
the operators straddling a bond.

For an isolated ring, in the absence of a bias, a current can
be excited by a threading magnetic flux; all the sides of the
polygon have a common value Imn� I, and the classical re-
sult �5� we reduces to the elementary formula Misolated=SI.
In state-of-the-art calculations for wired rings7,13–16 the mag-
netic moment is calculated by setting in Eq. �4� Imn=Jmn

��Ĵmn�, where the average is taken over the many-body cur-
rent carrying states. Next, we show that such a prescription is
questionable.

A. Need for a proper definition of the vortex current

In classical circuits the continuity equation is encoded in
Kirchhoff’s law, which determines the current together with
Ohm’s law. Indeed, since the electric field is irrotational, if
the bonds have equal conductance Ohm’s law requires that
the current be irrotational as well as divergenceless; in any
case the current is completely specified. On the other hand,
in a macroscopic ring connected to leads, one can measure
the current in each wire by using an amperometer or by
exploring the magnetic field around each branch of the cir-
cuit and performing the line integral. To sum up, the current
in each wire can be independently measured and is deter-
mined by Kirchhoff’s and Ohm’s laws.

This does not apply to ballistic transport in the quantum
regime. For circuits containing loops the continuity equation
alone cannot uniquely determine the currents Imn. The cur-
rent in Eq. �6� solves Eq. �7� but it is not the unique solution.

One is free to add a vortex field Jmn→Jmn+V for m�n and
therefore there is no reason that the physical current flowing
through the bond m-n is the same as the expectation value of

Ĵmn. In the continuum case this corresponds to the possibility
of adding a vortex field V� , with �� ·V� =0, to the current den-
sity. Moreover the current cannot be taken to be defined at a
given bond in quantum systems where one cannot tell if the
electron goes through the upper or lower branch of the ring.

B. Peierls prescription and symmetric phases

In the tight-binding description an external magnetic flux
� piercing the ring is included using the Peierls prescription,
i.e.,

hmn → hmne�2�i/�0��
R� m

R� n A� dr� = hmnei��mn/c�, �8�

where �0= hc
e is the flux quantum, which becomes �0=2�c,

where c is the speed of light, in atomic units �=1, e=1; the
line integral of the vector potential A� goes from site m to site
n; the phases are related to the flux � threaded by the ring by
the relation

�
m�n=1

N

�mn =� A� dr� = � . �9�

For an isolated ring, one can regain the classical result
Misolated=SI by setting

Misolated = cS	 d

d�
�Ĥring�	

�=0
�10�

and using the Hellmann-Feynman theorem; this gives

Misolated=SI with I=J��Ĵmn�. Let us try to extend this pro-
cedure to the wired rings. The formula in Eq. �4� with Imn
=Jmn can be obtained as the derivative of the total energy of
the system with respect to � at �=0 provided that we adopt
the symmetric phase choice �mn=� /N for m�n. Indeed, the
Hellmann-Feynman theorem now yields,

M̃ring � cS	 d

d�
�Ĥ�	

�=0

= cS �
m�n=1

N 	
 d

d�
hmnei��/Nc�cm

† cn + H.c.�	
�=0

=
S

N
�

m�n=1

N

Jmn, �11�

and S= 1
2R2N sin2�

N is the ring area. This agrees with Eq. �5�.
Should we feel reassured after this confirmation of the

classical formula? The answer is definitely no since this is an
ad hoc derivation based on contrived assumptions. The mag-
netic moment Mring should only depend on the magnetic flux
� or from the flux derivative, not on the specific choice of
the phase factors �mn. We illustrate this point by considering
for simplicity the triangular ring �N=3� with sites a, b, and c
connected to one-dimensional leads through sites a and b,
see Fig. 2. The formula �11� with �ab=� and �bc=�ca=0

yields M̃ring=SJab. On the other hand, the choice �ab=�bc

FIG. 1. �Color online� Sketch of a ring with N=7 sites in contact
with a L and R lead. The site m of the ring is positioned in r�m. The
ring is connected to lead L via site a and to lead R via site b.
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=0 and �ca=� corresponds to the same flux � but yields

M̃ring=SJca. Different choices give different results, which
disagree from the result in Eq. �11� corresponding to the
symmetric phase choice. In Sec. II C below, we show that the
different choices are indeed not gauge equivalent for an in-
finite system because there is a subtle point about represent-
ing the external circuit by infinite wires.

It is evident that the above difficulties constitute the warn-
ing light of a physical problem. The solution is physical and
we must ask how the magnetic moment could be measured.

II. THOUGHT EXPERIMENTS

The approach introduced originally by Stern and Gerlach
to measure magnetic moments uses a weak external probe
field and a mechanical force measurement. They measured
the force acting on the Ag atoms by means of the deflection
of the spin-polarized atomic beams. In the case of a wired
ring we could think about a direct mechanical experiment
performed by an atomic force microscope. We develop a
gedanken experiment as an idealized version of an actual
experiment that one should make in order to give an opera-
tional meaning to Mring. Let us now better specify which
force �or torque� one should measure.

While the system is biased, and the current flows, we
switch a very weak probe magnetic field of strength B at an
angle � with respect to the normal of the ring. The field must
be weak because we want to know Mring caused by the
current, without the modification that a large field could pro-
duce. The probe field produces forces on the ring, and on the
whole circuit, that one can measure.

A. Torque acting on the circuit

We denote by � the magnetic flux through the ring and by
������ the current carrying state of the system after all tran-
sient effects have disappeared. The state ������ is therefore
an eigenstate of the Hamiltonian in the presence of the mag-

netic flux which we call Ĥ���.
The total energy of the infinite system diverges but one

could consider

E��� = ������Ĥ��������� − ���0��Ĥ�0����0�� , �12�

which may be interpreted as the total energy change induced
by the field.

The flux depends on the direction of the field and the
angular derivatives of E��� define a mechanical torque act-
ing on the system. Let us assume for convenience that the
field couples exclusively to the bonds within the ring and
therefore the magnetic perturbation is localized. This can be
arranged if Hring depends on the field but the rest of H is field

independent. Even so, the field in the ring changes the wave

function everywhere in the circuit and hence ������Ĥ���
− Ĥring��������� does depend on the flux. Physically, this
means that the field-free external circuit experiences a
torque. If the whole circuit acts as a rigid body and we mea-
sure a torque acting on it, we are actually measuring the
magnetic moment of the whole system, not the one of the
ring. The use of the total energy to calculate the torque ex-
perienced by the ring is therefore ambiguous. To measure
Mring we must arrange a different experiment.

B. Local measurement

We define Mring for the connected ring by a magnetic
measurement to be performed in situ on the ring itself. This
means that we perturb the system by inserting a small flux
through the ring and measure the resulting torque on the ring
itself, e.g., by an atomic force microscope. Although ours is
a thought experiment, it is also a suggestion of a real one
since the recent developments of technology can make our
proposal a practical one. We shall see that the Hamiltonian
contains enough information to compute Mring since the
coupling to a probe field �which is eventually set to zero� via
the Peierls prescription encodes all the necessary informa-
tion. A local experiment requires a measurement of the
forces acting on the ring and the result can be interpreted in
terms of the ring magnetic moment Mring. The ring energy is

Ering��� = ������Ĥring��� − �N̂ring������ , �13�

where N̂ring is the number operator of the ring and � is the
equilibrium chemical potential as discussed in Sec. I. Thus
one gets the magnetic moment Mring directly by measuring

Ering��� − Ering�0� = − MringB cos � = − Mring
�

S
, �14�

where S is the ring surface. For isolated rings, N̂ring is a

conserved operator, ������N̂ring������ is flux independent,

and therefore one can safely discard the �N̂ring term. For
connected rings, the term which references the energy to the
chemical potential is needed to ensure the invariance of the
theory under a uniform energy shift. Otherwise any shift in

the energy origin Ĥring→ Ĥring+	EN̂ring would give a flux-

dependent contribution proportional to ������N̂ring������
and hence it would change the magnetic moment, which is
absurd.

Note that ������N̂ring������ depends on �, and therefore
Eqs. �13� and �14� predict that the term proportional to �
contributes to Mring. Physically, this must be expected be-
cause the insertion of a flux can attract charge of either sign
in the wired ring and this effect must be accounted for.

Since forces are easier to measure than energies, we pro-
pose measuring Mring as

FIG. 2. Sketch of a ring with three sites in contact with two
leads. The sites of the ring are labeled with Roman letters.
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Mring = −	S
dEring

d�
	

�=0
. �15�

We have stressed that no magnetic field is needed since the
current is excited by the bias, however in the presence of flux
� the obvious extension is

Mring = −	S
dEring

d�
	

�

. �16�

The magnetic moment is due to a current

Iring = −
c

S
Mring �17�

that will be referred to below as the circulating current.
Physically one expects that at least the flux due to self-
induction should be introduced, and since this flux is propor-
tional to the current in the ring, flux and current should be
found self-consistently. However we defer this development
to future work. For isolated rings, one can take �=0 and get
back the formula �10� which represents the persistent current
response of an isolated ring by an external magnetic field.

C. Ring local gauge invariance

There is another strong reason why the local definition in
Eq. �15� using Hring is suitable for the ring moment while the
global definition �with H instead of Hring� is not. Both defi-
nitions are expressed in terms of observables and are obvi-
ously gauge invariant. The magnetic moment Mring in Eq.
�15�, however, enjoys a more subtle invariance, that allows
us to choose the Peierls phases within the ring as we please
provided Eq. �9� is fulfilled, without keeping into account
what happens at large distances, in the rest of the system. It
is a stronger condition than the standard gauge invariance.

Consider the patterns in Fig. 3. In a1, a2, and a3 the ring
is connected to wires with open-boundary condition, in b1,
b2, and b3 the external circuit is considered. An arrow along

the m-n bond means that �R� m

R� n A� dr�=�, no arrow means that

the hopping integral is real; ai and bi have the same choice
of phases. Two configurations are equivalent �i.e., connected
by a gauge transformation� if the flux threaded in any closed
path is the same. We shall use the symbol � to denote this
equivalence. By inspection, a1�a2�a3 and b2�b3 but the
external circuit is threaded by a flux � in b1 and by a flux 0
in b2 and b3. Physically, one expects that the ring has a
well-defined magnetic moment but in the case of a ring con-
nected to leads there are different gauge-inequivalent ways to
insert the flux. The different choices imply threading flux in
the external circuit or not, and yield different total energies in
Eq. �12�, and hence different magnetic moments. It is neces-
sary to know the geometry of the field and circuit in order to
evaluate the total energy given in Eq. �12�. This confirms our
interpretation that Eq. �12� does not bring unambiguous in-
formation to extract the ring magnetic moment.

On the contrary the invariance of Eq. �13� follows from

the fact that the operator Ĥring���−�N̂ring is a local operator
and hence its average only depends on the projection onto
the ring of the single particle states �k� forming the Slater

determinant ������. The effects of any flux concatenated
with the circuit is removed in this way. For example, the
single-electron wave functions which make up the many-
body wave functions undergo a phase change in the trip
around the external circuit in b1 and not in b2; however the
solution at a given energy can be taken to be locally the same
in the ring region, despite the change in a distant bond.

D. Magnetic moment of the ring

Equation �15� for Mring with Ering in Eq. �13� is the cen-
tral result of this work. It does not suffer from any of the
problems of the standard approach. The ring current, which
is not uniquely determined by the continuity equation, is now
fixed by the dynamics. It represents the forces acting on the
ring acting as a rigid body hinged on the circuit and is inde-
pendent of all interactions of the field far from the ring.
Below we develop a many-body theory by Green’s-function
technique to calculate Mring in Eq. �15� and explore its
physical contents.

III. GREEN’S-FUNCTION APPROACH

In order to compute the magnetic moment in Eq. �15� for
the system described by Hamiltonian in Eq. �1� we need to
calculate the expectation value of Ering over the stationary
state of the current carrying system in the presence of a flux
�. The lesser Green’s function G
�t , t�� which describes
such stationary nonequilibrium state depends on the time dif-

a2 b2

a3 b3

a1 b1

FIG. 3. �Color online� Flux patterns for a ring inserted in a wire
with open boundary conditions �a1, a2, and a3� and in a closed
circuit �b1, b2, and b3�. The arrows mark the bonds where the
hopping integral is complex �see text�.
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ference t− t�. In terms of its Fourier transform G
���,

Ering��� = − i� d�

2�
Trring��h − ��G
���� , �18�

where h has elements hmnei�mn/c and the trace is taken over
the sites of the ring. It is convenient to obtain G
��� by an
embedding technique with �
=�L


+�R

 the lesser embed-

ding self-energies of the left and right leads. Thus,

G
��� = GR�����L

��� + �R


����GA��� . �19�

The retarded/advanced Green’s function projected onto the
ring is GR/A���= ��−h−�R/A����−1. Using the fluctuation-
dissipation theorem for lead �=L,R one obtains for the
lesser embedding self-energy ��


���=−2if��−U��
Im���

R����, where f��� is the Fermi distribution function at
chemical potential �. The retarded and advanced compo-
nents are related as ��

R= ���
A�† with �=L,R. Substituting Eq.

�19� in Eq. �18� and taking the flux derivative at �=0 we
obtain for the magnetic moment

Mring = iS� d�

2�
Trring� dh

d�
GR�
GA + �h − ��GR

� dh

d�
GR�
 + �
GA dh

d�
�GA�

�=0
. �20�

As already noted, the first term in the square brackets yields
a linear combination of the bond currents, combination that
depends on the Peierls phase configuration. The indepen-
dence of Mring from the phase choice is restored by adding
�h−�� dG
���

d� which is explicitly given by the second term in
Eq. �20�. We wish to emphasize that for �=0 the magnetic
moment has no diamagnetic contribution.

IV. RESULTS AND DISCUSSION

We consider one-dimensional tight-binding leads as in
Fig. 2 with nearest-neighbor hopping tlead described by the
Hamiltonian

ĤL = tlead �
j=−�

−1

�dj
†dj−1 + H.c.� ,

ĤR = tlead�
j=1

�

�dj
†dj+1 + H.c.� , �21�

connected to the triangular ring via the tunneling term

ĤT = tlead�d−1
† ca + d1

†cb� + H.c. �22�

The embedding self-energies have only one nonzero matrix
element, namely, ��L

R����ij =�ia� ja���−UL� and ��R
R����ij

=�ib� jb���−UR�, where UL=−U and UR=U. The function
���� can be easily calculated and reads

���� =
1

2��� + i�� −
�� + i�� + 2tlead

�1 +
4tlead

�� + i�� − 2tlead
� . �23�

Here and below all energies and currents are measured in
units of tlead. In Fig. 4 we display the magnetic moment

Mring of Eq. �20� as a function of the bias U for different
values of the chemical potential �=−1.5,0 ,−1.0,0.5,1.0.

We compare the results to the magnetic moment M̃ring ob-
tained by the bond current according to Eq. �5� evaluated at
Imn=Jmn. The bond currents are computed using a Landauer-
type formula.12 All currents vanish for bias U=2 as the right
continuum is lifted by 2 while the left continuum is lowered
by the same amount. Since the bandwidth is 4 the bias U
=2 represents the minimum value of U for which there is no
more overlap between the left and right continua. The maxi-
mum of Mring versus bias U is seen in Fig. 4 to shift to lower
U with increasing �. For ��0 the maximum of Mring and

of M̃ring occurs at the same value of U. For �
0 the maxi-
mum of Mring occurs at the minimum of the bond currents,
Fig. 4.

By numerical inspection we have observed that the de-
rivative of Mring as function of U at zero bias is always
vanishing. It is interesting to dwell on the meaning of this
finding. On physical grounds, a circulating current should be
localized and should not change the average number of elec-

trons N̂� in lead �=L /R. As a consequence the first-order
response in Mring�t� to the bias should vanish for t→�.
According to the Kubo formula the response function is
given by the average over the unbiased ground state of the
commutator between the operator of the cause at time 0 and
the one of the effect at time t. In the Hamiltonian in Eq. �1�
the cause is the bias operator Ĥbias while the effect �in the
Heisenberg picture with respect to the unbiased Hamiltonian�
is M̃ring�t�. To first order this means that

�
−�

t

�M̂ring���,ULN̂L + URN̂R�d� = 0, �24�

where M̂ring is the operator of the magnetic moment and

N̂��t� is in the Heisenberg picture with respect to the unbi-
ased Hamiltonian. This can be true for any UL ,UR only if

0 0.5 1 1.5 2U

-0.06

-0.04

-0.02

0

0.02

0.04

0 0.5 1 1.5 2U

-0.05

0

0.05

0.1

M
ring

M
ring

0 0.5 1 1.5 2U

-0.06

-0.04

-0.02

0

0.02

0.04

0 0.5 1 1.5 2U

-0.02

0

0.02

0.04
µ = −1 µ = 0.5

µ = 1 µ = 1.5

∼

FIG. 4. �Color online� Plot of Mring �black solid line� and

M̃ring= 1
3 �Jab+Jbc+Jca� �red, dashed line� as obtained in Eq. �5�

with Imn=Jmn. All magnetic moments are in units of Stlead /c.
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�
−�

t

�M̂ring���,N̂L�d� = 0 �25�

and

�
−�

t

�M̂ring���,N̂R�d� = 0. �26�

The above relations imply that the circulating current does
not carry charge from one wire to the other and should be at
least quadratic in the applied bias. By contrast, the standard
theory of Eq. �4� with Imn=Jmn usually predicts in general a
linear response. On the other hand, the laminar current is not
coupled to the local magnetic field.

We have checked numerically that at small U M̃ring is
generally linear in U, while Mring�U3, see Fig. 3. The ab-
sence of the quadratic term in Fig. 3 is due to the high sym-
metry of the system, in which we have chosen UL=−UR
=−U. Indeed letting the system lie on the xy plane, with the
wires along the x axis, the reflection �x ,y�→ �−x ,y� is

equivalent to U→−U and hence both Mring and M̃ring are
odd function of U. We have numerically verified that for
UL�−UR the magnetic moment has a quadratic contribution
at small bias.

We note that there are special values of � �e.g., �=1� at

which the estimate M̃ring starts with vanishing U derivative
at small U.12 In this case Iring coincides with the bond current
along the c-a bond for all values of U. Since Iring yields the
circulating current, we conclude that all the laminar current
goes along the a-b bond.

In a similar way one can compute Mring for rings with N
sites, arms of different length and different hopping as well
as on-site energy parameters. We have verified that Mring
=0 for symmetrically connected rings, as physically ex-
pected.

V. CONCLUSIONS

The definition of the magnetic moment of a quantum ring
connected to bias leads must comply with the way it is mea-

sured. One can measure the magnetic field produced by the
ring, e.g., by means of a superconducting quantum interfer-
ence device �SQUID�, or the response of the ring to an ex-
ternal field. However the SQUID is at least a mesoscopic
object, and has not been used so far to measure the magnetic
moment of molecular-sized objects; in addition the external
circuit also produces a magnetic field. We argue that a local
mechanical measurement �of a force or a torque� by an
atomic force microscope would be ideally suitable for a
nanoscopic ring. By thought experiments we propose Mring
in Eq. �14� which depends on the interaction energy with an
external field and does not involve the bond currents �as we

call the averages �Ĵmn� of the current operator with m ,n in an
internal bond of the ring�. Explicit calculations show that
Mring is, in general, quite unlike a linear combination of the
bond currents, except for special situations when the conduc-
tance of the ring vanishes.

Remarkably we have found that the circulating current
generating the magnetic moment has an at least quadratic
rather than linear response at small bias. Such circulating
current is localized inside the ring and does not contribute to
the conduction while the linear-response current is always
laminar and contributes to the overall Lorentz force acting on
the circuit.

Since the effects that we predict are qualitatively impor-
tant, we hope that they can be directly compared with experi-
ment by measuring the ring magnetic moments. We point out
that for more complex systems with several rings the indi-
vidual magnetic moment of each ring makes sense if one can
thread the field through and measure the mechanical force on
a single ring. Otherwise one should model the experiment
according to the detailed way it is performed. However, more
complex systems are outside the scope of the present paper.

Finally we expect that the present theory and its exten-
sions to circuits with several loops should pave the way to
include induction and self-induction effects in quantum
transport theory. In the extended theory, even in the absence
of an external magnetic field one will need to include a flux
�=LIring, where L is the self-induction coefficient, by a self-
consistent procedure.
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