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Exciton localization in conjugated polymers with weak conformational disorder is investigated via the
Anderson model with Gaussian off-diagonal disorder, �. We show that a small fraction of the low-energy
eigenstates are spatially localized, nonoverlapping, and space filling. We term these states “local exciton
ground states” �LEGS�. The LEGS exhibit an almost Gaussian density of states, an average localization length
L��−2/3, and an inhomogeneous optical linewidth ��4/3. Their transition dipole moments scale with their
localization length in a way consistent with a lowest energy excitation confined to a region �O�L�. The length
scale over which the LEGS are confined is an effective low-energy conjugation length or spectroscopic
segment. The appendix describes an efficient and accurate technique for calculating the density of states of the
Anderson model.
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I. INTRODUCTION

Excitons are the primary excited states of �-conjugated
polymers. The length scale over which the exciton center-of-
mass retains phase coherence in a disordered polymer defines
the exciton coherence or localization length. For polymers
with a sufficiently stiff torsional potential, so that true breaks
in the �-conjugation caused by negligible neighboring
�-orbital overlap do not occur, the exciton localization
length defines an effective exciton confinement length �to be
defined more precisely later�.

Conversely, for polymers with a soft torsional potential—
leading to breaks in the �-conjugation—the average length
scale between these breaks defines another length scale,
which we call the �-conjugation length. The shorter of the
�-conjugation length and the exciton confinement length can
be regarded as an effective low-energy exciton conjugation
length.

Since the exciton conjugation length determines a number
of important electronic processes in polymers, including the
optical oscillator strength, the resonant exciton transfer
integral,1,2 and the dispersion interactions,3 a theoretical un-
derstanding of the factors that control its length has impor-
tant practical applications.

In this paper, motivated by the work of ref 4, we consider
polymers with stiff torsional potentials �e.g., poly�p-
phenylene� �PPP�� so that the thermally induced conforma-
tional disorder is a Gaussian random variable. �In a forth-
coming publication we will consider polymers with soft
torsional potentials �e.g., polythiophene �P3HT�� where there
is a bimodal distribution of torsion angles and there exist
breaks in the �-conjugation.5�

The purpose of the present work is to investigate the con-
cept of “local exciton ground states” �LEGS�, first proposed
by Malyshev and Malyshev6 in their work on diagonal dis-
order in molecular aggregates �and called by them “local
ground states”�. LEGS were also observed qualitatively in
quantum chemistry calculations on PPP reported by Barford
and Trembath.4

We model exciton delocalization in disordered polymers
via the single particle Anderson model with nearest-neighbor

off-diagonal disorder. We show that LEGS are locally the
lowest excited states. They are spatially nonoverlapping and
space filling, and define effective low-energy conjugated �or
spectroscopic� segments. They provide a quantitative justifi-
cation for the Gaussian random disorder model used to de-
scribe exciton transport in disordered polymers.7 Although
focused on exciton states in disordered polymers, the work
presented here on the spatial correlations and energetic dis-
tributions of low lying eigenstates has wider applicability to
quantum wires and other one-dimensional systems.

In the next section we present the theoretical model and
discuss some of the computational details. �The Appendix
describes an efficient numerical method of obtaining line-
widths.� In Sec. III we describe and discuss our results.

II. THEORETICAL BACKGROUND

As described in Sec. III of Ref. 4, the center-of-mass mo-
tion of a Frenkel exciton through a polymer with conforma-
tional disorder can be mapped onto the Anderson model with
off-diagonal disorder,

H = − �
R=1

N−1

tR��R�	R + 1� + �R + 1�	R�� . �1�

The basis state �R� corresponds to a Frenkel exciton on the
unit cell at position R. Here 
tR� is taken to be Gaussian
random variable, with a mean value of t0 and standard de-
viation of �.

As shown in Ref. 4, for thermally induced conformational
disorder ��T1/2 �where T is the absolute temperature�. It
was also shown that realistic parameters for PPP are � / t0
=0.065 and � / t0=0.272 for singlet and triplet excitons, re-
spectively; the disorder being effectively larger for triplets
because of their narrower bandwidth.

H has a complete set of eigenstates 
��i�� and correspond-
ing eigenvalues 
Ei�. Equation �1� is solved for systems of
1000 sites �or repeat units� for up to 5000 realizations of the
disorder. In general, we will be interested in the average
density of states and the optical absorption of the Anderson
model, which we calculate using a highly efficient approach
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�originally proposed by Makhov et al.8–10 for the case of
diagonal disorder and described further in the Appendix�.

The properties of Eq. �1� have been extensively studied in
one and higher dimensions.11 It is well established that in one
dimension disorder causes exponential localization of the
particle wave function12 �see Ref. 13 for a review�. For fu-
ture purposes, we define the exciton localization length as
the spread of the exciton center-of-mass wave function,

L = 2Rrms � 2	R2� − 	R�2, �2�

where

	Rn� = �
R

���R��2Rn, �3�

and ��R�= 	R ���.
Following Malyshev and Malyshev,6 we now define a

“signed-value” parameter, �,

� = �� ���R����R�dR� , �4�

such that �=1 for the true lowest excited �nodeless� state. As
described in the next section, a value of � greater than or
equal to �0.95 is an appropriate definition of a LEGS.

III. RESULTS AND DISCUSSION

Figure 1 shows the fraction of states whose signed-value
parameter � exceeds a threshold C. The fraction of such
states grows rapidly from zero to an almost constant value as
the threshold is reduced from 1 to �0.95. These states are
LEGS. As the inset to Fig. 1 shows, their fraction, x, scales
with the disorder as x��� / t0�2/3. The fraction of states ex-
ceeding the threshold C again begins to grow rapidly as C is
reduced to �0.1.

Figure 2 shows the exciton center-of-mass wave functions
defined for the LEGS �defined here by a signed-value param-
eter ��0.95�. Evidently, these states are virtually nodeless,
in the sense that nodes occur where the amplitude is negli-
gible. We also note that the states are spatially localized and
since they are essentially nodeless they are necessarily non-
overlapping, because of the orthogonality constraint on the
wave functions. The nonoverlapping property of the wave
functions is confirmed by noting that for C=0.95 and � / t0
=0.1 the average spacing between the localized center-of-
masses, �RCOM, is �RCOM =29.6 repeat units, while the frac-
tion of LEGS, x, is x=0.032��RCOM

−1 .
We can show more formally that these states have the

properties of locally lowest excited states by investigating
the relationship between their transition dipole moment, M,
and their localization length, L. The transition dipole mo-
ment of an exciton confined to a chain of N repeat units is

Mi = M0�
R=1

N

�i�R� , �5�

where M0 is the transition dipole moment for a single repeat
unit. For the lowest-lying exciton on a uniform chain

��R� = 2

N + 1
sin� �R

N + 1
� �6�

and therefore M =8N /� for N�1. The localization length,
L, for such an exciton, however, is

L = N��2 − 6

3�2 �1/2

, �7�

and thus,

� M

M0
�2

=
8

�
� 3

�2 − 6
�1/2

L . �8�

Figure 3 shows �M /M0�2 versus L for all the states calcu-
lated for a particular realization of the disorder. Clearly, the
LEGS cluster around the line defined by Eq. �8� indicating
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FIG. 1. The fraction of states, x, with a value of the signed-value
parameter, �, exceeding C. The values of � / t0 shown increase loga-
rithmically, as 10−2 ,10−1.8 ,10−1.6 , . . . ,10−1. The inset shows that x
��� / t0�2/3 at C=0.95. The number of repeat units, N, used was
N=1000 and each calculation was performed over 500 realizations
of the disorder.
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FIG. 2. The exciton center-of-mass wave functions, �i�R�, for
the LEGS �defined by ��0.95� when � / t0=0.1.
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that they are indeed the locally lowest energy states. Indeed,
as well as the definition that the signed-value parameter ex-
ceeds a threshold value, a LEGS can be defined as one that
�within statistical fluctuations� satisfies Eq. �8�.

We can now define more precisely the exciton confine-
ment or conjugation length, �: it is the nonoverlapping re-
gion of a polymer chain in which a localized exciton has a
localization length, L. From Eq. �7�,

� = L� 3�2

�2 − 6
�1/2

� 2.77L . �9�

For C=0.95 and � / t0=0.1 the ensemble averaged conjuga-
tion length is 	��=20.6 repeat units. Bearing in mind the
uncertainty in the constant of proportionality in Eq. �9�, this
is reasonably close to the average spacing between the local-
ized center-of-masses ��RCOM =29.6 repeat units�, suggest-
ing the LEGS define effective low-energy, nonoverlapping,
and space-filling conjugated �or spectroscopic� segments.

As expected from this discussion, the ensemble average
localization length of these states satisfies 	L���� / t0�−2/3

�x−1, which is the scaling relation for localized states at the
band edge.13 Further confirmation that our threshold for the
signed-value parameter � selects low-energy states is made
from Fig. 4. This shows the ensemble averaged density of
states of all states and of the LEGS separately, illustrating
that the LEGS dominate the low-energy excitations. We also
note from this figure that the density of states of the LEGS is
almost normally distributed, with a width, w, scaling as w
��4/3, in agreement with Ref. 6 study of diagonal disorder.

In their study of the Anderson model with diagonal disor-
der, Malyshev and Malyshev6 predicted local exciton “ex-
cited” states spatially localized in the region of a local exci-
ton ground state. If such states exist in our model there
should be a cluster of states in Fig. 3 around a line with a
gradient nine times smaller than the LEGS line. We see no
evidence for such states.14 Since for the case of off-diagonal

disorder the localization length increases with energy �up to
the band center�, it is clear that higher lying excited states
become more extended and spatially overlapping. For � / t0
=0.1 the largest average confinement length �140 repeat
units.

We now turn to discuss the optical properties of the
model. The optical absorption, I�E�, is defined by

I�E� = ��
i

f i	�E − Ei�� , �10�

where 	¯ � represents an ensemble average, the oscillator
strength is f i�EiMi

2, and Mi is defined in Eq. �5�. Since the
excitation energies of the LEGS are narrowly distributed at
the band edge, and further since Mi

2�Li��−2/3, while x
��2/3 we might expect that the total optical absorption from
the LEGS to be independent of disorder. This is indeed con-
firmed by Fig. 5, which shows that the optical intensity car-
ried by states whose value of the signed-value parameter
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FIG. 3. The square of the dimensionless transition dipole mo-
ment versus the exciton localization length �in units of the repeat
unit�. The circled symbols indicate LEGS �defined by ��0.95�.
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exceeds a threshold C is essentially independent of the dis-
order. The total optical intensity carried by the LEGS �de-
fined by C=0.95� is �50%.

Figure 6 shows the calculated optical intensity from both
the full set of states and the LEGS. The LEGS dominate the
low-energy spectrum, and their mean energy is redshifted
from the overall average energy by amount ��. The inho-
mogeneous linewidth, w��4/3 �in agreement with Ref. 6 and
not ��, as reported in Ref. 4�.

We now speculate on the role of the local ground and
excited exciton states on the photophysical properties of con-
jugated polymers. We first observe that in any region of the
polymer chain the lowest energy excitation will be a local
ground state. However, there will be higher lying more ex-
tended excited states that spatially overlap local exciton
ground states and other excited exciton states.4 Moreover, a
local ground state may have a higher energy than a spatially
separated excited state. Upon photoexcitation the ratio of lo-
cal ground and excited states is approximately 1:1. It is rea-
sonable to assume that an excited more extended state will
rapidly interconvert to a spatially overlapping lower energy
local ground state. This exciton can then migrate to a spa-
tially distant local ground or to an excited state. However,
since the low-energy fraction of excited states is much
smaller than those of local ground states, and further since
the exciton transfer integral scales as �−1 �where the conju-
gation length, �, is larger for excited states�2 we may reason-
ably suppose that exciton migration is overwhelmingly to
other local ground states. In other words, in a very short time
after photoexcitation, excitons migrate through a series of
spatially distinct states �or conjugated segments� whose en-
ergies are normally distributed about a mean energy whose
value is lower than the mean absorption energy. This obvi-
ously implies a diffusion induced spectral red shift and quan-
titatively justifies the Gaussian random disorder model of
exciton migration.7

IV. CONCLUDING REMARKS

This paper has focused on the definition and properties of
LEGS in polymers with weak conformational disorder. The
question now arises, how general is the concept of LEGS in
polymers with different types and strengths of disorder?
Malyshev and Malyshev6 proved the existence of LEGS for
weak diagonal disorder, so the combination of both weak
off-diagonal and diagonal disorder should not change this
description.

If, however, there are weak torsional potentials, and hence
strong and probably multimodal disorder �as in P3HT, for
example5�, breaks in the � conjugation introduce the
�-conjugation length, that also localizes excitons. The
shorter of the �-conjugation length and the disorder-induced
exciton confinement length defines the size of the low-energy
spectroscopic segments. In both cases there will be LEGS
that are spatially separated and nonoverlapping.

In the case of strong disorder and � conjugation breaks,
however, the LEGS will not generally exhibit a Gaussian
density of states. Assuming that breaks in the �-conjugation
are uncorrelated, then the distribution of conjugation lengths
between breaks, �, follows an exponential distribution,
P���=c exp�−c��, where c is the probability of a conjugation
break per unit length. The exciton density of states is then
given by g�E�= P���d� /dE, which depends on the particular
definition of E���.

This work has neglected the role of Coulomb-induced
intra- or interchain interactions. For energetically degenerate
spectroscopic segments in close spatial proximity these inter-
actions can couple the segments, delocalizing an exciton be-
tween the segments.5 We have also neglected the role of
electron-lattice coupling in further localizing excitons. This
is currently under investigation.

In conclusion, LEGS are ubiquitous in disordered poly-
mers. A LEGS is virtually nodeless and its transition dipole
moment approximately satisfies Eq. �8�. LEGS define the
nonoverlapping and space filling low-energy spectroscopic
segments. For weak Gaussian conformational disorder they
are determined by the disorder-induced exciton confinement
length, which scales with the disorder as �−2/3. For strong
conformational disorder they are defined by breaks in the �
conjugation. In general, their energetic distribution is a func-
tion of the type and strength of the disorder. For weak Gauss-
ian disorder the optical linewidth and density of states of the
LEGS scale as �4/3, and they are spectrally redshifted with
respect to the rest of the states.
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APPENDIX: ACCURATE COMPUTATION OF THE
DENSITY OF STATES OF THE ANDERSON MODEL

It is the purpose of this appendix to describe an efficient
and accurate technique for calculating the density of states of
single-particle Hamiltonians with random disorder.
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The average density of states, D�E�, for the N-site Ander-
son model, Eq. �1�, with a probability distribution
P�t1 , . . . , tN−1� for 
t� is written as

D�E� =� dt1, . . . . ,dtN−1P�t1, . . . ,tN−1�


�
k

	„E − Ek�t1, . . . ,tN−1�… , �A1�

where Ek�t1 , . . . , tN−1� are the eigenenergies.
A direct integration of Eq. �A1� using the Monte Carlo

method results in a set of 	 functions instead of a continuous
spectrum. The usual approach is to replace the 	 functions in
Eq. �A1� by functions with a small but finite width, e.g.,
narrow Gaussian functions. However, this approach is very
inefficient and leads to noise in the calculated spectrum �see
Ref. 8�. Here we apply a significantly more efficient ap-
proach that uses a transformation of the Hamiltonian param-
eters leading to a known transformation of its eigenenergies.
Originally this approach was proposed by Makhov et al.8–10

for the Anderson model with diagonal disorder, where a uni-
form shift of all the diagonal matrix elements of the Hamil-
tonian was used. For the present case of pure off-diagonal
disorder, the appropriate transformation of the Hamiltonian
is a uniform scaling of all of its matrix elements. Indeed, it is
obvious that

Ek�xt1, . . . ,xtN−1� � xEk�t1, . . . ,tN−1� , �A2�

where x is a scaling parameter.
We use the scaling parameter x as an additional integra-

tion variable. Analogously to the procedure used in Refs. 9
and 10, we can rewrite Eq. �A1� as

D�E� =� dt1, . . . . ,dtN−1dxP�t1, . . . ,tN−1�



x−NP�t1/x, . . . ,tN−1/x�

� dyy−NP�t1/y, . . . ,tN−1/y�


�
k

	�E − Ek�t1, . . . ,tN−1�� . �A3�

It is easy to see that Eq. �A3� is equivalent to Eq. �A1�.
Now we make the variable substitution ti�= ti /x. Taking

Eq. �A2� into account, we obtain

D�E� =� dt1�, . . . . ,dtN−1� dx



x−1P�t1�, . . . ,tN−1� �P�xt1�, . . . ,xtN−1� �

� dyy−NP��x/y�t1�, . . . ,�x/y�tN−1� �


�
k

	„E − xEk�t1�, . . . ,tN−1� �… . �A4�

Introducing the variable z=x /y in the ‘normalizing’ integral
in the denominator, Eq. �A4� now takes the form,

D�E� =� dt1�, . . . . ,dtN−1� dx



xN−2P�t1�, . . . ,tN−1� �P�xt1�, . . . ,xtN−1� �

� dzzN−2P�zt1�, . . . ,ztN−1� �


�
k

	�E − xEk�� , �A5�

where Ek��Ek�t1� , . . . , tN−1� �.
Now, integrating Eq. �A5� over x, we obtain

D�E� =� dt1�, . . . . ,dtN−1� P�t1�, . . . ,tN−1� �


�
k

EN−2

Ek�
N−1 P�E

t1�

Ek�
, . . . ,E

tN−1�

Ek�
�

� dzzN−2P�zt1�, . . . ,ztN−1� �
. �A6�

Equation �A6� is in a very convenient form for integration
with the Monte Carlo method, because the integrand has the
form of a product of the initial probability distribution for 
t�
and the sum of the smooth normalized functions of E.

For clarity, we omit the primes �as they are now redun-
dant� and rewrite Eq. �A6� as

D�E� =��
k

AkE
N−2P�E

t1

Ek
, . . . ,E

tN−1

Ek
�� , �A7�

where 	¯ � represents an ensemble average over all poly-
mers, Ak is a normalization constant for each term in the
summation over k,

Ak = �� dEEN−2P�E
t1

Ek
, . . . ,E

tN−1

Ek
��−1

, �A8�

and Ek�Ek�t1 , . . . , tN−1�.
For the case of Gaussian disorder, Eq. �A7� takes the form

D�E� =��
k

AkE
N−2 exp�−

�E − Ẽk�2

2�̃k2
�� , �A9�

where

Ẽk = Ek

t0�
i

ti

�
i

ti
2

, �A10�

and

�̃k = �
Ek

�
i

ti
2

. �A11�

Since a uniform scaling of all the Hamiltonian matrix el-
ements does not change the wave functions, the same equa-
tions can be also used to calculate the optical lineshapes for
disordered polymers.

LOCAL EXCITON GROUND STATES IN DISORDERED… PHYSICAL REVIEW B 81, 165201 �2010�

165201-5



*dmitry.makhov@gmail.com
†william.barford@chem.ox.ac.uk

1 M. J. McIntire, E. S. Manas, and F. C. Spano, J. Chem. Phys.
107, 8152 �1997�; E. S. Manas and F. C. Spano, ibid. 109, 8087
�1998�; J. Cornil, D. A. dos Santos, X. Crispin, R. Silbey, and J.
L. Brédas, J. Am. Chem. Soc. 120, 1289 �1998�; D. Beljonne, J.
Cornil, R. Silbey, P. Millié, and J. L. Brédas, J. Chem. Phys.
112, 4749 �2000�.

2 W. Barford, J. Chem. Phys. 126, 134905 �2007�.
3 W. Barford and X. Xu, J. Chem. Phys. 128, 034705 �2008�.
4 W. Barford and D. Trembath, Phys. Rev. B 80, 165418 �2009�.
5 W. Barford, D. G. Lidzey, M. V. Makhov, and A. J. M. Meijer

�unpublished�.
6 A. V. Malyshev and V. A. Malyshev, Phys. Rev. B 63, 195111

�2001�.
7 H. Bässler, Phys. Status Solidi B 175, 15 �1993�.
8 D. V. Makhov, V. V. Egorov, A. A. Bagatur’yants, and M. V.

Alfimov, Chem. Phys. Lett. 246, 371 �1995�.
9 D. V. Makhov, V. V. Egorov, A. A. Bagatur’yants, and M. V.

Alfimov, J. Chem. Phys. 110, 3196 �1999�.
10 D. V. Makhov, A. A. Bagatur’yants, and M. V. Alfimov, Opt.

Spectrosc. 94, 361 �2003�.
11 P. W. Anderson, Phys. Rev. 109, 1492 �1958�.
12 E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ra-

makrishnan, Phys. Rev. Lett. 42, 673 �1979�.
13 B. Kramer and A. MacKinnon, Rep. Prog. Phys. 56, 1469

�1993�.
14 Since the Anderson model with nearest-neighbor off-diagonal

disorder possess particle-hole symmetry, there is, however, a
high-lying energy state spatially associated with every LEGS. In
particular, for every LEGS �i�R� with energy Ei there is a cor-

responding state �̃i�R�=�i�R�
 �−1�R with energy Ẽi=−Ei
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