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We present a variational study of the Heisenberg antiferromagnet on the spatially anisotropic triangular
lattice in magnetic field. First we construct a simple yet accurate wave function for the 1/3-magnetization
plateau uud phase on the isotropic lattice. Beginning with this state, we obtain natural extensions to nearby
commensurate coplanar phases on either side of the plateau. The latter occur also for low lattice anisotropy
while the uud state extends to much larger anisotropy. Far away from the 1/3 plateau and for significant
anisotropy, incommensurate states have better energetics, and we address competition between coplanar and
noncoplanar states in the high-field regime. For very strong anisotropy, our study is dominated by quasi-one-
dimensional physics. The variational study is supplemented by exact diagonalization calculations which pro-
vide a reference for testing the energetics of our trial wave functions as well as helping to identify candidate
phases.
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I. INTRODUCTION

The spin-1/2 Heisenberg antiferromagnet on a spatially
anisotropic two-dimensional triangular lattice is a decep-
tively simple spin system which nevertheless possesses very
rich physics. Despite having attracted much attention, a com-
plete understanding of the model has not been achieved. This
can be attributed to the enhanced quantum fluctuations aris-
ing from a combination of low dimensionality, small spin,
geometrical frustration, and spatial anisotropy, thus leading
to a rich phase diagram. At zero field, studies have suggested
that the anisotropic system may possibly remain disordered
even at zero temperature. In experimental realizations of the
triangular antiferromagnet, a 1/3-magnetization plateau was
found for the approximately isotropic material Cs2CuBr4 but
not for the more anisotropic Cs2CuCl4.1–6 A recent experi-
mental study of Cs2CuBr4 further revealed a cascade of
phases in the fields above the 1/3 plateau, which are still not
understood.7

Analytical studies on the model have been done on spe-
cific regions of the phase diagram, for instance, low aniso-
tropy near the 1/3-magnetization plateau,8,9 large anisotropy
limit,10 and high-field limit.11,12 Several numerical studies
using exact diagonalization,13–16 series expansion,17,18

density-matrix renormalization group �DMRG�,19,20 and
variational approaches21–24 have also been used to analyze
the model. Motivated by the experimental and theoretical
works, we perform a Variational Monte Carlo �VMC� study
using simple, yet powerful wave functions, attempting to
cover a large portion of the phase diagram.

We consider the Heisenberg model in external magnetic
field h,

Ĥ = �
�rr��

Jrr�S
�

r · S�r� − h�
r

Sr
z, �1�

where S�r is the spin operator on site r and Jrr� are the nearest-
neighbor �nnb� exchange couplings. Throughout, we exten-
sively use hard-core boson picture, mapping Sr

+=br and Sr
z

= 1
2 −nr,
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The boson hopping amplitudes are negative and therefore
frustrated on the triangular lattice, making this a challenging
interacting problem.

Figure 2 depicts spin ordered phases considered in our
variational study. While these are simple to draw, realizing
them as wave functions is nontrivial. The spiral phase is a
boson superfluid containing rotating phase angles �see Fig.
3�a�� and is captured by an elegant Huse-Elser generalization
of the Bijl-Jastrow wave function.21 For the other phases,
constructing simple and yet accurate wave functions is not as
straightforward and requires consideration of their physical
nature in terms of bosons. Thus, the uud is a Mott-insulating
phase �see Fig. 3�c�� which requires a wave function with
strongly localized bosons and rapidly decaying correlations.
The Y phase is an interesting supersolid phase �see Fig. 3�b��
with rapidly decaying boson correlations between sites on
one of the three sublattices as well as long-range correlation
between sites on the other two sublattices. The V phase is a
different supersolid �see Fig. 3�d�� with long-range boson
correlations between all sites; here we find that two different
constructions of the trial wave functions are required to cap-
ture the lower- and higher-density regimes. �We remark that
supersolid phases of bosons on the half-filled triangular lat-
tice and in the presence of strong repulsion have been of
much recent interest, see Refs. 20, 23, and 25, and citations
therein.�

In Sec. II, we present simple, few-parameter candidate
wave functions used in our isotropic study. Encouraged by
the accuracy of these candidates, we generalize the wave
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functions to incommensurate versions for our anisotropic
study in Sec. III. We conclude with a discussion of the results
and implications for Cs2CuBr4 in Sec. IV.

II. ISOTROPIC TRIANGULAR ANTIFERROMAGNET:
6Ã6 STUDY

In this section, we consider the isotropic triangular
Heisenberg antiferromagnet with Jrr�=J for all nearest-
neighbor links. Beginning at density n=1 /3, where we have
an excellent wave function for the uud Mott-insulator phase
of Fig. 3�c�, we construct similarly inspired wave functions
for nearby supersolid phases of Figs. 3�b� and 3�d�. Next, we
describe Bijl-Jastrow-type wave functions for the spiral of
Fig. 3�a� and V supersolid of Fig. 3�d�, which perform better
for n further from 1/3. We also discuss an alternative con-
struction of the uud state using a det�det �2-parton� trial
wave function. For the exact diagonalization �ED� calcula-
tions, we compute ground-state energies for Nb�12 while
Nb�13 data is taken from Bernu et al.13

We perform all studies at fixed boson number Nb. For
each wave function below, we also include a Jastrow factor,

Jastrow��nr	� = e−1/2�r,r�urr�nrnr� �5�

with simple choices of pseudopotentials urr� providing addi-
tional variational freedom.

A. uud state at n=1 Õ3

At density n=1 /3, the uud phase is stabilized by quantum
fluctuations. We construct a simple boson wave function by

using Nb=N /3 orbitals localized around sites Aj, j
=1. . .N /3, from sublattice A,


�uud� = �
j=1

N/3

��
r

� j
loc�r�br

†
0� , �6�

� j
loc�r� = �1, r = Aj

− � , r = neighbour of Aj

0, otherwise
� , �7�

��rk	
�uud� = Perm�� j
loc�ri�� . �8�

For �=0, this reduces to the classical charge-density wave
�CDW� state with bosons strictly localized on the A sublat-
tice and minimizing the potential energy. Nonzero � allows
bosons to hop to nearest-neighbor sites and gain some kinetic
energy; ��0 is appropriate for boson hopping trr�	0. In
Eq. �8�, column j of the Permanent matrix is given by the jth
orbital �centered on Aj� evaluated on the occupied sites
�ri	.26,27 One can loosely connect this wave function with a
picture starting from the “Ising” limit, Jz
 
t
, and perturba-
tively building in boson kinetic-energy effects.17

Table I compares the trial energies for different number of
variational parameters. Excluding any Jastrow factor, the
single-parameter trial state already captures the important ex-
change energies; for example, it is closer to the exact ground
state in the zero-momentum sector than to the first excited
state in this sector �not shown�.13 Adding a short-range Ja-
strow factor further improves the trial energy while longer-
range Jastrow parameters are unimportant since correlations
in the Mott insulator decay rapidly �see Fig. 11 in Appendix
B�. We see that the simplest localized orbitals extending only
to nearest-neighbor sites �and with relatively small amplitude
��0.23� perform very well, which suggests strong uud or-
der in the 1/3-filled system.8,17 Indeed, for the optimal wave

J’

J’

JA B C
FIG. 1. Triangular antiferromagnet with coupling constants J

and J� between nearest neighbors along horizontal and oblique di-
rections, respectively. Three sublattices A, B, and C important in the
isotropic case are also labeled.

V(d)Y(b) uud(c)Spiral(a)

FIG. 2. Spin orderings on the isotropic triangular lattice in the
field, where three arrows refer to three sublattices indicated in Fig.
1: �a� spiral �noncoplanar umbrella�; �b�, �c�, and �d� coplanar Y,
uud, and V.

(a)

(c)

(b)

(d)

n=0 n=1
Boson density

FIG. 3. Boson interpretation of the spin orderings in Fig. 2.
Grayscale shows density order �nr� while arrows show superfluid
order �br

†�. �a� Spiral is a uniform superfluid phase with rotating
phase angles; �c� uud is a Mott insulator with �3��3 CDW order;
�b� and �d� Y and V are supersolid phases which contain both charge
density and particular superfluid orderings.
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function, we calculate the boson density to be 0.76 on A sites
and 0.12 on BC sites.

B. Y state at nœ1 Õ3

Starting from the uud wave function where we have good
exchange energies between sublattices A and BC, we con-
struct a candidate for the Y supersolid phase by adding
bosons to an extended orbital on BC,


�Y� = ��
r

�BC
ext�r�br

†Nb−N/3

�uud� , �9�

�BC
ext�r� = �+ 1, r � B

− 1, r � C

0, r � A
� . �10�

Just as in the uud case, the wave function can be written as a
Nb�Nb permanent. The first N /3 columns contain the same
� j

loc orbitals as in the uud state while the remaining Nb
−N /3 columns all contain the extended orbital �BC

ext residing
on the B and C sublattices. The alternating signs of the ex-
tended orbital are appropriate for bosons hopping on the BC
honeycomb with trr�	0. Nearest-neighbor contacts on BC
are suppressed by adding a Jastrow factor.

Table II compares the Y energy against spiral and ED

energies for 13 bosons on the 6�6 cluster. Our Y state is
close to the ED ground state from Bernu et al.;13 thus, the
trial energy is below the first excited state in the same sector
�not shown� while the spiral is significantly higher.

We consider such Y states for all boson densities above
1/3 and find them to give lowest trial energies among all our
states for Nb=13, . . . ,15. We discuss properties of the Y
states in Appendix B. Here we note an interesting feature that
boson correlations are long ranged for B and C sublattice
sites but are short ranged for A sites. The A sublattice re-
mains “Mott-insulating” despite the superfluid on the BC
honeycomb. The absence of the “proximity effect” on the A
sublattice is due to cancellations from alternating superfluid
order parameter on the B and C sublattices.25 In particular,
just as in the uud case, we cannot construct Bijl-Jastrow-type
wave function for the Y state.

C. Spiral state at n›1 Õ2

At half filling, the 120° magnetically ordered state �spiral�
is believed to be the ground state. We use Huse and Elser
wave function,21 which generalizes Bijl-Jastrow-type wave
function by including complex three-body terms, to accu-
rately describe the corresponding superfluid state of bosons
near half filling. In this wave function, all the bosons reside
on an extended orbital,

TABLE I. Comparison of uud trial energies for different number of short-range Jastrow parameters for 12
bosons on a 6�6 cluster. Localized orbitals in the permanent extend only to nearest-neighbor sites with
amplitude �, which is single variational parameter in the first listed uud case. The second uud case has one
nearest-neighbor �nnb� Jastrow pseudopotential which is taken to be the same between any pair of nnb sites
while the third case has two such parameters, one for A-B and A-C nnb pairs and the other for B-C nnb pairs,
as is appropriate given lattice symmetries of the uud state. We also show trial energy for the spiral state with
four variational parameters �same as in Table III�; this state performs poorly compared to the uud state.

Trial state Npar
orb Nshort

Jas Nlong
Jas Npar

tot E/bond

Classical −0.0833

Spiral 0 1 2 4 −0.1265

uud 1 0 0 1 −0.1347

1 1 0 2 −0.1354

1 2 0 3 −0.1355

Exact −0.1361

TABLE II. Comparison of Y trial energies for different number of short-range Jastrow parameters for 13
bosons on a 6�6 cluster. The Y state is constructed by adding one boson to the uud state as described in the
text; we allowed the same variational parameters as in the uud case in Table I. We also show trial energy for
the spiral state with four variational parameters, which has higher energy than the Y state.

Trial state Npar
orb Nshort

Jas Nlong
Jas Npar

tot E/bond

Classical −0.0961

Spiral 0 1 2 4 −0.1424

Y 1 0 0 1 −0.1461

1 1 0 2 −0.1477

1 2 0 3 −0.1478

Exact −0.1489
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�S� = ei�ijk�ijkninjnk��
r

eiQ� ·r�br
†Nb
0� , �11�

with Q� = �4� /3,0�. Despite frustration, the bosons gain some
kinetic energy while hopping along any lattice link. Nearest-
neighbor contacts are suppressed by adding a long-range Ja-
strow factor. The three-body phase factor, which respects the
symmetries of the classical state, serves as an additional
variational parameter. For details, the reader is referred to the
original Ref. 21.

Among our trial states, the Huse-Elser wave function has
lower energy than the Y state for Nb=16, . . . ,18, but only by
a very small amount �cf. Fig. 4�. Table III shows that the
18-boson spiral energy is only slightly lower than the Y en-
ergy. This is perhaps not surprising since the classical 120°
order may be viewed as the spiral or Y-shape order depend-
ing on the plane’s orientation. A recent variational study23

using different constructions of the spiral and Y states ob-
tained −0.1827 for their many-parameter spiral state, which
is also lower than their Y trial energy by a small amount
similar to that in our study. Other recent works20,25 observed
an abrupt change from the spiral to Y supersolid in the half-
filled model as the spin anisotropy is varied through the
SU�2�-invariant Heisenberg point. In principle, thinking in
terms of wave functions, the spiral and Y can be distinct
phases with different postulated symmetry breaking also in
the SU�2�-invariant model. However, this could also be a
plane reorientation transition, and the closeness in energy of
the Y trial states reflecting their ability to capture the 120°
spiral order.

D. V state at n›1 Õ3

Let us now consider densities slightly less than 1/3. We
start from the uud state and picture it as a filled A sublattice.
An appealing scenario is to introduce holes and let them
move around on A and condense. We automatically retain
charge order selecting the A sublattice vs B and C. The con-
densation of holes on the A gives boson superfluid order
there and by proximity effect also on B and C sublattices.
Since tAB= tAC	0, we expect the phase angle on the BC to

be shifted by � from the A. The resulting supersolid is pre-
cisely the V state.

Direct wave-function implementation of this scenario is
described in Appendix A and leads to a sum of permanents,
which becomes prohibitively costly to evaluate for more than
few holes. In the appendix, we also motivate a qualitatively
similar wave function with a simpler amplitude given by a
single permanent,

��rk	
�Vperm
� = Perm�

�1
loc�r1� . . . �N/3

loc �r1�
] � ]

�1
loc�rNb

� . . . �N/3
loc �rNb

�

1 . . . 1

] � ]

1 . . . 1

� . �12�

The first Nb rows contain the localized orbitals of the uud
construction evaluated at the boson positions while the re-
maining N /3−Nb rows are filled with 1s corresponding to
“zero wave vector” condensate of holes �see Appendix A for
details�.

Table IV shows the Vperm energy for 11 bosons on the 6
�6 cluster. Being a descendant of the excellent uud state,
even with no Jastrow factor the Vperm performs very well and
lies roughly half-way between the ground state and the first
excited state with the same quantum numbers �the latter is
not listed in the table�. In particular, the Vperm clearly wins
over the spiral superfluid with uniform density. Just as in the
uud case, adding simple short-range Jastrow parameters fur-
ther improves the trial energy of the Vperm state. At this stage,
we did not include long-range Jastrow pseudopotentials,
which would be needed for correct long-wavelength
description28 of superfluid correlations in the V phase.

The Vperm state gives our best variational energies for
Nb=6, . . . ,11. In Appendix B, we measure properties of this
state and verify the superfluid order with opposite signs on A
and BC sublattices as anticipated above.

E. V state at n™1 Õ3

The above wave function for the V phase is obtained from
the strong uud state and a priori is not expected to remain

TABLE III. Comparison of spiral energies for different number of variational parameters for 18 bosons on
a 36-site cluster. The extended orbital of the spiral state has amplitudes 1, ei2�/3, and ei4�/3 for sites on
sublattices A, B, and C, respectively. The first spiral case has one nnb Jastrow pseudopotential which is taken
to be the same between any pair of nnb sites while the second spiral case has an additional parameter � for
the Huse-Elser phase factor. The third case has two more parameters w and p for a long-range pseudopoten-
tial w


i−j
p between any pair of sites i and j. We also show trial energy for the Y state with four variational
parameters, which has slightly higher energy than the spiral state.

Trial state Npar
orb Nshort

Jas Nlong
Jas Npar

tot E/bond

Classical −0.1250

Y 1 1 2 4 −0.1774

Spiral 0 1 0 1 −0.1728

0 1 0 2 −0.1791

0 1 2 4 −0.1795

Exact −0.1868
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good at low density. Here we consider an alternative con-
struction of the V supersolid using Bijl-Jastrow-type wave
function, working directly with bosons and condensing them
into an appropriate extended orbital,


�V,Bijl-Jastrow� = ��
r

�V
ext�r�br

†Nb
0� , �13�

�V
ext�r� = �e�/2, r � A

− 1, r � B,C
� . �14�

This orbital has opposite signs on A and BC sublattices as
expected from Fig. 3�d�. The “chemical potential” � on the A
sublattice allows us to control the charge order. Similar to
other wave functions for states with superfluid order, it is
necessary to include a long-range Jastrow pseudopotential.

As we argue below, this wave function is a natural candi-
date at low boson densities. On the 6�6 cluster, it optimizes
better than the Vperm state for Nb�6 and also has better en-
ergy than the spiral state, see Fig. 4. As an example of varia-
tional results, Table V shows the VBijl-Jastrow energy for three
bosons on the 6�6 cluster. We see that the V state is slightly
better than the spiral state. However, both states are quite
close in energy and close to the exact ground state. We dis-
cuss this more below and see what we can infer about the

competition between the coplanar and spiral states from ED
spectroscopy.

First, we want to connect the competing VBijl-Jastrow and
spiral states with physics at low boson densities. In the ab-
sence of interaction, the kinetic energy minimizes at two
distinct points in the Brillouin zone, Q� =  �4� /3,0�. Bo-
son condensation at one point gives rise to the spiral phase;
schematically, the spiral wave function is given by �bQ�

† �Nb
0�
�or �b−Q�

† �Nb
0� for the opposite wave vector�. A more complex
condensation pattern including both points produces a copla-
nar state, with schematic wave function �ei�bQ�

† +H.c.�Nb
0�.
When �=0, this gives boson orbital ��r�=cos�Q� ·r�� taking
values �+1,−1 /2,−1 /2	 on the three sublattices, which is
essentially the �V

ext orbital in Eq. �14�. On the other hand,
�=� /2 corresponds to a different state with zero boson den-
sity on one sublattice and alternating superfluid phases on the
other two sublattices; in terms of spins, this is a coplanar
“�”-type state which has similar symmetry to the Y state in
Fig. 2�b� but with the vertical spin flipped up. For either V or
�, there are two more degenerate states given by lattice
translations or equivalently by adding 2� /3 to the phase �.
Reference 11 studies the dilute boson problem analytically
for the isotropic lattice and predicts that four-boson interac-
tions select coplanar states; this study does not resolve be-
tween V and � states, which requires considering six-boson
terms.

TABLE IV. Comparison of Vperm energies for different number of variational parameters for 11 bosons on
a 36-site cluster. The Vperm state is constructed by removing one boson from the uud state as described in the
text, and the parameters here are of the same type as in the uud case in Table I. We also show trial energy for
the spiral state with four variational parameters, which has higher energy than the Vperm state.

Trial state Npar
orb Nshort

Jas Nlong
Jas Npar

tot E/bond

Classical −0.0683

Spiral 0 1 2 4 −0.1081

Vperm 1 0 0 1 −0.1141

1 1 0 2 −0.1153

1 2 0 3 −0.1154

Exact −0.1161

TABLE V. Comparison of VBijl-Jastrow trial energies for different number of variational parameters for
three bosons on a 36-site cluster. The extended orbital of the VBijl-Jastrow state has amplitude e�/2 on sublattice
A and −1 on sublattices B and C; � is the only variational parameter in the first listed VBijl-Jastrow case. The
second VBijl-Jastrow case has one nnb Jastrow pseudopotential which is taken to be the same between any pair
of nnb sites while the third case has two additional parameters for a long-range pseudopotential which is the
same as in the spiral case in Table III. We also show trial energy for the spiral state with four variational
parameters, which has slightly higher energy than the VBijl-Jastrow state.

Trial state Npar
orb Nshort

Jas Nlong
Jas Npar

tot E/bond

Classical 0.13542

Spiral 0 1 2 4 0.12885

VBJ 1 0 0 1 0.13216

1 1 0 2 0.12913

1 1 2 4 0.12869

Exact 0.12845
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Returning to our example with three bosons on the 6�6
lattice, the ED ground state has momentum quantum number
k� =Q� �there is also a degenerate state with opposite momen-
tum� while we also find two very close states with k� =0, one
with even and the other with odd parity under inversion. This
can be traced to four degenerate eigenstates of the kinetic
energy,

��bQ�
† �3, �b−Q�

† �3, �bQ�
† �2b−Q�

† , bQ�
† �b−Q�

† �2	 . �15�

Our spiral wave-function construction gives essentially the
first two states with momentum quantum number k� =0. Our
three degenerate V states, upon making combinations that are
momentum eigenstates, give an even-parity k� =0 combina-
tion as well as the last two states with k� = Q� from Eq. �15�.
Finally, the three degenerate �-type states give an odd-parity
k� =0 combination and the same two k� = Q� states. It is clear
that these trial states are not independent for this small num-
ber of bosons; we cannot resolve the phases but we can start
looking for some tendencies. For example, we can view the
fact that the k� = Q� are lower in energy than k� =0 as an
indication for the coplanar states being better than the spiral.
In principle, we could also try to resolve between the V and
� by comparing the even-parity/odd-parity k� =0 states but
the splitting is too tiny.

We have similarly examined ED spectra with Nb
=4, . . . ,9 bosons, paying attention to near degeneracy of
ground states and their quantum numbers. The resolution be-
tween the spiral and coplanar states due to interactions be-
comes clearer with increasing density, and in each instance,
the ED data is consistent with the coplanar states being bet-
ter, which is also supported by the VMC data. As far as the
resolution between V and � states is concerned, we cannot

tell anything with boson number below 6 while for higher
boson density, we start seeing evidence in favor of the V
state. The V state is expected coming from the n=1 /3 pla-
teau as we discussed earlier. One possibility is that V occurs
for all n	1 /3 but we cannot rule out transition to the �
coplanar state at low densities. Our VMC study of the spa-
tially anisotropic model on larger clusters in Sec. III E also
suggests that the coplanar phase �incommensurate in this
case, so there is no distinction between V and �� wins over
the spiral also for a range of anisotropies, strengthening the
conclusions here on the coplanar versus spiral energetics.

F. Summary of trial energies on the isotropic lattice

Figure 4 summarizes the spin energies �per bond� of com-
peting trial states calculated for the 6�6 cluster with peri-
odic boundary conditions for all Nb. For a better comparison
of the accuracies of these trial wave functions, we subtract
the ED ground-state energy at each boson density. The ener-
gies of the classical state are included to emphasize the sta-
bilization of specific phases by quantum fluctuations. Our
wave functions are particularly accurate in the vicinity of the
plateau, and also at low boson densities �higher fields�. In the
latter regime, the classical energies approach ED values at
low densities, indicating vanishing quantum
fluctuations.8,11,12

G. Magnetization process on the isotropic lattice

Using the trial energies from our studies at fixed Nb, we
can work out the magnetization curve as a function of field h.
Figure 5 shows this for the 36-site cluster. The boundaries of
the 1/3-magnetization plateau are determined by the energy
gaps to adding or removing one boson to the uud state. Since
our permanent constructions give very good trial Y and V
states in this regime, the estimate of the plateau range is
quite accurate. To check finite-size effects, we repeated the
calculation on a 63-site cluster and obtained critical fields
Hc1�1.4J and Hc2�2.2J.

0

2

4

6

0 2 4 6 8 10 12 14 16 18

(
E
-
E
E
D
)
/
1
0
-
2
J

Boson Number Nb

1 2/3 1/3 0

Magnetization M/Mmax

Classical
Spiral
V
Vperm
uud
Y

FIG. 4. Comparison of variational energies �per bond� for the
36-site cluster with isotropic exchanges. The trial energies for the
planar states are obtained using Bijl-Jastrow-type wave function for
V �Nb�6� and permanent-type wave functions for V �7�Nb�11�,
uud �Nb=12�, and Y �Nb�12�. The spiral trial energies are obtained
using the Huse-Elser wave function. For clarity, ED ground-state
energies are subtracted at respective boson numbers. The classical
energy curve provides a reference for judging stabilization of spe-
cific phases by quantum fluctuations.
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FIG. 5. Magnetization curve of the 36-site cluster obtained us-
ing the variational energies. The pronounced uud plateau agrees
well with the ED results in Ref. 14. This shows that the variational
tool is able to capture this Mott insulator as well as nearby super-
solid phases.
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H. 2-parton trial wave functions and alternative construction
of uud state at n=1 Õ3

The above direct study using spiral, Y, uud, and V states
is sufficient to describe the phase diagram of the spatially
isotropic triangular antiferromagnet in the field. We now con-
sider a versatile set of trial wave functions which we will call
“2-parton” states. One motivation is to give a practical real-
ization of the Chern-Simons flux attachment treatment in
Ref. 29. �The relation between the parton and Chern-Simons
approaches is discussed in Ref. 30, and citations therein.�
Another motivation is to prepare for an anisotropic lattice
study in Sec. III. We should say from the outset that while
such parton construction is typically used to produce frac-
tionalized �spin liquid� states, it can also be used to give
more conventional states such as CDW of bosons with no
topological order as discussed below.

We represent the boson operator in terms of two fermions,
b=d�1�d�2�, subject to constraint b†b=d�1�†d�1�=d�2�†d�2� on
each site. Imagine some “mean-field Hamiltonian” for each
parton flavor,

Ĥmf
�n� = − �

�rr��

�
trr�
�n�
eia

rr�
�n�

dr
�n�†dr�

�n� + H.c.� − �
r

�r
�n�dr

�n�†dr
�n�.

�16�

Here we write the parton hopping amplitudes �which can be

complex� as trr�
�n� = 
trr�

�n�
eiarr�
�n�

; we also allow site-dependent
chemical potentials �r

�n� to test CDW tendencies. The trr�
�n� and

�r
�n� are variational parameters. We solve Ĥmf

�n� and fill up the
corresponding Fermi seas with Nd1

=Nd2
=Nb particles. A

valid bosonic wave function is obtained by applying a
Gutzwiller projection such that every site is either empty
�nb=nd1

=nd2
=0� or contains both d1 and d2 partons �nb

=nd1
=nd2

=1�,


�2p� = P̂G �
qn�FSn

dq1

�1�†dq2

�2�†
0� . �17�

For each boson configuration, the amplitude is given by a
product of two Slater determinants. One feature of this con-
struction follows from the fermionic statistics which pro-
vides an inherent repulsive Jastrow effect for the particles.
This effect can be tuned as follows:

��rk	
�2p� = det1 · det2 · 
det1
p1−1 · 
det2
p2−1, �18�

which preserves the “sign structure” of the wave function
while allowing more variational freedom with parameters p1
and p2. Numerical calculations can be performed using effi-
cient determinantal Monte Carlo techniques.31

Besides treating boson repulsion, we want to have good
kinetic energy. We can write the frustrated boson hopping

amplitudes in Eq. �4� as trr�
�b� = 
trr�

�b�
eiarr�
�b�

and view this as a
problem in an external orbital field producing flux � through
each triangle.32 To capture this in the parton treatment, we
view d�1� and d�2� as charged particles whose charges add up
to that of the boson b; we therefore require

eia
rr�
�1�

eia
rr�
�2�

= eia
rr�
�b�

. �19�

Thus the parton mean-field Hamiltonian should contain
fluxes such that for the two flavors they add up to the origi-
nal flux seen by the bosons. We can still make different
choices, say, for the d1; however, once the arr�

�1� are fixed, then
the arr�

�2� are uniquely determined.
We first discuss what we will call “Chern-Simons” states

that realize the idea in Ref. 29. For the d1 hopping, we take
uniform flux of n� per triangle, where n is the boson density
per site. With this choice, the det1 Slater determinant fills the
“lowest Landau level” band and gives a finite lattice version
of the usual Chern-Simons factor �i	j�zi−zj�. We can loosely
view the det1 as performing flux attachment transformation
from the bosons to the d2 fermions.30 Upon subsequent “flux
smearing” mean field, the d2 see flux �1−n�� per triangle. In
the absence of site-dependent chemical potentials and for
some rational densities, the det2 Slater determinant is
gapped, and the boson wave function realizes a fractional-
ized “chiral spin liquid.”29,32,33 We have tried these “topo-
logical” states for several densities such as n
=1 /3,1 /4,1 /6 on the isotropic triangular lattice and found
that they are poor compared with the uud and V states de-
scribed earlier. Thus the interesting proposal of plateaus due
to chiral spin liquid states is not realized on this lattice.29

We now specialize to density n=1 /3 and allow a chemi-
cal potential on the A sublattice: �A�0, �B=�C=0. We
find that optimal �A

�1� ,�A
�2� are large and produce strong CDW

order in the mean-field state. When this happens, the trial
boson state Eq. �18� is no longer topological in nature. In-
deed, if the parton hopping is set to zero, this construction
simply gives the classical �3��3 CDW state. The particles
completely occupy sublattice A, and there is a large gap at
the parton Fermi level. Adding small hopping does not close
this gap but only builds in some charge fluctuations into the
parton mean field and thus into the boson trial state. Working
perturbatively in t�n� /�A

�n�, the leading modification to the
classical boson CDW wave function is to add configurations
where one particle moves from a site Aj to a neighbor r. The
amplitude for such a configuration is proportional to
tAj,r
�1� tAj,r

�2� / ��A
�1��A

�2��� tAj,r
�b� /�A

�b�, where we have kept track of
all signs and introduced schematically boson charge gap �A

�b�.
The result is similar to the perturbative picture of the CDW
working directly in the boson language that motivated the
wave function Eq. �6�. Thus at this level the 2-parton states
with strong CDW potential are qualitatively the same as the
permanent uud state in Sec. II A.

The above leading-order structure holds for all 2-parton
states satisfying Eq. �19�. At higher order, the states will
differ, and amplitudes can be complex, in general: e.g., the
Chern-Simons wave function described above is complex
valued. On the other hand, the permanent uud wave function
is real. The boson Hamiltonian Eq. �2� is invariant under
complex conjugation in the number basis, and the uud state
preserves this symmetry. We can construct a real-valued
2-parton state by taking the d1 fluxes to be 0 or � through up
or down triangles; the d2 partons see correspondingly � and
0 fluxes. We will call this state “U1B.” It was originally
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discussed at half filling in Ref. 34, where �in the absence of
chemical potentials� it has Dirac nodes at the Fermi level and
realizes so-called algebraic spin-liquid state. This particular
state has a good trial energy in the Heisenberg model,23,24,30

and can be viewed as a more elaborate real-valued version of
the Laughlin-Kalmeyer state �see Sec. IIC of Ref. 30 for
more discussion�. Away from half filling, the U1B mean-field
state has Fermi surfaces of partons and may be unstable to a
mechanism described in Ref. 35. However, this is not a direct
concern here since we are gapping out the state by adding
large �A potential and are connecting to the strong CDW of
bosons. The virtue of using the 2-parton framework is that it
naturally builds in small charge fluctuations as described
above, and determinants are easier to compute as opposed to
permanents. Using this construction for the isotropic 6�6
lattice at n=1 /3, we obtain a very competitive energy
−0.1341 �cf. trial energies in Table I� with �A�2 and p
�0.75. �We also obtain close trial energy using the Chern-
Simons state with strong CDW potential, in agreement with
the earlier discussion that all 2-parton states can similarly
capture leading local charge fluctuations when the charge
order is strong�. The 2-parton constructions are particularly
useful on the anisotropic lattice to be discussed in Sec. III
since they naturally connect to the decoupled chains limit
and allow us to detect where the quasi-one-dimensional �1D�
physics sets in and explore CDW instabilities.

III. ANISOTROPIC TRIANGULAR ANTIFERROMAGNET

Motivated by the unknown phases of Cs2CuBr4 in the
field,7 we extend our study to the spatially anisotropic lattice.
As the phase diagram is much more complex, it is appropri-
ate to begin this section with a short review of the different
regimes and phases discussed in theoretical literature. Next,

we describe anisotropic extensions of the wave functions in-
troduced in Sec. II and then present our variational results.

A. Review of phases from theoretical studies

In this review, it is convenient to refer to a schematic
phase diagram shown in Fig. 10, where we parametrize the
anisotropy using �=1−J� /J.

In zero magnetic field �bottom axis in Fig. 10�, variational
studies suggest that the spiral phase remains stable for small
lattice anisotropy while the more anisotropic region may
contain one or two spin-liquid phases.21,22,24 This is sup-
ported by an ED/DMRG study which found signatures of
spin liquid for J� /J	0.78 from numerical measurements of
spin structure factor, excitation energy gap, and spin
correlation.19 However, for large anisotropy, an analytical
study near the decoupled chains limit predicts a collinear
antiferromagnetic order.10 This suggests that the zero-field
limit is a challenging region which remains unsettled.

In the high-field limit near full polarization �top phase
boundary in Fig. 10�, analytical studies of the dilute boson
gas show that the V phase �commensurate and incommensu-
rate� is the likely candidate near the spatially isotropic
regime11 while the spiral phase dominates for strong
anisotropy.12

At intermediate fields, an interacting spin-wave expansion
about the uud plateau in large S and low anisotropy limit
�left axis in Fig. 10� shows that the plateau extends consid-
erably into the anisotropic region, with commensurate copla-
nar Y and V phases present next to the plateau.9 In addition,
incommensurate coplanar and distorted spiral phases are also
predicted for larger anisotropy.

In the nearly decoupled chains limit �right axis in Fig. 10�,
Ref. 10 argues that the interchain coupling is a relevant per-
turbation and can induce various boson CDW phases or a
spiral phase. The former happens for small and intermediate
fields while the latter is expected near the saturation field.

B. Anisotropic versions of wave functions

Although our study began with a goal of constructing ac-
curate wave functions for identifying the unknown phases of
Cs2CuBr4, it quickly became clear that this is far from easy.
The number of theoretically possible phases reviewed above
is already very rich, with different physics regimes requiring
different mindsets. Nevertheless, the variational approach is
a useful tool for obtaining quantitative insights into the en-
ergetics of various phases since it applies directly to the spin-
1/2 problem at hand and goes beyond approximate treat-
ments such as large S and mean field. Encouraged by our
success for the isotropic problem in the field, we apply this
tool to the anisotropic case while being critical of the limi-
tations of the variational approach.

We consider the anisotropic triangular lattice antiferro-
magnet with J� /J�1, where J and J� are the coupling con-
stants of horizontal and oblique nearest-neighbor links �see
Fig. 1�. The spatially anisotropic wave functions used in this
section contain appropriate modifications to the wave func-
tions in Sec. II.

Permanent constructions. For the wave functions from
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δ = (J-J’)/J
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2p (µ>0)
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FIG. 6. Comparison of spiral, permanent-type uud, and 2-parton
trial energies �per bond� for 12 bosons on the anisotropic 36-site
cluster. The wave functions are anisotropic generalizations of those
constructed in Sec. II. For ��0.4, the optimal 2-parton wave func-
tion has a nonzero chemical potential on sublattice A and provides
an alternative realization of the uud state. For ��0.4, the chemical
potential optimizes to zero, probably due to large finite-size gap for
such anisotropy. On a larger 24�24 cluster, the chemical potential
remains nonzero up to ��0.7, leading us to conjecture that in the
thermodynamic limit, the uud phase persists all the way to J� /J
→0.
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Secs. II A, II B, and II D, the localized orbitals used in uud,
Y, and Vperm now include an additional parameter ��,

� j
loc�r� = �

1, r = Aj

− � , r = horizontal n.n. of Aj ,

− ��, r = oblique n.n. of Aj ,

0, otherwise.
� �20�

Spiral. Our treatment of the spiral requires separate dis-
cussion. The 120° spiral generalizes to an incommensurate
spiral with wave vector Q� .9,12 However, in a finite sample,
periodic boundary conditions would bias against the incom-
mensurate order. We can mitigate this effect by considering
appropriate phase twists at the boundaries that accommodate

such Q� . For computations, it is convenient to perform a
gauge transformation that spreads the twist uniformly across
the sample; the resulting Hamiltonian is then translationally
invariant,

Ĥtwisted = − �
�rr��

�trr�e
iQ� ·e�rr�br

†br� + H.c.� + Hint, �21�

where e�rr� is the displacement vector from r to r�. The
twisted Hamiltonian is used only for calculating the incom-
mensurate spiral energies while all other trial energies are
evaluated using the original Hamiltonian with no twist.

Jastrow factors. To accommodate spatial anisotropy, we
introduce additional parameters into the nearest-neighbor
and long-range pseudopotentials as follows:

u�r,r�� = �
w , if r and r� are horizontal n.n.

w�, if r and r� are oblique n.n.

A

��2�x − x��2 + �y − y��2�p/2 , otherwise. � �22�

2-parton. To obtain spatially anisotropic versions of the
2-parton wave functions from Sec. II H, we allow the mean-
field hopping amplitudes in Eq. �16� to be anisotropic,

trr�
�n� = �t�n�, if r and r� are horizontal n.n.

t��n�, if r and r� are oblique n.n.
� �23�

We consider the same fluxes and possible site-dependent po-
tentials as in Sec. II H. For example, at density n=1 /3, we
allow �3��3 pattern in the chemical potential. At other den-
sities, we can consider other appropriate CDW patterns.

One virtue of the 2-parton states is that they connect natu-
rally to the decoupled chains limit. Indeed, for t��n�=0,
sign�t�1�t�2��=sign�t�b��	0, the trial wave function Eq. �18�
on each chain reduces to

�chain�x1, . . . ,xM� � ei��x1+¯+xM� � ��
i	j

sin
��xi − xj�

L �p

�24�

with p= p1+ p2. The first factor gives correct Marshall sign
for the 1D boson problem with hopping t�b�	0. �To be more
precise, we assume that the chain length L is even and
choose periodic or antiperiodic boundary conditions for the
partons depending whether the number of bosons M is odd
or even.� This is an accurate trial state in the full range of
boson densities. For n=1 /2, with p=2 it reduces to the
ground state of the Haldane-Shastry chain and is a good ap-
proximation to the ground state of the Heisenberg chain; for
n→0, with p=1 it reproduces the nearly free fermion picture
of the dilute gas of hard-core bosons; for varying n, by ad-
justing p this state can capture varying Luttinger-liquid ex-

ponents. The 2-parton construction can thus provide a start-
ing point for exploring what happens when the chains are
coupled together. As discussed in Sec. II H, the parton hop-
ping between the chains with vector potentials satisfying Eq.
�19� can roughly capture the interchain boson hopping en-
ergy while site-dependent chemical potentials can produce
candidate CDW states. We will present this in some detail for
n=1 /3 and n=1 /6.

ED calculations. To conclude the discussion of our aniso-
tropic setups, we describe the supplementary ED calculations
on the 36-site cluster with J and J� couplings. We compute a
few lowest eigenvalues in each symmetry sector of the
Hamiltonian with no twist and also eigenvalues in the zero-
momentum sector of the twisted Hamiltonian �21� with vary-
ing Q� . At a given anisotropy and boson density, the mini-
mum of these ED energies is taken to be the ground-state
energy. Our ED calculations are restricted to Nb�12. The
variational calculations are performed for the same 36-site
cluster and also for larger systems.

We now turn to the results of our anisotropic study. For
illustration, we present two-boson densities.

C. n=1 Õ3

Figure 6 shows the trial energies of uud, incommensurate
spiral, and 2-parton wave functions at density 1/3 on the
36-site cluster. From the isotropic study, it is not surprising
that the permanent-type uud wave function remains a good
candidate at low anisotropy. As mentioned in Sec. II H, the
2-parton U1B wave function constructed with 0 /� fluxes
through triangles and a localizing chemical potential on one
sublattice provides an alternative realization of the uud state.
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For ��0.3, the 2-parton energy becomes lower than the
permanent-type wave function but the �3��3 chemical po-
tential �and therefore the uud phase� persists up to ��0.4.
Since our permanent wave function uses localized orbitals
that only extend to nearest-neighbor sites, it fails to capture
longer-range correlations in the chain direction expected in a
more anisotropic system. We would need to use more ex-
tended orbitals in the permanent but we have not pursued
this. On the other hand, the 2-parton realization readily ac-
commodates the lattice anisotropy via the parton hoppings,
Eq. �23�, and provides a simple way to continue our study of
the uud state to larger anisotropy.

In the highly anisotropic region, we obtain good trial en-
ergies for the 6�6 system using the 2-parton wave function
without the chemical potential. However, if we consider the
low-energy cutoff due to the finite cluster size, it is clear that
the study cannot resolve the true phase in the thermodynamic
limit. Specifically, in the decoupled chains limit, we obtain a
very accurate wave function for two bosons on a six-site
chain by using antiperiodic boundary conditions for the par-
tons, cf. Eq. �24�. The corresponding parton spectrum nicely
accommodates two particles and has a large finite-size gap to
next levels, which persists up to moderate interchain cou-
plings. While our 2-parton state by virtue of good fluxes
naturally builds in good interchain exchange correlations, we
cannot resolve the thermodynamic phase �e.g., the develop-
ment of the �3��3 CDW� if the relevant energy scale is
much lower than the finite-size gap.

To determine how far the uud phase might extend into the
anisotropic region, we repeat the 2-parton calculation on a
large 24�24 cluster and find that the �3��3 chemical po-
tential surprisingly remains nonzero up to ��0.7. We also
check that the parton spectrum for the optimal parameters is
fully gapped and is connected to the strongly gapped CDW
limit so the trial wave function is indeed a valid charge-
ordered Mott insulator of bosons as discussed in Sec. II H.
We thus conclude that the uud state persists to rather strong
anisotropy, albeit the CDW order becomes progressively
weaker. Interestingly, Ref. 10 would predict the same �3
��3 CDW order in the nearly decoupled chains limit at
density n=1 /3. Combining with our variational work, this
suggests that the uud phase may in fact extend continuously
from �=0 up to �=1 �see Fig. 10�. A rigorous confrontation
to this conjecture could be provided, for example, by a sys-
tematic DMRG study of 3�L ladders at density n=1 /3
varying J� /J from 1 to 0 and monitoring the evolution of the
�3��3 charge order.

While our study agrees with the observed plateau in
Cs2CuBr4 ���0.3�, it contradicts the absence of the plateau
in Cs2CuCl4 ���0.66�. It is likely that residual interactions
�e.g., such as Dzyaloshinskii-Moriya� have to be added to the
Heisenberg model in order to describe the latter material,10

and they can change the energetics balance against the �very
weak� uud state in this highly anisotropic system.

D. n=1 Õ6

Figure 7 shows the trial energies of commensurate
VBijl-Jastrow, incommensurate spiral �treated as described

around Eq. �21��, and 2-parton wave functions for six bosons
on the 6�6 cluster. At low anisotropy, the VBijl-Jastrow state is
a good candidate. For increasing anisotropy, a change to the
incommensurate spiral is observed, which eventually loses to
the “quasi-1D” phase represented by the 2-parton wave func-
tion with zero chemical potential.

In the highly anisotropic region, the figure shows remark-
able agreement between the ED and the 2-parton energies,
where we impose uniform � /6 and 5� /6 flux per triangle
for d1 and d2 partons, respectively �Chern-Simons state de-
scribed in Sec. II H�. Despite the excellent agreement, we
simply conclude that the highly anisotropic region is strongly
dominated by quasi-1D physics and finite-size effects. Spe-
cifically, in the ED calculation on the 36-site cluster with six
bosons, we find a nondegenerate ground state and a rela-
tively large excitation energy gap. We interpret this as fol-
lows. In the decoupled chains limit, each chain contains one
boson; for such a segment of length L=6, one expects a
nondegenerate ground state with a large excitation gap due to
finite size. This gap persists as the chains are coupled, par-
ticularly because of some frustration present in the triangular
lattice geometry.

We can similarly rationalize all our ED observations at
other densities in the highly anisotropic limit. For example,
for seven bosons on the 36-site cluster, one of the chains now
contains two bosons, and the ground state of the decoupled
chains Hamiltonian is sixfold degenerate due to six possible
ways of choosing this chain. The finite-size gaps “protect”
this situation until the interchain coupling J� becomes suffi-
ciently large. Such observations on the ED spectra show se-
rious limitations of the small system study in the anisotropic
model. Going over all ED data for Nb�12, we conclude that
��0.5 regime can be rationalized as such weakly coupled
finite chains, with no clear resolution of the ultimate state.
This is labeled as quasi-1D region in Fig. 9.

One of the goals of the 6�6 study was to have ED ref-
erence for our trial states. Having achieved some confidence

0

1

2

3

0 0.2 0.4 0.6 0.8 1

(
E
-
E
E
D
)
/
1
0
-
2
J

δ = (J-J’)/J

Spiral
V
2p (µ>0)
2p (µ=0)

FIG. 7. Comparison of spiral, commensurate VBijl-Jastrow, and
2-parton trial energies as a function of anisotropy for six bosons on
the 6�6 cluster. The E2p values are obtained with higher chemical
potential on one sublattice for ��0.3 �in agreement with this state
trying to capture three-sublattice features near small anisotropy in
this small sample�. We also performed a much larger study at n
=1 /6 comparing commensurate and incommensurate V states, in-
commensurate spiral, and 2-parton states; from this study, the re-
gion of commensurate V is actually quite small while the incom-
mensurate V dominates over the spiral over a range ��0.3 �see text
for more details�.
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in the good energetics of these states �despite their limita-
tions�, we now want to discuss variational results for larger
sizes. Specifically, on the 36-site cluster, we have not con-
sidered the possibility of incommensurate V state while we
know how to accommodate the incommensurate spiral state,
we do not have similar construction for the incommensurate
coplanar state. On the 36-site cluster, we see that incommen-
suration becomes important for ��0.2. In fact, as we discuss
below, we think that for this density the V state is probably
incommensurate already for smaller anisotropy but also ex-
tends to larger anisotropy in the competition against the
spiral.

E. Incommensurate V versus spiral study at low to
intermediate boson densities

In this section, we focus on the high-field regime where
the incommensurate V and spiral are the main competing
candidates. First, we briefly describe the relevant physical
picture. Beginning with the near-saturation limit, we con-
sider a gas of free bosons hopping on the triangular lattice
with the following kinetic-energy spectrum:

�k = J cos�kx� + 2J� cos� kx

2
cos��3ky

2
 . �25�

The band minima occur at Q� =  �Qx ,0� with

Qx = 2a cos�− J�/2J� . �26�

A condensation of bosons at these points gives rise to a de-
generate manifold of states spanned by

��bQ�
† �m�b−Q�

† �Nb−m
0�;m = 0,1, . . . ,Nb	 . �27�

At low densities, the degeneracy is lifted by nearest-neighbor
repulsion. To see how this happens, we expand the interac-
tion in terms of the two dominant spectral modes and then
replace the operators by c numbers,11,12

br � eiQ� ·r�bQ� + e−iQ� ·r�b−Q� , �28�

Ĥint = �
�rr��

Jrr�br
†brbr�

† br� � �J + 2J���
bQ� 
2 + 
b−Q� 
2�2

�29�

+ 2�
bQ� 
2
b−Q� 
2, �30�

� = J cos�2Qx� + 2J� cos�Qx� . �31�

The effect of nearest-neighbor repulsion is determined by the
sign of �. For J� /J	0.39, � is positive and the incommen-
surate spiral �e.g., 
bQ� 
�0 and 
b−Q� 
=0� wins. For 0.39
	J� /J�1.59, � is negative and the incommensurate V or-
dering �
bQ� 
= 
b−Q� 
� becomes more stable. The prediction
from this approximate treatment is consistent with the spiral
phase found in the nearly decoupled chains limit near satu-
ration and in the highly anisotropic dilute boson study for the
Cs2CuCl4;10,12 this is also consistent with the coplanar phase
found in the isotropic dilute boson study.11

In the above discussion, we have neglected the effect of
hard-core interaction. Intuitively, this should be more impor-
tant at higher density. The role of the hard-core constraint is
to prevent two bosons already in nearest-neighbor contact
from further occupying the same site, while at low density
such contacts are avoided due to nearest-neighbor repulsion.
To see whether the hard-core interaction favors the V or spi-
ral phase, we expand the on-site repulsion energy in terms of
the two spectral modes,

�br
†br�2 � �
bQ� 
2 + 
b−Q� 
2�2 + 2
bQ� 
2
b−Q� 
2. �32�

From the positive sign in the second term, which dislikes the
V, we may expect the boundary between the V and spiral
phases to shift in favor of the spiral phase as the density
increases.

To address the competition between these two phases
quantitatively at finite density, we implement a variational
study on m�n rectangular clusters such that a fitting wave
vector Qx=2�p /m is close to the spiral wave vector at each
anisotropy �with appropriate integers p�. For the spiral phase,

n=1/18

n=1/9

n=1/6

n=1/4

V
V

V V S S

S

S

S

S

S
S

S

S
S

S

S
S
S

S

0.0 1.0

δ = /(J - J’) J

inV
inV
inV

inV
inV
inV

inV
inV
inV

inV
inV

inV
inV

inV inVV

n=1/5 V V S S S S SinV

0.2 0.4 0.6 0.8

FIG. 8. Variational phase boundary between V and spiral �S�
phases obtained from calculations on cluster sizes 18�18, 51
�20, 27�20, 44�20, 47�20, 38�10, 39�10, 53�10, 60�10,
and 99�10, where the corresponding anisotropy increases from 0
to 0.9 in equal intervals; the sizes are chosen so as to best accom-
modate the classical wave vector, Eq. �26�. The V phase remains
commensurate at �=0.1 for n�1 /5. Note that at high anisotropy
and particularly with increasing density, we find that the spiral loses
to the 2-parton wave function, which we interpret as quasi-1D
dominated regime.
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strongly dominated by quasi-1D physics, particularly for this small
cluster study �see discussions in text�.
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we use the same anisotropic wave function described earlier.
A candidate wave function for the incommensurate V phase
is constructed as follows:


�Vin
� = �ei�bQ�

† + e−i�b−Q�
† �Nb
0� = ��

r

cos�Q� · r� + ��br
†Nb
0� .

�33�

Note that for incommensurate Q� , the relative phase between
bQ�

† and b−Q�
† is not fixed, which we indicated with �. This is

not important in an infinite system since Q� ·r� visits all
phases. On the other hand, for commensurate Q� = �4� /3,0�,
�=0 and � /2 correspond to distinct V and �-type phases
discussed in the isotropic case; both can be viewed as “par-
ent” states for the incommensurate coplanar phase but we
will continue referring to the latter as V type.

For ease of implementation, we use the same translation-
ally invariant pseudopotentials given in Eq. �22�. The V state
has an incommensurate density wave and, in principle, al-
lows more complicated pseudopotentials so this choice prob-
ably biases slightly in favor of the spiral which has uniform
boson density. In all other respects, the physical setting and
the variational freedom are very similar in our realizations of
the spiral and V states, and we think this study provides a fair
comparison between the two phases even if the Qx may be
slightly off and the Jastrow pseudopotentials are not the most
general.

Figure 8 shows the result of our incommensurate V versus
spiral variational study. The boundary between the two
phases qualitatively agrees with our earlier argument, sug-
gesting that the hard-core repulsion is comparatively less im-
portant at low density. We note that the obtained trial ener-
gies of V and spiral states are quite close �particularly at low
density�, hence the exact location of the phase boundary
should not be taken as definitive. Furthermore, the simple
pseudopotential is clearly not optimal in the highly aniso-
tropic regime, and eventually our spiral loses to the 2-parton
states. A more rigorous V versus spiral variational study can
be pursued by introducing more variational parameters into
the Jastrow factor and employing systematic wave-function
optimization methods.24 The variational result that the copla-
nar phase extends to large anisotropy for fields near satura-
tion is also in agreement with a recent dilute boson calcula-
tion extended to all J� /J.36

From the present results, we make an interesting observa-
tion that at the anisotropy relevant for Cs2CuBr4, ��0.3, the
transition occurs at density somewhere between n=1 /5
�magnetization 0.6 of saturation� and n=1 /6 �magnetization
2/3 of saturation�. The V phase occupies the region near satu-
ration, while the spiral occurs at lower magnetizations. Thus,
if the Heisenberg model is an adequate description, some of
the features in the high-field phase diagram of Cs2CuBr4 may
be due to the competing umbrella-type and coplanar states.7

F. Summary of anisotropic study

Figure 9 summarizes a variational phase diagram obtained
for the 36-site cluster considering all boson densities. We
label certain parts of the diagram with question marks or

broken lines to indicate these regions as unresolved or less
reliable. The figure shows the uud phase extending relatively
far into the anisotropic region. On both sides of the uud
phase, the commensurate coplanar phases remain stable over
the incommensurate spiral for certain ranges of the aniso-
tropy. As the spatial anisotropy biases against the commen-
surate states, the actual V and Y regions are expected to be
wider if the wave functions are generalized to incommensu-
rate versions. However, we exclude such extensions since
they could not be accommodated on the 6�6 cluster. For
��0.5, our 2-parton trial energies are generally very good.
However, we think that this only indicates the onset of
quasi-1D physics and strong finite-size effects as discussed
earlier for the specific densities.

Figure 10 shows a schematic phase diagram based on the
6�6 anisotropic study as well as studies on larger clusters.
Here, we address a number of unresolved regions in Fig. 9:
limits of the uud plateau, the boundary between V and spiral,
and the boundary between commensurate and incommensu-
rate V. We find that the uud phase extends much futher and
may be even to all �. Also, a significant portion of the phase
diagram at high fields is occupied by the incommensurate V
phase.

We note that our work does not rule out other incommen-
surate phases found in the recent study by Alicea et al.9 For
example, we were not able to come up with a good imple-
mentation of the incommensurate extension of the Y state.
On the other hand, we did try Bijl-Jastrow-type wave func-
tions for distorted umbrella states discussed in Ref. 9, which
are commensurate supersolids with incommensurate spiral
phase angles. On the 36-site cluster, these trial states opti-
mized to the incommensurate spiral with uniform boson den-
sity but we have not explored this thoroughly on larger clus-
ters. Overall, our results are more conclusive at low densities
and much less at high densities between 1/3 and 1/2.

IV. SUMMARY AND DISCUSSION

We studied the Heisenberg antiferromagnet on the spa-
tially anisotropic triangular lattice in the field from a varia-
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FIG. 10. Schematic phase diagram for the anisotropic triangular
lattice in magnetic field, combining 6�6 study as well as larger
cluster studies. We suggest the possibility that the uud plateau ex-
tends across the entire range of anisotropy. The V phase is commen-
surate �see Fig. 2� near the isotropic axis and the plateau but be-
comes incommensurate at moderate anisotropy and higher fields.
The highly anisotropic region is not well resolved in our variational
study. The low-field regime is also not studied thoroughly in this
work, while previous studies �Refs. 19, 22, and 24� suggest spin-
liquid state along h=0 and ��0.2.
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tional perspective. On the isotropic lattice, we constructed a
very simple and physically transparent permanent-type wave
function for the uud state at density 1/3. This is a Mott in-
sulator of bosons where we accurately included small charge
fluctuations by using appropriate localized boson orbitals.
The remarkable trial energy suggests that such approach may
be useful in other Mott-insulator contexts. Next, we obtained
natural extensions to nearby V and Y supersolid phases, re-
spectively, for n�1 /3 and n�1 /3, where the physics re-
mains strongly influence by the proximity to n=1 /3. By con-
necting to a Bijl-Jastrow-type candidate wave function at
low density, the coplanar V phase extends to all n	1 /3 �i.e.,
up to the saturation field in the spin model language�. Note,
however, that at very low density another coplanar state
��-type� is expected to be very close,11 and we cannot re-
solve between the two. On the higher density side of the
plateau �i.e., at lower fields�, the permanent-type Y wave
function performs well near the plateau but narrowly loses to
the Huse-Elser spiral candidate at densities close to half fill-
ing �zero field�. The latter result is consistent with other re-
cent works.20,23,25

The success of our isotropic study encouraged us to ex-
tend it to the anisotropic lattice. At density n=1 /3, we begin
with the permanent-type realization of the uud and then con-
nect to a conceptually similar but technically different
2-parton realization at higher anisotropy. Surprisingly, we
found that the uud phase remains stable over a large range of
anisotropy. In conjunction with the same CDW phase found
in the decoupled chains limit,10 we suggest that the uud
phase may in fact extend across the entire range of aniso-
tropy. This conjecture can be tested more rigorously using a
DMRG study on finite-width strips.

In the low boson density region �i.e., at high fields�, the
Bijl-Jastrow-type V commensurate supersolid wave function
is smoothly connected to the incommensurate version. This
state competes with the incommensurate spiral, and we can
accurately compare the two. We found that the incommensu-
rate V state has lower energy in a large region of the phase

diagram, extending up to a fairly large value of anisotropy in
the very dilute regime �i.e., close to the saturation fields�. On
the other hand, the V phase remains commensurate near the
isotropic axis and the plateau.

In the high-density regime �i.e., at low fields�, we at-
tempted to construct an incommensurate Y candidate using a
Bijl-Jastrow-type wave function but found that this construc-
tion performs poorly. This low-field region at moderate to
high lattice anisotropy calls for more comprehensive inves-
tigation.

One of the goals we had was to explore possible new
plateaus in the high-field regime of Cs2CuBr4. We have
learned that the phase diagram is already very rich even
without considering any additional plateaus. Nevertheless,
for several densities such as 1/6, 2/9, and 1/4, we imple-
mented permanent-type wave functions for various proposed
CDW from Ref. 7 as well as for some additional stripelike
orderings, and inevitably found that either V or spiral has
lower energy. Our earlier uud study showed that the 2-parton
construction can also be useful for studying CDW phases;
however, similar implementations at the above densities
again failed to reveal any stable charge ordering. This sug-
gests that any such order, if present at all, is likely to be very
weak.

One of the findings from our study is that for the
Cs2CuBr4 anisotropy, the system is in the incommensurate
coplanar phase close to the saturation fields,36 and there may
be a transition to the noncoplanar spiral state at lower fields;
this could be responsible for one of the features in the
Cs2CuBr4 experiment. We cannot exclude other more com-
plex cascade of phases. Furthermore, additional residual in-
teractions not treated here may be important for understand-
ing the phases of Cs2CuBr4 in the field. This remains a
fascinating open problem.

ACKNOWLEDGMENTS

We would like to thank J. Alicea and O. Starykh for many

-0.15

-0.10

-0.05

0.00

0.05

1 2 3 4 5

C
o
r
r
e
l
a
t
i
o
n

Y: n=0.38

-0.15

-0.10

-0.05

0.00

0.05

1 2 3 4 5

uud: n=1/3

-0.24

-0.16

-0.08

0.00

0.08

0.16

1 2 3 4

Vperm: n=0.29

-0.10

-0.05

0.00

0.05

0.10

1 2 3 4 5

C
o
r
r
e
l
a
t
i
o
n

|r-r’|

0.00

0.01

0.02

0.03

0.04

0.05

1 2 3 4 5

|r-r’|

0.00

0.02

0.04

0.06

0.08

1 2 3 4

|r-r’|

FIG. 11. Boson correlation �br
†br�� as a function of real-space distance 
r−r�
. Top row: r belongs to sublattice A �where nA�nB=nC�

while r� includes sites on all three sublattices. Bottom row: r belongs to sublattice B while r� includes sites on sublattices B and C.
Hexagonal clusters with 84, 144, and 48 sites are, respectively, used for Y �left column�, uud �middle�, and Vperm �right� calculations.

VARIATIONAL STUDIES OF TRIANGULAR HEISENBERG… PHYSICAL REVIEW B 81, 165116 �2010�

165116-13



stimulating discussions and for reading and commenting on
the manuscript. This research is supported by the A. P. Sloan
Foundation and the National Science Foundation through
Grant No. DMR-0907145.

APPENDIX A: MOTIVATION FOR Vperm WAVE
FUNCTION FOR n›1 Õ3, Eq. (12)

We begin with the uud state with N /3 bosons, Eq. �6�, and
put Nh=N /3−Nb holes in a “hole orbital” �h�R�,


�� = ��
R

�h�R�bRNh
�uud� . �A1�

For a boson configuration


�� = br1

† . . . brNb

† 
0� , �A2�

we obtain an amplitude,

��
�� = �
R1. . .RNh

��h�R1� . . . �h�RNh
�Perm�

�1
loc�r1� . . . �N/3

loc �r1�
] � ]

�1
loc�rNb

� . . . �N/3
loc �rNb

�

�1
loc�R1� . . . �N/3

loc �R1�
] � ]

�1
loc�RNh

� . . . �N/3
loc �RNh

�
� � Perm�

�1
loc�r1� . . . �N/3

loc �r1�
] � ]

�1
loc�rNb

� . . . �N/3
loc �rNb

�

c1 . . . cN/3

] � ]

c1 . . . cN/3

� . �A3�

The primed sum indicates that R1 , . . . ,RNh
need to be differ-

ent from each other and from all r1 , . . . ,rNb
. Close to the 1/3

plateau, the density of holes is small, and we can approxi-
mately replace the restricted sum by an unrestricted sum.
Performing independent summations over R1 , . . . ,RNh

gives
the last expression in the form of a single permanent, where

cj = �
R

�h�R�� j
loc�R� �A4�

is an “overlap” of the �h and � j
loc orbitals. On physics

grounds, the hole orbital �h needs to respect the symmetries
of the uud state ��h=const over the A sublattice�. In this
case, cj is independent of j, and up to a normalization con-
stant we can replace all matrix elements in the last Nh rows
by 1. The approximate single permanent form is a valid
variational wave function by itself, and this is the state we
use in the main text and call Vperm.

APPENDIX B: CORRELATION FUNCTIONS OF
PERMANENT-TYPE STATES

We calculate the order parameters and correlation func-
tions in the permanent-type trial states since we do not have
much experience with such wave functions for Mott insula-

tors or supersolids. The nonpermanent V and spiral trial
states are more obvious constructions, and therefore omitted.

For Y, uud, and Vperm trial states, a three sublattice modu-
lation is observed in the CDW order parameter �nr�. As ex-
pected, the density structure factor �n−qnq� reveals sharp
peaks near the reciprocal vectors Q� =  � 4�

3 ,0� for all three
trial states.

Figure 11 shows the correlation functions �br
†br�� between

two sites for these trial states. The uud state has rapidly
decaying correlations between any two sites, which is ex-
pected in this Mott-insulator state. For the Y supersolid state,
the correlations decay rapidly when at least one site lies on
the higher density sublattice A �i.e., as if this sublattice is
Mott insulating� while they are long ranged when both sites
reside on the BC honeycomb sublattice. The signs of the
correlations are positive for all pairs of B-B or C-C sites, and
negative for all B-C pairs, which is consistent with the Y spin
order shown in Fig. 2. Finally, for the Vperm trial state, long-
ranged correlation exists between any two sites on the lattice.
The signs are negative for all pairs of A-B or A-C sites, and
positive for all B-C pairs �as well as A-A, B-B, and C-C
pairs�, which is consistent with the V spin order shown in
Fig. 2. Thus, we have verified our intuition about the physi-
cal properties of these states.
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