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The Compton profiles �CP� of crystalline urea are computed ab initio at different levels of theory and
compared with accurate experimental measurements. The CRYSTAL program is used in order to collect the
Hartree-Fock �HF� and density-functional theory �DFT� results, while the new CRYSCOR code is adopted for the
calculation of the MP2 correction to the HF density matrix. It is demonstrated that the role of electron
correlation �Fermi and Coulomb� is crucial in predicting the correct CPs; DFT is shown to provide results in
partial disagreement with the experiment, at variance with the HF/MP2 treatment that correctly predicts the CP
anisotropies of urea. We demonstrate that the global effect of dynamic electron correlation is the reduction of
the anisotropy of the electronic momentum distribution within the crystal.
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I. INTRODUCTION

CRYSCOR is a new public code for crystalline solids,
which includes Coulomb electron correlation via the wave
function approach.1 In solid-state physics applications of this
kind of computational tools, special attention is obviously
given to the calculated total energy, due to the importance of
the related information: equilibrium geometry, relative stabil-
ity of different phases, vibrational spectrum, thermodynamic
properties, etc. On the other hand, energy is just a scalar
quantity for the equilibrium configuration, the one most ac-
cessible to experimental investigations. In order to get more
detailed information about the quality of the calculated
ground-state solution, it may then be useful to look at ob-
servables related to the one-electron density matrix �DM�,
such as ��r�, the electron charge density �ECD�, and ��p�,
the electron momentum density �EMD�, and to compare
them to the experimental data. We are considering for this
purpose the case of crystalline urea, for reasons explained
below. The ECD, obtainable from diffraction experiments, is
straightforwardly related to the topological features of the
system in direct space, and thus to position of nuclei and
characteristics of bonds as described, for instance, according
to Bader’s analysis,2,3 and will form the object of a separate
study. We are here concerned with urea’s EMD, which can
be obtained from directional Compton scattering experi-
ments: as it is known, the analysis of the distribution in mo-
mentum space of the slow valence electrons can provide
valuable complementary information about the chemical fea-
tures of the system, in particular on hydrogen bonds and
weak intermolecular interactions.

Compton scattering is in fact finding renewed interest in
solid-state physics, mainly due to the progress in the experi-
mental techniques made possible from the availability of
synchrotron radiation. During the last decade, this technique
has been applied to the study of many kinds of “disordered”
systems like liquid water,4–6 warm dense matter,7

quasicrystals,8 salt solutions,9 etc. Yet, its main field of ap-
plication still remains that of crystalline compounds, whose
intrinsic anisotropy is a source of additional information: the
directional Compton profiles �CP� of perovskites,10 layered

manganites,11 NH4F,12 and molecular crystals like hexagonal
ice,13,14 methane hydrate,15 urea,16 etc. have recently been
measured.

In the simulation of the CPs of crystalline materials two
theoretical approaches are usually adopted, both based on an
effective one-electron Hamiltonian: Kohn-Sham density-
functional theory �KS-DFT� �Refs. 9, 11, 15, 17, and 18� and
Hartree-Fock �HF�.12,14 DFT is by far the preferred technique
in solid-state simulation studies. However, the possibility of
obtaining a satisfactory description of the EMD from the KS
solution is still an open question.

In fact, the occupied KS orbitals �� j
KS� are defined so as to

fulfill the condition, for closed-shell systems: ��r�
=2� j�� j

KS�r��2, where ��r� is the exact ground-state ECD. In
a sense, DFT is calibrated on ��r�, not on ��p�. In the KS
formulation of the DFT the orbitals possess a physical mean-
ing of noninteracting particles. The only link of the latter to
the realistic system of interacting particles exists via the den-
sity in the position vector representation, which has to be the
same for both systems. However, that does not hold for the
density matrix and thus for the density in the momentum
representation, both corresponding to the initial noninteract-
ing particle system. Therefore, one cannot expect a good
description of the momentum space density using the DFT in
the KS formulation. Ragot has recently performed a detailed
analysis of this topic,19 and shown that current KS-DFT
schemes lead to results worse than HF when momentum-
related quantities are considered. Similar conclusions were
reached by Hart and Thakkar who compared the performance
of different theoretical schemes �HF, post-HF and DFT� in
reproducing the EMD moments of a set of 68 closed-shell
molecules:20 generally speaking, HF performed better in this
respect than DFT, and MP2 quite significantly improved the
HF results.

For correcting the EMD from DFT calculations in the
local density approximation �LDA�, Lam and Platzman have
proposed an explicit expression21 which, however, is often
overlooked; it follows that the quality of the resulting CPs is
questionable.22

The HF method is known to correctly describe the Fermi
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correlation among electrons exhibiting the same spin orien-
tation and, as a consequence, to properly avoid the electronic
self-interaction; furthermore, the HF EMD, at variance with
DFT, is consistent with the corresponding kinetic energy. In-
deed, the HF formalism provides a regular though approxi-
mate many-electron wave function, which can then be re-
duced to the DM either in a position or a momentum
representation on the same footing. On the other hand, HF
does not take into account the instantaneous Coulomb corre-
lation of the electronic motions. Post-HF techniques, as
available in standard codes of molecular quantum chemistry,
can recover a significant portion of the Coulomb correlation:
this is the case, for instance, of the Møller-Plesset perturba-
tion theory, truncated at order n �namely, MPn�, or Coupled
cluster �CC� models.

The CRYSCOR code1,23–25 implements a fully periodic MP2
method in a local formulation and evaluates at this level of
theory the correction to both the HF energy EHF and to the
one-electron density matrix �HF�x ;x�� of the ground state of
nonconducting crystals. The HF reference solution, along
with the local basis of Wannier Functions �WF� �Ref. 26–28�
which span the occupied manifold, are provided by the CRYS-

TAL program.29 All the quantities of interest in both programs
are expressed as linear combinations of Gaussian type func-
tions centered in the atomic nuclei: ��g�r�, the lattice vector
g labeling the crystalline cell to which the atom belongs.
These functions will be referred to in the following as atomic
orbitals �AO�.

Many applications of CRYSCOR concerning the MP2 cor-
rection to EHF have been presented in the last years,30–35

while in this work we use it for the first time for analyzing
the effect of the MP2 correction to �HF�x ;x�� on CPs and
related quantities of a crystalline system in comparison with
the experiment.

The molecular crystal of urea lends itself particularly well
to this kind of analysis for various reasons:

�i� accurate directional CPs from synchrotron radiation
measurements are available;16

�ii� urea is characterized by a variety of bonding typolo-
gies: within the molecular monomers, there are mainly cova-
lent bonds while molecules are kept together by H bonds,
electrostatic and dispersive interactions. This chemical rich-
ness provides a fine structure to the experimental CP
anisotropies which is suitable for comparison with ab initio
predictions;

�iii� currently available static structure factors experi-
ments are not able to reveal unambiguously packing effects
in the urea crystal,36 although this should be possible with
accurate experimental setups.37 In this respect, CPs may
prove to be a more sensitive probe;

�iv� in particular, intermolecular dispersive interactions
could play a non-negligible role in the distribution of elec-
tron momenta. This is an important issue, in principle: as it is
well known from the molecular experience and as it has re-
cently been demonstrated also in the periodic context for
many kinds of crystals,30,33–35 the larger the importance of
dispersive interactions in the system, the poorer the descrip-
tion provided by standard DFT while one of the strong merits
of post-HF techniques is exactly that of properly taking them
into account.

Crystalline urea has been extensively studied both experi-
mentally and theoretically: its structure is well resolved, for
instance by means of neutron diffraction experiments.38 Urea

belongs to the tetragonal P4̄21m space group; the molecules
are in a planar configuration �of C2v point symmetry� and
arrange themselves into head-to-tail planar ribbons while the
planes of adjacent ribbons are orthogonal to each other and
oppositely oriented �see Fig. 1�.

A number of theoretical investigations were able to con-
firm this structure quite accurately. Reference can be made to
the recent comprehensive study performed by Civalleri et
al.,39 which also reports about previous work on the subject.
Those Authors calculated the structure and cohesive energy
of crystalline urea with the CRYSTAL code at the HF level of
approximation as well as using DFT with a variety of
exchange-correlation potentials, either based on a local den-
sity approximation �LDA� or on a generalized gradient ap-
proximation �GGA�; hybrid schemes were also tried, where a
fraction of exact HF exchange is introduced.40 The main re-
sults of that study can be summarized as follows: �i� for an
unbiased evaluation of interaction energies it is essential to
take the basis set superposition error into account;41 �ii� after
correction for this error, the GGA and hybrid DFT calculated
geometries are in good agreement with the experimental
structure, except for the a lattice vector which determines the
interchain distance and is too large by about 4%; �iii� the
corresponding cohesive energies underestimate the experi-
mental value by about 30–40 kJ/mol; �iv� both the overesti-
mation of the interchain distance and the underestimation of
the cohesive energy can mainly be attributed to neglect of
long-range dispersive forces;39,42 �v� HF results are less sat-
isfactory in all respects.

In the present work, we have tried the same one-electron
Hamiltonians as in Ref. 39, plus of course HF+MP2; how-
ever, we will not present in detail the results obtained with
all those DFT schemes but just the PBE �Ref. 43� and the
B3LYP �Ref. 40� ones, as representatives of the GGA and of
the hybrid Hamiltonians, respectively. The computational
setup here adopted for the CRYSTAL calculations is also es-
sentially the same, and corresponds to very tight tolerances.
In particular, the best basis set was selected among those

(a) (b)

FIG. 1. �Color online� Perspective view of the structure of crys-

talline urea �tetragonal P4̄21m space group� through �a� the �001�
family of planes and �b� the �010� family of planes. The three main
crystallographic directions that will be considered in the discussion
are drawn as black arrows.
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tried there, with a few changes as specified in Sec. II C.
Two measurements of the directional CPs of the urea

crystal have been reported so far. The first was carried out
thirty years ago using a �-ray source,44 while the second,
much more recent and accurate,16 used synchrotron radia-
tion. In both works, calculations were performed in order to
support the interpretation of the experimental results. Reed et
al.44 have simulated the CPs of crystalline urea by means of
molecular calculations on the isolated monomer and on the
dimer in different configurations only. Shukla et al.16 have
performed periodic GGA-DFT calculations and subtly ana-
lyzed the effect of crystal packing with reference to the CPs
of the noninteracting molecules. The results of our calcula-
tions are discussed below with reference to the data reported
in those studies, especially in the more recent one. It is
shown that HF provides a better description of urea’s EMD
than DFT, and that the MP2 correction, though small, im-
proves the agreement with the experiment. It also confirms
that CPs provide clear evidence of packing effects in the
molecular crystal.

The structure of this work is as follows. Section II pre-
sents the theoretical and computational framework. After re-
calling the different functions which can be used for describ-
ing the EMD, their main features and the relations among
them, we describe how the DM can be obtained from the
present periodic calculations in the AO basis set, with par-
ticular attention to the MP2 correction. The computational
setup adopted is then introduced. In Sec. III we present and
discuss our results. The role of the computational parameters
is first analyzed and their setup justified. In the comparison
between experiment and theory, particular attention is given
to the CP anisotropies which prove to be a very informative
quantity. Some conclusions are drawn in Sec. IV.

II. THEORY AND COMPUTATIONAL SETUP

A. From density matrix to compton profiles

In a second-quantization formalism, the one-electron
position-spin DM ��x ;x�� associated with a normalized
many-electron wave function, corresponding to the selected
state ��� can be written as follows:45

��x;x�� = �
PQ

���aP
† aQ���	P

��x��	Q�x� . �1�

Here reference is made to an orthonormal set of one-electron
spin-orbitals, 	Q�x�		Q�r ,
�, which span the Fock space
in which ��� is defined, and aQ

† ,aQ are the corresponding
creation and annihilation operators. By integrating
��r ,
 ;r� ,
� over the spin coordinate 
, we get R�r ;r��, the
so-called position DM. The momentum DM P�p ;p�� is just
the six-dimensional Fourier transform of R�r ;r��. The ECD
��r�	R�r ;r� and the EMD ��p�	 P�p ;p� are the “diagonal
elements” of the position and momentum DM, respectively.
By convention, the EMD ��p� of a crystal is normalized to
the number N0 of electrons per cell. We note again that ��p�
cannot be obtained from the ECD ��r�, but only from the
DM R�r ;r��. Therefore, ECD-oriented approaches, such as
KS-DFT, are expected to have difficulties in correctly de-
scribing the EMD.

For the analysis and manipulation of the EMD, reference
can usefully be made to the autocorrelation function �AF�,
B�r�, first introduced by Pattison et al. in 1977.46 The AF is
defined as the three-dimensional �3D� Fourier transform of
the EMD or as the autocorrelation integral of the position
DM,

B�r� =
 ��p�eıp·rdp 	
1

L



cyc
R�r�;r + r��dr�. �2�

The normalization factor L is the number of cells in the
cyclic crystal �cyc� determined by the Born von Kármán
boundary conditions; as a consequence, the condition: B�0�
=N0 is obeyed. It can be useful to introduce the directional
AF: Bhkl�r�=B�rehkl� where ehkl is the unit vector that defines
the �hkl� crystallographic direction. As is shown below a lot
of information can be obtained from the AF anisotropies,
Bhkl�r�−Bh�k�l��r� or from their square modulus, which is
sometimes referred to as the power spectral density of the
anisotropy.16

The directional CP Jhkl�p� can be obtained through a two-
dimensional �2D� integration of ��p� over a plane perpen-
dicular to ehkl through pehkl, or by back-Fourier transforming
the corresponding Bhkl�r�,

Jhkl�p� =
1

2�

 Bhkl�r�e−ıprdr . �3�

Within the sudden-impulse approximation, this function is
directly comparable to the outcome of Compton scattering
experiments,47 after correcting the latter for limited reso-
lution and multiple scattering effects. In particular, the effect
of limited resolution can be expressed as a convolution of the
infinite resolution results with a normalized Gaussian func-
tion g�p ;�cp� characterized by a given standard deviation �cp
�or, equivalently, by the full-width-half-maximum parameter
wcp=�cp ·22 log 2�, which quantifies the experimental
resolution,

Jhkl
� �p� = 


−�

+�

Jhkl�p��g�p − p�;�cp�dp�

= 

−�

+�

Bhkl�r�g�r,�br�e−ıprdr . �4�

In the last integrand a multiplicative Gaussian factor g�r ,�br�
appears, with �br=1 /�cp.

Although the AF and the full set of the directional CPs
have the same information content, the former representation
offers some distinctive advantages. First, it allows the inter-
pretation of the EMD features in real space instead of in the
less intuitive momentum space; in particular, the core elec-
trons contribution to the AF is restricted to small �r�’s, while
at intermediate and large distances the AF is dominated by
valence electrons. Furthermore, the finite resolution of the
spectrometer affects the AF as a simple multiplicative factor
�Bhkl

� �r�=Bhkl�r�g�r ,�br��, so its fine structure is not much
affected by experimental errors. Finally, the use of Eqs. �3�
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and �4� for calculating the directional CPs is computationally
convenient with respect to their direct evaluation through a
2D integration of the EMD.

B. Density matrix in the AO basis set

With reference to the AO basis set ���g�r�� adopted in the
CRYSTAL and CRYSCOR codes, the position DM can always
be written as follows:

R�r;r�� = �
g,l

�
�

P�g��l�r���l+g��r�� , �5�

where the translational invariance of the lattice has been
used.

Substitution of Eq. �5� into Eq. �2� gives

B�r� = �
�

�
g

P�gS�g�r� ,

with

S�g�r� =
 ��0�r���g�r + r��dr� �6�

This computationally convenient expression for the AF is the
one adopted here. From there, the infinite-resolution or the
convoluted CPs are calculated using Eqs. �3� or �4�, respec-
tively.

The problem is then reduced to the estimate of P�g. In
the next two subsections we first recall how this matrix is
obtained from a single-determinantal solution ��HF� or
��DFT�, then we show how to calculate the MP2 correction to
its HF estimate. The discussion is restricted to closed-shell,
nonconducting crystals.

1. Density matrix from single-determinantal wave functions

The single-determinantal “X” wave function �X=HF, KS-
DFT� can be expressed in two equivalent ways,

��X� ↔ �¯� j,�
X �� j,�

X �¯� = �¯wi,g
X �wi,g

X �¯� . �7�

In the first line, the Slater determinant is constructed with the
canonical doubly-occupied crystalline orbitals �CO� that sat-
isfy the self-consistent-field equations,

ĥX� j,�
X �r� = � j,�

X � j,�
X �r� , �8�

� j,�
X �r� = �

�

aj,�;�
X ��

g
eı�·g��g�r�� . �9�

The band index j runs from 1 to N0 /2, while the wave vector
� is one of the L vectors in the first Brillouin zone of recip-
rocal space which form the Monkhorst net associated with
the selected cyclic crystal. In the second line, the same de-
terminant is expressed using the Wannier functions, labeled
by g, one of the L direct lattice vectors of the cyclic crystal,
and by the in-cell index i running from 1 to N0 /2; the WFs
are real-valued, well localized, symmetry adapted functions
of r,27,28 which span altogether the same space as the occu-
pied COs and are translationally equivalent and mutually
orthonormal,

wi,0
X �r� = wi,g

X �r + g�; �10�


 wi,g
X �r�wi�,g�

X �r�dr = �ii��gg�. �11�

Using Eq. �1� with ���= ��X� and making reference to the
orthonormal sets �	Q�r ,
�� of the COs or of the WFs, gives
us, after integration over spin,

RX�r;r�� = 2 �
j=1

N0/2

�
�

� j,�
X �r��� j,�

X �r����, �12�

=2 �
i=1

N0/2

�
g

wi,g
X �r�wi,g

X �r�� . �13�

Substitution of Eq. �9� into Eq. �12� and comparison with Eq.
�5� gives immediately,

P�g
X = 2 �

j=1

N0/2

�
�

e−ı�·g�aj,�;�
X �aj,�;

X ��� �14�

We also have, by inserting Eq. �13� into Eq. �2�,

BX�r� = 2 �
i=1

N0/2
 wi,0
X �r��wi,0

X �r + r��dr�

→BX�g� = 0 ∀ g � 0. �15�

This important nodal property of the AF from single-
determinantal wave functions of nonconducting crystals fol-
lows from the orthogonality of WFs at different lattice sites:
it can be used to check the numerical accuracy of calculated
AFs, and departure from it in the experimental AFs might
reveal the presence of correlation effects.

2. MP2 correction to the Hartree-Fock density matrix

The MP2 level of theory provides a first-order approxima-
tion of the correlated ground-state wave function,

���� = ����HF� + ���1��� , �16�

where � is the appropriate normalization factor. This expres-
sion can be used in Eq. �1� to obtain a correlated estimate of
the DM. A serious inconvenience of this approach is the lack
of size consistency of the ���1�� correction. This means that,
for an “infinite” system, the DM obtained from the normal-
ized ���� wave function reduces to the HF one. This defi-
ciency has been circumvented by adopting a “local-
correlation” Ansatz:48 it consists in using a locally correlated
wave function ���� obtained by adding to the HF solution
only those biexcited configurations where at least one of the
two electrons is promoted from a WF in the zero reference
cell, but with excitation amplitudes obtained from the peri-
odic MP2 calculation. The resulting DM is next periodicized.
For the evaluation of the matrix elements ����aP

† aQ���� ref-
erence is made to the set �	Q� consisting of the HF WFs plus
a local set of AOs orthogonalized to the occupied HF mani-
fold and orthonormalized to each other. Reasonable results
have been obtained by following this approach.35
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A more robust technique has been implemented later in
CRYSCOR by two of us,49 and is the one adopted here. It is
based on a “Lagrangian” approach,45 according to which the
DM provides the first-order response of the system energy E

to an arbitrary external one-electron perturbation �X̂, with �

being the strength parameter, and the one-electron operator X̂
designated in the first quantization as x̂c. If ��� were the
outcome of a variational calculation performed for the un-
perturbed system, the Hellmann-Feynmann theorem,

�dE

d�
�

�=0
= ���X̂��� = �

PQ

���aP
† aQ���
 	P

��x�x̂c	Q�x�dx

�17�

would hold. Comparison of Eq. �17� with Eq. �1� allows us
to identify here the elements RPQ of the density matrix in the
�	Q� representation as the weighting factors for the matrix
elements of the perturbation operator XPQ
=�	P

��x�x̂c	Q�x�dx in the energy derivative expression. In a
nonvariational treatment, as is the case for MPn or standard
CC methods, the energy still can be written via a variational
expression, by setting up the corresponding Lagrangian.45

However, in this case, in addition to the excitation ampli-
tudes which are variational parameters also in the standard
variational approach, a second set of parameters is to be
varied. These parameters are the Lagrange multipliers, cor-
responding to the MPn or CC equations used as the con-
straints in the Lagrangian.

In the case of MP2, the Lagrangian is nothing else than
the well-known Hylleraas functional. Only the doubles am-
plitudes tab

ij , corresponding to the excitations from a pair of
occupied orbitals �i , j� to a pair of virtual ones �a ,b�, enter
the MP2 formalism. Due to the symmetric form of the Hyl-
leraas functional, the Lagrange multipliers t̄ab

ij turn out to be
not independent variational parameters, but rather the contra-
variant amplitudes: t̄ab

ij =2tab
ij − tba

ij .
Next, from the resulting expression of dE /d� ��=0, the

weighting factors for the XPQ matrix elements in analogy to
Eq. �17� can be defined as the elements of the DM RPQ. In
case of real orthonormal orbitals ��i�r��, ��a�r�� which span
the occupied and virtual HF manifold, respectively, the fol-
lowing expression for the MP2 correction to the HF position
DM is obtained:49

RMP2�r;r�� = − 2�
kab

t̄ab
jk tab

ik �i�r�� j�r�� + 2�
cij

t̄bc
ij tac

ij �a�r��b�r�� ,

�18�

This formula can be generalized to the periodic case with the
occupied space spanned by Wannier functions, and the vir-
tual space truncated according to the local approximation
and represented by nonorthogonal projected atomic
orbitals.49

An advantage of this approach is that from the size-
extensive MP2 expression for the correlation energy a size-
extensive correlation correction to the HF DM is obtained.
Besides, its implementation turns out to be computationally
more efficient than that of ����aP

† aQ����. It must be pointed
out that the Lagrangian DM formalism allows for a further

improvement of the DM, in particular by including in the
Lagrangian the constraints required for the validity of the
Brillouin theorem in the presence of a perturbation, i.e., the
“orbital relaxation”. Presently the approach, implemented in
CRYSCOR is orbital unrelaxed,49 but the work on inclusion of
the orbital relaxation effects in the DM is underway.

C. Computational setup

The present computational setup for the CRYSTAL calcula-
tions is practically the same as that adopted in Ref. 39. The
only exception concerns T1, the first of the five tolerances
which control from input the truncation of the infinite lattice
sums: all 1- and 2-electron integrals are neglected which in-
volve product distributions ��r�=��l�r��g�r� for which the
pseudooverlap between the two AOs is less than 10−T1. It
turns out that the computed AF is very sensitive to this tol-
erance, apparently more so for the DFT than for the HF
calculations. In particular, in order to accurately satisfy the
nodal property of the AF, Eq. �15�, T1 must be set to a very
tight value, namely 25 instead of the default value of 6,
which is adequate for most other purposes.

As concerns CRYSCOR, its input parameters serve essen-
tially to fix three kinds of tolerances.24 The first one deter-
mines the truncation of the support of the local functions
which describe the occupied and the virtual HF manifold
�WFs and projected atomic orbitals�, and is here set to tc

=0.0001. The other parameters specify the local approxima-
tion. On the one hand, size and shape of the excitation do-
mains must be defined for each WF; they are chosen here to
extend over the whole monomer to which the WF belongs.
On the other hand, two distances d1 and d2 are defined such
that all pair interactions beyond d2 are neglected, while d1
controls the accuracy with which the remaining ones are
treated: for WF-WF pairs with the interorbital distances d
closer than d1, the required two-electron integrals are calcu-
lated accurately by means of a periodic density fitting
technique;24,50 for the pairs with d1�d�d2, the integrals are
estimated via a multipolar expansion up to hexadecapoles. In
the present work the following values for these parameters
have been employed: d1=6 Å, d2=12 Å.

Two AO basis sets are here used. The former one is of
triple-� quality with two sets of additional polarization func-
tions: it is obtained from the TZP set of Ref. 39 with the
addition of a diffuse shell of f-type orbitals. This set indi-
cated below as BSB, is however too demanding for the cal-
culation of the MP2 correction to the density matrix with the
present implementation of the CRYSCOR code. So, we have
also used a slightly modified basis set which lacks the f
polarization set, described in that same study as
6–311G�d,p�, and referred to in the following as BSA. With
respect to the basis sets tried in the previously cited study on
the EMD moments of molecular systems �including urea�,20

BSA and BSB are essentially equivalent to “pc1” and “pc2”,
respectively. While the latter was shown to provide results
quite close to convergence, the former is still partially inad-
equate. AO basis sets usually perform better with periodic
than with molecular systems: in particular, the tails of the
electronic distribution toward the vacuum do not there rep-
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resent a principal problem. However, the basis set issue re-
mains a critical one and will be given attention to in the
following.

As already mentioned in the Introduction, we have tried
many different DFT and hybrid Hamiltonians apart from HF
and HF+MP2, but we will comment only on the HF, HF
+MP2, PBE and B3LYP results, as representatives of the
various possibilities. The experimental geometry38 is adopted
in all the present EMD calculations in order to make the
comparison among the different computational results and
with the experimental data easier.

III. RESULTS AND DISCUSSION

A. Autocorrelation function

Let us first analyze the directional AFs as resulting from
the CRYSTAL calculations. The effect of the basis set and of
the Hamiltonian on the EMD can thus be assessed; further-
more, the nodal property expressed in Eq. �15� can be veri-
fied, which is a check of the quality of the algorithms em-
ployed. The three main crystallographic directions �001�,
�100�, and �110� are considered, the same for which the ex-
perimental CPs are available. As shown in Fig. 1, the first
direction is along the ribbons and perpendicular to the other
two, the second forming an angle of � /4 with the planes
which contain the ribbons, the third parallel to one of the
planes, and perpendicular to the other. Since in Shukla’s
study the AF data are provided only as anisotropies of the
power spectral function and in an arbitrary scale, the com-
parison with the experiment is performed only at the end of
this section.

For each direction, the AF starts from the value N0=64 at
r=0, reaches a deep negative minimum at a value r0
�4.5 Bohr, followed by a series of oscillations about zero.
The position of the first minimum and the corresponding
value Bhkl�r0� are reported in Table I for the different com-
binations Hamiltonian-basis set, while Fig. 2 shows the AF
oscillations at longer range.

The data of Table I show that even at short range there is
a considerable difference between the three directions, in
particular the minimum lies deeper in the �110� direction
compared to the other two. The effect of using different

Hamiltonians is relevant, the PBE technique providing a
much larger anisotropy than HF; the influence of the adopted
basis set, though less important, is seen to be still not negli-
gible.

The difference between the three directions becomes
much more relevant at longer range, as it is evident from Fig.
2, and is qualitatively the same for the different Hamiltonians

TABLE I. Position of the first minimum �r0 /Bohr� and corresponding value of the AF �Bhkl�r0� /a.u.� for
three directions and different Hamiltonians and basis sets, as indicated.

HF PBE B3LYP

BSA BSB BSA BSB BSA BSB

�001� r0 4.40 4.41 4.51 4.49 4.50 4.48

B�r0� −0.57 −0.51 −0.62 −0.56 −0.61 −0.54

�100� r0 4.50 4.61 4.70 4.75 4.71 4.72

B�r0� −0.56 −0.58 −0.48 −0.50 −0.50 −0.52

�110� r0 4.51 4.51 4.50 4.60 4.51 4.56

B�r0� −0.84 −0.80 −0.88 −0.83 −0.82 −0.82

FIG. 2. �Color online� Directional AFs obtained from CRYSTAL

computations using HF with basis set BSB �HF/BSB, crosses� or
BSA �HF/BSA, thick continuous line�, or using PBE/BSB �thin dot-
ted line�. For each considered crystallographic direction, a vertical
line marks the length �hkl of the shortest lattice vector in that direc-
tion. Values are in atomic units.
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and basis sets. The region most affected is that between 7
and 15 Bohr, corresponding to the distance between opposite
parts of the molecule or between the molecules. Also note
that the nodal property of the AF is rather well satisfied.

It was shown in Sec. II B 1 that this property, expressed
by Eq. �15�, strictly depends on the single-determinantal
character of the calculated wave function. The AF derived
from the MP2-corrected DM, calculated following the pro-
cedure outlined in Sec. II A, no longer needs to satisfy it.
The direction where this effect should be more easily observ-
able is the �001� one, since the first lattice node occurs here
at the shortest distance ��001� from the origin �the accuracy of
the experimental B�r� function is known to decrease with
increasing r�. Figure 3 shows that this effect is appreciable,
the zero position being displaced to a shorter distance by
more than 10%. Unfortunately, a direct check of this indica-
tion against the experimental evidence is not possible, since
in Ref. 16 only anisotropies are reported, not the individual
directional data.

For comparison with the experiment, we provide in Fig. 4
the power spectral densities of the AF anisotropies, corre-
sponding to those of Fig. 3 of Ref. 16: that is, after correcting
the directional AFs for the limited experimental resolution,
the three power density anisotropies �Bhkl

� �r�−Bh�k�l�
� �r��2 are

reported as obtained from the use of different Hamiltonians,
and using BSA for HF and HF+MP2, and BSB in the other
cases �see Sec. II A for details�. We first observe that the
anisotropy between the �110� and the �100� directional AFs is
much smaller than that between the �001� AF and either of
the other two �note the different scale in the top plot�. This is
expected, since most of the chemical bonds are oriented
along �001�, and because the �100� AF corresponds in a sense
to an average between that of the two orthogonal ribbon
planes sampled in the �110� direction �see Fig. 1�. From a
comparison of the HF and HF+MP2 curve, it is seen that the
overall effect of electron correlation is that of reducing the
AF anisotropy.

On the whole, the data reported here look very similar to
the experimental ones �see Fig. 3 of Ref. 16�, which however
are given in an arbitrary scale, which prevents a comparison
of the absolute value of the anisotropies. A quantitative
though partial comparison can be performed by considering
the blow up of one of the two significant anisotropies in an
intermediate region of r values �3–8 Bohr: see central panel
of Fig. 4�. A two-peak structure is observed in all cases, but

the relative height of the second with respect to the first
peak, h2 /h1, is very different for the various cases: 0.4, 2.0,
12.5, 4.6 for PBE, B3LYP, HF, HF+MP2, respectively. It can
be noticed that the value obtained with the hybrid Hamil-
tonian is intermediate between the GGA-DFT and the HF
values. The MP2 correction considerably reduces the h2 /h1
ratio with respect to the HF determination, and brings it close
to the experimental value, which is 4.3.

B. Compton profiles

The CPs by Shukla et al.16 are characterized by a much
better resolution ��cp=0.042 a.u.� than the older ones by
Reed et al.44 ��cp=0.193 a.u.�, which is by itself indicative
of their higher accuracy. Unless otherwise indicated, we shall
therefore take as a reference Shukla’s data, and compare
them to the presently calculated ones. Since in that work
only the CP anisotropies are reported, we adopt here the
same representation, which not only eliminates the contribu-
tion of core electrons, but also cancels out some experimen-
tal errors such as multiple scattering effects and residual
background.

Figure 5 shows the computed anisotropies corrected for
limited resolution owing to the scheme outlined in Sec. II A
and using �cp=0.042 a.u., so that they are directly compa-

FIG. 3. �Color online� Directional AF B001�r� as computed at HF
�black line� and HF+MP2 �red line� with the BSA basis set; the r
coordinate has been scaled by �001, the length of the shortest lattice
vector in that direction.

FIG. 4. �Color online� Power spectral densities of AF anisotro-
pies. The blowup in the central panel referring to a restricted set of
r values is discussed in the text. Values are in atomic units.
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rable with Shukla’s data which are also given in these plots
for convenience. The older data from Ref. 44 are reproduced
as well, for the sake of reference; as they were obtained with
a worse experimental resolution, they are not strictly compa-
rable to the others. Finally, the CP anisotropies for the sys-
tem of isolated molecules oriented as in the crystal are re-
ported, in order to make evident the effect of intermolecular
interactions. These “molecular CPs” �corrected again for lim-
ited resolution� correspond to B3LYP/BSB calculations, but
the results are quite similar to those obtained with the other
Hamiltonians. In Table II we provide explicitly the values of
the computed CPs along the �001� direction, and the percent-
age anisotropies with respect to J001�0�, again with reference

to the experimental synchrotron data. The contribution of the
MP2 correction to the HF CPs is displayed for the three main
crystallographic directions in Fig. 6. Let us now comment on
these data.

As schematically illustrated in the inset of Fig. 6, the ori-
entation of the urea molecules within the crystal is such that
all double CvO bonds and half the single NuH bonds lie
almost parallel to the �001� crystallographic direction and
perpendicular to the �100� and �110� directions. Since the
electrons in a bond are obviously more delocalized in real
space along the bond compared to the orthogonal directions,
they will move more slowly in that direction: as a conse-
quence, at low momenta, ��p� will stay higher when moving
along �001� than along �100� or �110�. Since a given CP is
related to the EMD via a 2D integration in a plane perpen-
dicular to the corresponding direction, in the vicinity of p
=0, J001�p� is expected to be appreciably higher than either
J100�p� or J110�p�. This is in fact the dominating feature of
the data shown in Fig. 5 and it is even more marked for the
isolated molecule than for the crystal. On closer analysis,
appreciable differences between the CP anisotropies of the
two systems are seen to occur in a region of low momenta
�0.5–1.2 a.u.� dominated by the contribution from valence
electrons. In the crystalline case, they exhibit here a fine
structure which is much more evident in Shukla’s than in
Reed’s data, probably due to the very different resolution in
the two experiments, and is also present, to a variable extent,
in the theoretical results. The fact that this fine structure is
absent in the “molecular” anisotropies shows how sensitive
the CPs are to intermolecular interactions, as already pointed
out by Shukla et al.16 in the discussion of their data. The
discrepancies observed in this region between the results ob-
tained with the various Hamiltonians can then be attributed
to the different description they provide of the motion of
valence electrons involved in hydrogen bonds, which repre-
sent the main interaction between the urea molecules in the
crystal.

From Fig. 5 it clearly comes out that the HF+MP2
method provides results in excellent agreement with the ex-
periment, while the agreement is less satisfactory for all DFT
approaches we have tried, despite the use of a better basis
set. In order to explain this evidence, we could invoke the
role of a correct description of the instantaneous electron
correlation for a satisfactory reproduction of momentum den-
sities. It is known that the MP2 method, taking advantage of
the exact description of the electronic Fermi correlation �ex-
change� already provided by the reference HF method, can
also recover a significant portion of the exact dynamic Cou-
lomb correlation of the electronic motions. On the contrary,
DFT describes both Fermi and Coulomb correlation as an
average on the ground-state charge density and does not
properly avoid electronic self-interaction; as already dis-
cussed in the Introduction, DFT is therefore not expected to
perform particularly well in predicting EMDs.19,20 Zope51

has shown in fact that a DFT-LDA formalism corrected for
self-interaction substantially improves computed CPs of
atomic systems with respect to those obtained with standard
GGA approaches.

The data reported in Fig. 6 allow us to better distinguish
the specific role of Coulomb correlation as provided by the

FIG. 5. �Color online� CP anisotropies as computed with several
Hamiltonians using the BSB basis set �BSA for HF+MP2 calcula-
tions�. Full red and empty blue circles represent experimental data
by Shukla et al. �Ref. 16� and by Reed et al., �Ref. 44�, respec-
tively; dashed lines correspond to the molecular superposition re-
sults as obtained with DFT/B3LYP �see text for more details�.
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MP2 correction to the description of CPs. It can first be
observed that this correction is very small, since it is always
within 1% of the total. Next, it is seen to be negative at low
momenta and positive at high momenta for all directions.
This is expected since, owing to the virial theorem, a lower
total energy corresponds to a larger kinetic energy, and is a
direct consequence of the fact that correlated electrons are
allowed to stay closer to the nuclei and so to go faster. The
third observation is that the MP2 correction to J001�p� is
more pronounced than that to J100�p� and J110�p�. This means
that the electrons are more accelerated along �001� than
along the orthogonal directions, due to the fact that many of
the intramolecular bonds of urea are oriented parallel to the
�001� direction, as schematically illustrated in the inset of
Fig. 6. This suggests a global effect of electron correlation to

be in the reduction in the anisotropy of the EMD of urea, as
anticipated in Sec. III A. Still another kind of analysis is
made possible by the local scheme implemented in CRYSCOR.
Namely, we can sort out the contribution to the MP2-DM
�hence to the directional CPs� associated to biexcitations of
electrons in different molecules: this contribution, which is
practically the same for the three directions, is represented in
Fig. 6 by a thin red line. It is seen that, with respect to the HF
EMD, these intermolecular terms increase the density of
slow electrons. This may be interpreted as meaning that, con-
trary to what happens with electrons in ordinary chemical
bonds, the Coulomb correlation slows down, on average,
electrons in hydrogen bonds. Finally, the fine structure of the
CP anisotropies appears to be mainly due to the HF term,
with only a small contribution from the MP2 correction. This

TABLE II. CP of crystalline urea from �HF+MP2� /BSA, PBE/BSB, B3LYP/BSB calculations �denoted below as MP2, PBE, and hyb,
respectively�, and comparison with Shukla’s data �Ref. 16� �exp�. In the first columns the computed CPs along the �001� direction are
reported �both J and p in atomic units�. In the next columns the CP anisotropies are given in percentage of the value of J001�0�:
�hkl−h�k�l�

% �p�= �Jhkl�p�−Jh�k�l��p���100 /J001�0�. All calculated J’s are convoluted for limited resolution using �cp from Ref. 16.

p

J001 �001–100
% �001–110

% �100–110
%

MP2 PBE hyb MP2 PBE hyb exp MP2 PBE hyb exp MP2 PBE hyb exp

0.0 24.60 24.85 24.76 3.29 3.29 3.36 2.95 4.99 5.58 5.75 3.90 −1.62 −2.16 −2.26 −0.86

0.1 24.45 24.67 24.59 3.17 3.12 3.22 2.84 4.60 5.04 5.11 3.70 −1.36 −1.81 −1.77 −1.16

0.2 24.00 24.19 24.12 2.86 2.74 2.87 2.65 3.62 3.76 3.69 2.96 −0.70 −0.94 −0.74 −0.53

0.3 23.31 23.47 23.38 2.47 2.42 2.43 2.16 2.47 2.42 2.29 1.96 0.04 0.06 0.19 0.06

0.4 22.37 22.51 22.40 2.07 2.23 2.12 1.78 1.55 1.50 1.43 1.25 0.55 0.76 0.72 0.49

0.5 21.16 21.30 21.21 1.64 2.03 1.95 1.41 0.98 1.05 1.16 0.88 0.68 1.00 0.82 0.59

0.6 19.70 19.82 19.77 1.27 1.76 1.76 1.17 0.71 0.87 1.07 0.72 0.57 0.91 0.71 0.53

0.7 18.10 18.14 18.04 1.07 1.56 1.51 0.98 0.65 0.82 0.85 0.60 0.43 0.76 0.68 0.44

0.8 16.39 16.36 16.28 1.08 1.52 1.34 0.96 0.67 0.82 0.63 0.74 0.42 0.71 0.72 0.23

0.9 14.62 14.54 14.46 1.16 1.49 1.25 1.05 0.66 0.80 0.56 0.80 0.51 0.70 0.71 0.28

1.0 12.84 12.73 12.68 1.06 1.19 1.07 0.96 0.53 0.62 0.51 0.29 0.54 0.58 0.58 0.43

1.1 11.14 10.98 10.97 0.68 0.57 0.66 0.77 0.26 0.25 0.32 0.09 0.43 0.33 0.35 0.31

1.2 9.56 9.37 9.37 0.12 −0.17 0.04 0.42 −0.09 −0.20 −0.04 −0.08 0.21 0.03 0.08 0.21

1.3 8.14 7.96 7.95 −0.44 −0.77 −0.62 −0.59 −0.44 −0.59 −0.48 −0.50 0.00 −0.19 −0.15 −0.07

1.4 6.91 6.77 6.73 −0.89 −1.16 −1.15 −0.90 −0.75 −0.88 −0.88 −0.72 −0.15 −0.30 −0.29 −0.19

1.5 5.90 5.79 5.74 −1.21 −1.43 −1.46 −1.21 −0.89 −1.11 −1.15 −1.00 −0.24 −0.35 −0.33 −0.28

1.6 5.08 4.99 4.95 −1.41 −1.61 −1.58 −1.26 −1.16 −1.28 −1.28 −1.10 −0.27 −0.36 −0.33 −0.23

1.7 4.42 4.34 4.32 −1.47 −1.67 −1.58 −1.40 −1.23 −1.36 −1.31 −1.18 −0.26 −0.33 −0.30 −0.22

1.8 3.88 3.83 3.80 −1.44 −1.59 −1.54 −1.34 −1.24 −1.35 −1.31 −1.21 −0.22 −0.26 −0.26 −0.18

1.9 3.45 3.42 3.38 −1.38 −1.48 −1.48 −1.25 −1.23 −1.32 −1.30 −1.15 −0.17 −0.19 −0.20 −0.15

2.0 3.09 3.08 3.03 −1.33 −1.41 −1.41 −1.19 −1.22 −1.31 −1.29 −1.06 −0.13 −0.14 −0.15 −0.12

2.2 2.55 2.55 2.50 −1.21 −1.29 −1.28 −1.06 −1.16 −1.26 −1.26 −1.07 −0.07 −0.05 −0.05 −0.05

2.4 2.17 2.18 2.13 −1.06 −1.10 −1.13 −0.96 −1.04 −1.13 −1.15 −0.96 −0.03 0.00 −0.01 −0.01

2.6 1.90 1.91 1.90 −0.91 −0.96 −0.95 −0.79 −0.90 −0.89 −0.99 −0.79 −0.02 0.01 0.01 −0.01

2.8 1.70 1.71 1.66 −0.71 −0.72 −0.75 −0.61 −0.73 −0.77 −0.79 −0.61 0.01 0.03 0.02 0.01

3.0 1.55 1.56 1.51 −0.54 −0.56 −0.55 −0.41 −0.57 −0.59 −0.59 −0.41 0.02 0.02 0.02 0.00

3.2 1.43 1.44 1.38 −0.36 −0.35 −0.37 −0.24 −0.40 −0.38 −0.39 −0.24 0.03 0.01 0.01 0.00

3.4 1.31 1.33 1.28 −0.22 −0.22 −0.22 −0.11 −0.24 −0.22 −0.22 −0.11 0.02 0.00 0.00 0.00

3.6 1.22 1.23 1.18 −0.10 −0.08 −0.09 −0.03 −0.11 −0.09 −0.09 −0.03 0.01 0.00 0.00 0.00

3.8 1.13 1.14 1.09 −0.01 0.01 0.00 0.00 −0.02 0.00 −0.01 0.00 0.00 0.01 0.00 0.00

4.0 1.05 1.06 1.01 0.03 0.05 0.00 0.00 0.03 0.03 0.04 0.00 0.00 0.01 0.00 0.00
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may explain why the hybrid functional B3LYP, which con-
tains a fraction of the HF exchange �Fermi correlation�, pro-
vides an improved description of CPs with respect to pure
LDA or GGA functionals.

IV. CONCLUSIONS

We have presented an ab initio periodic study of the
Compton profiles �CP� of crystalline urea and compared our
results, obtained with a variety of techniques, to recent ex-

perimental determinations. In particular, along with standard
one-electron approaches �HF, DFT, and hybrid Hamilto-
nians� we have used here a periodic MP2 post-HF technique
as implemented in the CRYSCOR code, and exploited a new
feature which calculates the correlated one-electron density
matrix at this level of theory.

It has been shown that CPs and their Fourier transform,
the autocorrelation functions �AF�, are very sensitive to in-
termolecular interactions, here in particular due to hydrogen
bonds, and to the way these are theoretically described. This
fact is particularly visible in the anisotropies of CPs and AFs
between the different crystallographic directions. The DFT
results, computed with different exchange-correlation func-
tionals, are found to be generally satisfactory, but to present
some definite disagreement with the experiment; this may be
due to the inability of standard DFT to correctly describe the
electron momentum density from which CPs are derived.19,20

Our periodic HF+MP2 results are found to be in very good
agreement with the experiment, thus demonstrating on the
whole the importance of a correct description of both the
Fermi and the Coulomb correlation among electrons. The
main consequence of the latter is a reduction in the aniso-
tropy of the momentum density within the crystal of urea by
speeding up the valence electrons along the �001� crystallo-
graphic direction, the one which contains the majority of the
intramolecular bonds. An experimentally detectable conse-
quence of correlation effects is the shift of the AF zeros from
the reticular positions, which reveals the inadequacy of a
single-determinantal description for the ground state of the
crystal.

Work is in progress aimed at taking into account orbital
relaxation and at allowing the use of more adequate basis
sets in the evaluation of the MP2 correction to the HF den-
sity matrix. We expect, however, that these technical im-
provements will not affect in any essential way the results
here presented.
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