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The quantum transport through nanoscale junctions is governed by the charging energy U of the device. We
employ the recently developed scattering-states numerical renormalization-group approach to open quantum
systems to study nonequilibrium Green’s functions and current-voltage characteristics of such junctions for
small and intermediate values of U. We establish the accuracy of the approach by a comparison with diagram-
matic Kadanoff-Baym-Keldysh results which become exact in the weak-coupling limit U→0. We demonstrate
the limits of the diagrammatic expansions at intermediate values of the charging energy. While the numerical
renormalization-group approach correctly predicts only one single, universal low-energy scale at zero bias
voltage, some diagrammatic expansions yield two different low-energy scales for the magnetic and the charge
fluctuations. At large voltages, however, the self-consistent second Born as well as the GW approximation
reproduce the scattering-states renormalization-group spectral functions for symmetric junctions while for
asymmetric junctions the voltage-dependent redistribution of spectral weight differs significantly in the differ-
ent approaches. The second-order perturbation theory does not capture the correct single-particle dynamics at
large bias and violates current conservation for asymmetric junctions.
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I. INTRODUCTION

Quantum dots and single-molecule junctions have been
considered as possible building blocks for nanoelectronics
and quantum-information processing.1–3 Recent technologi-
cal progress has made it possible to manufacture and study
electron transport trough ultrasmall quantum-dot devices,
nanotubes, or single molecules.3–11 These devices are de-
signed as a small central region comprising of a quantum dot
or a single molecule which is coupled to at least two leads
where the finite bias voltage is applied to. The investigation
of such devices is of fundamental importance for our under-
standing of open quantum systems out of equilibrium.

Due to the quantization of the charge, the physical prop-
erties of such junctions are dominated by many-body effects
at temperatures below the charging energy U=e2 / �2C�,
where C is the capacitance of the device. The experimental
devices are often fully controllable by external gate elec-
trodes or elongation of the scanning tunneling microscope
tip.3 This gives the opportunity to directly study true many-
body correlation effects, such as the Kondo effect �see for
example Refs. 12 and 13�, under the influence of an external
bias voltage. However, the theoretical understanding of the
interplay between coherent transport favored by many-body
correlations and current-driven dephasing at finite bias is still
at its infancy and further investigations are needed.

The present work has two main objectives. On the one
hand, we establish the reliability of the recently introduced
scattering-states numerical renormalization-group �SNRG�
approach14 to quantum transport by comparing results for
small values of U to the diagrammatic Kadanoff-Baym-
Keldysh approach, which becomes exact in the limit U→0.
On the other hand, we will discuss discrepancies and reveal
shortcomings of those diagrammatic approaches at interme-
diate values of the charging energy.

We investigate quantum transport through a quantum-dot
device using a minimal model15 where the complex interact-
ing region is replaced by a single spinful orbital which is
coupled to two noninteracting leads. A single Coulomb ma-
trix element U accounts for the charging energy of the de-
vice. We calculate nonequilibrium spectral functions16 and
current-voltage �I-V� characteristics using the SNRG as well
as different approximations17–20 within the diagrammatic
Kadanoff-Baym-Keldysh expansion in the local Coulomb
interaction U.

Over the past 40 years, the Keldysh technique21 has
proven to be the most successful approach to nonequilibrium
dynamics. In the context of quantum transport through
nanojunctions direct expansions in the interaction22–25 as
well as self-consistent resummation schemes have been
employed.17–20 However, such diagrammatic expansions rely
on a small expansion parameter, and are, therefore, confined
to weak coupling. But quantum-impurity models26 com-
monly used in the theory of quantum transport on the mo-
lecular level often exhibit infrared divergences in perturba-
tion theory12 which also restrict the diagrammatic Keldysh
approaches to certain parameter regimes usually to high tem-
perature or to large bias.

In contrast to equilibrium conditions, where complete and
accurate solutions can be obtained using a variety of non-
perturbative techniques such as the Bethe ansatz,27,28 confor-
mal field theory,29,30 or Wilson’s NRG approach,26,31 tech-
niques for calculating quantum transport out of equilibrium
remain largely at the development stage. Recent advance-
ments on the analytical side32–37 include suitable adaptations
of the Wegner’s flow equation38,39 and the real-time
renormalization-group method.40–42 These methods can suc-
cessfully access large voltages but are generally confined to
the weak-coupling regime. Based on the scattering-states ap-
proach to quantum transport36,43 the Bethe ansatz was ex-
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tended to quantum-impurity models out of equilibrium37 but
remains limited to a certain class of models.

On the numerical side, progress has been made in several
directions. Currents have been extracted from time-
dependent density-matrix renormalization-group44–47 calcu-
lations using finite one-dimensional wires and the results
agree well with Bethe ansatz results for certain models.48

Quantum Monte Carlo approaches based on scattering
states43 can access the intermediate coupling regime49,50 at
finite bias. Recent real-time formulations of continuous-time
quantum Monte Carlo51–53 and an iterative real-time path-
integral approach54 to quantum transport offer the appealing
advantage of working directly in the continuum limit but are
confined to relatively short time scales. Access to low tem-
peratures and long times is hampered in the former case by a
severe sign problem and by the extrapolation to long
memory times in the latter case. Hence neither approach can
presently be applied to nonequilibrium dynamics of corre-
lated systems with a small underlying energy scale, as is the
case with ultrasmall quantum dots when tuned to the Kondo
regime.

The usage of Lippmann-Schwinger scattering states has
been well established in quantum-field theory55 for over 50
years and also successfully adapted to the description of
quantum transport through strongly interacting nanodevices
coupled to ballistic leads.36,37,43,56 These states fulfill the cor-
rect boundary condition of the open quantum system: �i� they
break time-reversal symmetry and, therefore, are �ii� com-
plex and current-carrying and �iii� describe ballistic transport
in the leads combined with scattering events in the small
interacting quantum-dot region. This time-reversal symmetry
breaking is required for current carrying systems and reveals
itself naturally in all diagrammatic approaches by the occur-
rence of retarded and advanced Green’s functions. It is a
consequence of any regularization when performing the limit
to an infinitely large system.

In particular, the work of Hershfield,43 and Doyon and
Andrei36 has rigorously shown that these boundary condi-
tions remain unaltered when a local interaction is switched
on. The noninteracting current-carrying system evolves into
the new steady-state of the interacting system and the
steady-state density operator retains a Boltzmannian form.43

The explicit construction of those scattering states allows to
exactly solve the dc and ac Kondo model at the Toulouse
point57–59 as well as the interacting resonant-level model.37,48

Recently, an extension14 to Wilson’s numerical renormal-
ization group has been developed for steady-state quantum
transport through nanodevices which is able to deal with the
crossover from weak to strong coupling for arbitrary bias
voltages. It is based on Oguri’s idea60 of discretizing the
single-particle scattering states which are the solutions of the
Lippman-Schwinger equation55 for the noninteracting prob-
lem and, therefore, fulfill the correct boundary condition of
an open quantum system. This SNRG �Ref. 14� evolves the
analytically known density matrix of a noninteracting system
to the density matrix of the fully interacting problem by em-
ploying the time-dependent NRG �TD-NRG�.61,62 The NRG
is ideally suited to the problem, being known to provide
accurate solutions of quantum-impurity models on all rel-
evant interaction strengths at zero bias.26 Since the TD-NRG

can access exponentially long time scales,61,62 dwell times on
the order of the inverse Kondo-temperature are easily acces-
sible.

This paper is organized as follows. After the model used
is defined, we provide the details of the different theoretical
approaches in Sec. II. We summarize the basic ideas of the
SNRG method introduced in Ref. 14 in Sec. IIB and state all
necessary equations of the diagrammatic nonequilibrium
techniques in Sec. II C. The main body of the paper is in Sec.
III, where we present and discuss the results obtained for the
various methods. In order to set the stage for a detailed com-
parison between the SNRG and diagrammatic approaches at
finite bias, we begin with a discussion of the magnetic and
charge-fluctuation scales at zero bias in Sec. III A. Since the
NRG provides an accurate solution in this regime for arbi-
trary coupling strengths and temperatures, this reveals the
validity range of the diagrammatic approaches. We show
that—in contrast to the NRG—some of the diagrammatic
expansions fail to produce a single low-energy scale for
intermediate and large values of U. However, in the weak
correlation regime all these approaches agree excellently for
arbitrary voltages at small U and yield the same nonequilib-
rium Green’s functions as well as I-V characteristics which
are presented in Sec. III B. Discrepancies between the differ-
ent approaches at intermediate values of the Coulomb inter-
action are discussed in Sec. III C, where the spectral func-
tions and I-V curves of a symmetric and an asymmetric
junction are considered. We conclude with summary and a
short outlook in Sec. IV.

II. THEORY

A. Model

Quantum impurity models are used to describe quantum
transport on the molecular level. Their Hamiltonian H

H = Himp + Hbath + HI �1�

consists of three parts: an impurity part Himp modeling the
interacting device with a finite number of degrees of free-
dom, one or several bosonic or fermionic baths represented
by Hbath, and the coupling of these subsystems by HI.

Throughout this paper, we restrict ourselves to junctions
modeled by the single-impurity Anderson model with one
spinful orbital coupled to a left �L� and a right �R� lead and
an on-site Coulomb repulsion U

H = �
��=L,R

� d��� − ���c�,��
† c�,�� + �

�=�1
Edn̂�

d + Un̂↑
dn̂↓

d

+ �
��

t��� d��������d�
†c��� + c���

† d�� . �2�

Here, Ed is the single-particle energy of the quantum dot,
n̂�

d =d�
†d� measures its orbital occupancy and t�� represent

the elementary hybridization-matrix elements coupling the
dot to the two leads. The different chemical potentials �� in
both leads appear as a shift of the band centers and are func-
tions of the external voltage V=�R−�L.

For simplicity, we assume that both leads have the same
density of states, �R���=�L��������, characterized by the
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same band width D but different band centers. This Hamil-
tonian is commonly used to model a single Coulomb-
blockade resonance in ultrasmall quantum dots.4,15

B. Scattering-states numerical renormalization-group approach

1. Definition of the scattering states

In the absence of the local Coulomb repulsion HU
=Un̂↑

dn̂↓
d, the single-particle problem is diagonalized exactly

in the continuum limit14,43,49,56,60,63,64 by the following
scattering-states creation operators

����
† = c���

† + t�
������G0�

r ���

�	d�
† + �

��
� d��

t��
��������

� + i	 − ��
c�����

† 
 . �3�

�=L�R� labels left �right� moving scattering states created
by ���L�R�

† . The local retarded resonant-level Green’s func-
tion

G0�
r �
� = 	
 + i	 − Ed − �

�

t�
2� d�

�����

 + i	 − �
−1

�4�

enters as an expansion coefficient. Defining t̄=�tL
2 + tR

2 , we
will use rR�L�= tR�L� / t̄ and

��
� = t̄2�
�

r�
2� d�

�����

 + i	 − �

= Re���
�� − i��
� �5�

in the following.
In the limit of infinitely large leads—volume

Vol . →—the single-particle spectrum remains unaltered
and these scattering states diagonalize the Hamiltonian �2�
for U=0

H0
i = H�U = 0� = �

�=L,R;�
� d������

† ����. �6�

The scattering states are solutions of the Lippmann-
Schwinger equation55 and therefore break time-reversal sym-
metry, which constitutes a necessary boundary condition to
describe a current-carrying open quantum system. This is
encoded in the small imaginary part +i	 entering Eqs.
�3�–�5� required for convergence when performing the con-
tinuum limit Vol . → in the leads.

The complex expansion coefficients in Eq. �3� are given
by retarded functions, e.g., G0�

r ���, which causes the scatter-
ing states to be complex and current carrying. For zero bias
voltage, time-reversal symmetry manifests itself in the iden-
tical spectrum for left and right movers which are time-
reversal pairs in that limit.

To avoid any contribution from bound states, we will im-
plicitly assume a wide band limit: D�max�Ed ,� , V�,
where ��=�t�

2��0� and �=�L+�R.
Hershfield has shown that the density operator for such a

noninteracting current-carrying quantum system retains its
Boltzmannian form43

�̂0 =
e−��H0

i −Ŷ0�

Tr�e−��H0
i −Ŷ0��

, Ŷ0 = �
��

��� d�����
† ���� �7�

even for finite bias. The Ŷ0 operator accounts for the differ-
ent occupation of the left-and right-moving scattering states,
and �� for the different chemical potentials of the leads.

Therefore, all steady-state expectation values of operators
can be calculated using �̂0 which includes the finite bias. In
the absence of a Coulomb repulsion U, this is a trivial and
well-understood problem. It was shown60 that the current-
expectation value using this density operator �̂0 reproduced
the standard result15,65,66 for noninteracting devices. The
knowledge of the analytical form of �̂0, however, makes this
steady-state model accessible to a NRG approach.14,26

The expansion coefficients of ����
† in Eq. �3� contain the

complex single-particle Green’s function G0�
r ��� which we

separate in modulus and phase

G0�
r ��� = G0�

r ���e−i�����. �8�

This phase is absorbed into the new scattering states ����
†

→ �̃���
† =����

† ei����� by a local gauge transformation. The im-
purity operator d�

† is expanded into left- and right-mover
contributions

d�
† = rRd�R

† + rLd�L
† �9�

using the inversion of Eq. �3�. These two new operators d��
†

are then defined as

d��
† = t̄� d������G0�

r ����̃���
† �10�

and obey the anticommutator relation �d�� ,d����
† �=	���	���.

2. Discretization of the scattering states

The SNRG �Ref. 14� starts from a logarithmic discretiza-
tion of the scattering-states continuum ���� in intervals I+

n

= ��−�n+z�D ,�−�n+z−1�D� and I−
n = �−�−�n+z−1�D ,−�−�n+z�D�

�n=1,2 , . . .�, controlled by the parameters26,31 ��1 and z
� �0,1�. The intervals for n=0 are defined as I+

0 = ��−zD ,D�
and I−

0 = �−D ,−�−zD�. An average over various z values67 is
used to mimic the conduction-band continuum.

Then, the discretized version of the noninteracting Hamil-
tonian �6� is mapped onto a semi-infinite Wilson chain

H0��� = �
��

�
n=0



wn��fn��
† fn��

+ �
��

�
n=0



�tn��fn��
† fn+1�� + tn��

� fn+1��
† fn��� , �11�

whose tight-binding matrix elements tn�� decay exponen-
tially tn����−n/2 for large n. In contrast to the standard
NRG,26,31 the impurity degree of freedom has been included
into H0��� since not the leads but the full scattering states
have been discretized. Any complex phase in the tight-
binding parameters tn�� can be absorbed into the creation
�annihilation� operators fn��

† �fn��� of an electron on the
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chain link n with spin � and mover � by a local gauge
transformation.

We use d�� defined in Eq. �10� as starting vector f0��

=d�� for the Householder transformation31 and obtain the
tight-binding coefficients of the Wilson chain in Eq. �11� by
the usual procedure.26,31 It is straight forward to show that
the energy of the first chain link corresponds to the energy of
the original quantum-dot orbital: w0��=Ed.

3. Local Coulomb interaction

In order to include the local Coulomb interaction, the den-
sity operator n̂�

d =d�
†d� must be expanded in the new orbitals

d��. It consist of two contributions: A density term and a

backscattering term n̂�
d = n̂�

0 + Ô�
back, where

n̂�
0 = �

�

r�
2d��

† d�� �12�

and the backscattering Ô�
back term is defined as

Ô�
back = rLrR�d�R

† d�L + d�L
† d�R� . �13�

The local Coulomb interaction HU

HU = U�n̂↑
0n̂↓

0 + �
�

Ô�
backn̂−�

0 + Ô↑
backÔ↓

back� �14�

leads to a mixing of left and right movers since Ô�
back does

not commute with Y0. However, the term HU
0

HU
0 =

U

2 ��
�

n̂�
0 − 1�2

�15�

commutes with Ŷ0 and can be absorbed into the steady-state

density operator �̂0→ �̃0=exp�−��Hi− Ŷ0�� /Z with Hi=H0
i

+HU
0 using the arguments given in Ref. 36.

4. Review of the time-dependent numerical renormalization-
group approach

Starting from an equilibrated system for times t�0, the
initial Hamiltonian Hi is changed to H f by a sudden quench
at t=0. Then, the density operator �̂�t� evolves from its initial
value �̂0 at t=0 as

�̂�t� = e−iHft/��̂0eiHft/�. �16�

If Hi�f� describes a quantum-impurity problem and Ô is an
impurity operator, it was recently shown that the real-time

dynamics of the expectation value of O�t�= �Ô�t�� can be
calculated61,62 by evaluating

O�t� = �
m

�
r,s

dis

�r,s
red�m�Os,r

m e−i�Er
m−Es

m�t/�, �17�

where Os,r
m = �s ,e ;mÔr ,e ;m� denotes the matrix elements of

the operator Ô and Er
m the NRG eigenenergy of the eigen-

state r ;m� to H f at NRG iteration m. The sum restriction
�r,s

dis indicates that at least one of the states r ,s must be a
discard state at iteration m. Excitations between two retained

states will be refined in the following iterations m��m and,
therefore, will contribute at a later iteration. e labels the en-
vironment degrees of freedom of the Wilson chain links to be
incorporated in subsequent iterations m��m and the
r ,e ;m�= r ;m� � e� are just tensor-product states of the
eigenstates of the mth iteration and the yet uncoupled rest
chain. The reduced density matrix

�r,s
red�m� = �

e

�r,e;m�̂0s,e;m� �18�

traces out all environment degrees of freedom e. The initial
conditions are encoded into the density operator �̂0 calcu-
lated with the initial Hamiltonian Hi. The calculation of the
overlap matrix between the NRG eigenstates of Hi and H f
allows for the basis set transformation of �r,s

red�m� into the
basis of the final Hamiltonian provided that �̂0 remains re-
stricted to the last Wilson shell.61,62 This transformed �r,s

red�m�
enters Eq. �17�.

The discarded states form a complete basis set61 for the
Fock space of the entire Wilson chain of length N, i.e., FN
=span�l ,e ;m�� where l labels all discarded states at iteration
m. The iterative diagonalization thus procures the set of �ap-
proximate� eigenstates for the whole energy range from high
energies on the order of the bandwidth down to very low
energies such as the Kondo scale. This is indispensable be-
cause nonequilibrium processes usually involve all energy
scales and cannot be confined to a finite low-energy window
set by the last Wilson shell as in the usual equilibrium NRG.

5. The scattering-states NRG approach and steady-state
Green’s function

In Sec. II B 1 we have argued that the analytic form the
steady-state nonequilibrium density operator is known for
the noninteracting case. This allows for applying the NRG
approach to construct a faithful representation of �̂0�V ,U
=0�. We assume that when switching on the Coulomb inter-
action HU for infinitely large leads �i� a steady state is
reached after some characteristic but finite time and �ii� it is
unique and independent of the initial condition. As described
earlier, the boundary condition of time-reversal symmetry
breaking is imposed on the scattering states and the nonequi-
librium density operator at t=0 for U=0. The interaction
quench at t=0, i.e., switching on a local scattering potential,
and the subsequent unitary time evolution do not affect this
boundary condition, and the time-evolved operators charac-
terize the interacting current-carrying open quantum system.

The time average of the density operator

�̂ = lim
T→

1

T
�

0

T

dt�̂�t� �19�

projects out the steady-state contributions to the time-
evolved density operator �̂�t�=exp�−iH ft /���̂0 exp�iH ft /��
even in a finite-size system: only the energy diagonal terms
contribute in accordance with the steady-state condition
�H f , �̂�=0. Even though �̂ remains unknown analytically,
we can construct it systematically using the time-dependent
NRG �Refs, 61 and 62� described above.

The steady-state retarded Green’s function is defined as
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GA,B
r �t� = − i Tr��̂�Â�t�,B̂�s���t� , �20�

where Â�t�=eiHft/�Âe−iHft/�, �Â�t� , B̂�s denotes the commuta-
tor �s=−1� for bosonic, and the anticommutator �s=1� for
fermionic correlation functions. This Green’s function can be
calculated using the time-dependent NRG �Refs. 61 and 62�
and extending ideas developed for equilibrium Green’s
functions.68 The completeness relation for the basis of dis-
carded states as introduced above is given by

1 = �
m=mmin

N

�
l�dis

�
e

l,e;m��l,e;m , �21�

where mmin denotes the first iteration at which the NRG trun-
cation is employed, N is the total number of iterations �i.e.,
the length of the Wilson chain�, and l only runs over the
states which are discarded at iteration m. For each iteration
m, we can partition the completeness relation in Eq. �21� into
two parts, 1=1m

− +1m
+ , where the first part incorporates the

iterations mmin to m and the second the iterations m+1 to N.
Since 1m

+ spans the part of the Fock space which contains all
kept states k ,e ;m� after iteration m, the identity

1m
+ = �

m�=m+1

N

�
l�dis

�
e

l,e;m���l,e;m�

= �
k�kept

�
e

k,e;m��k,e;m �22�

must hold. The different contributions to the Green’s func-
tion are calculated for each energy scale Dm��−m/2 by ex-
panding the �anti-� commutator in Eq. �20� and inserting the
completeness relations Eqs. �21� and �22� repeatedly. By

making use of the fact that local operators Â and B̂ are diag-
onal in the environment degree of freedom e, reduced den-
sity matrices �r,s

red�m� occur naturally when tracing out the
environment e here as well. Although the excitation energies
remain confined to the same energy scale, terms connecting
different energy scales Dm and Dm� are implicitly included
through the reduced density matrices such as defined in Eq.
�18�. Similar to the real-time dynamics, the summation over
all m then ensures that all energy scales Dm contribute to the
Green’s functions.16,68 A detailed derivation is given in Ref.
16. It was shown that the algorithm is identical to the equi-
librium algorithm68 if Hi=H f. Laplace transforming GA,B

r �t�
yields the steady-state spectral function for the retarded
Green’s function which is used to calculate the current �see
Eq. �43� below�.

C. The Kadanoff-Baym-Keldysh approach

We employ the nonequilibrium perturbation theory as for-
mulated by Kadanoff and Baym,69 and Keldysh21 on the
usual Keldysh time contour, for example, see Refs. 70–72.
Since we are only interested in the steady-state properties,
the information and correlations of the initial conditions are
assumed to be lost. This is archived by sending the initial
time t0→− and dropping all correlation functions which
involve the initial state. It is again assumed that the system

reaches a steady state which is translational invariant in time.
Therefore, the single-particle Green’s function does only de-
pend on the difference between the two formerly indepen-
dent times of particle creation and annihilation. The Laplace
transform of the time difference then leads to the formulation
in frequency space for all Green’s functions of the steady
state.

In the nonequilibrium steady-state formulation two inde-
pendent components of the contour ordered Green’s function
survive which are chosen to be the retarded and lesser
Green’s functions, Gr�
� and G��
�, respectively. The ad-
vanced and greater functions are related via

Ga�
� = Gr�
�†, �23�

G��
� = G��
� + Gr�
� − Ga�
� . �24�

The two relevant Green’s functions can be expressed
as19,73

G�
r �
� =

1


 + i	 − Ed − ��
H − ��
� − ��

r �
�
, �25�

G�
��
� = G�

r �
�2�2ifeff�
� + ��
��
�� , �26�

feff�
� = fL�
��L�
� + fR�
��R�
� , �27�

where, again, ��
�=�R�
�+�L�
� are the hybridization
functions of the leads, ���
� their imaginary parts �see Eq.
�5�� and f��
�=1 / �exp ��
−���+1� are the Fermi func-
tions of the corresponding leads. The retarded and lesser self-
energies, �r and ��, respectively, include all correlation ef-
fects induced by the Coulomb interaction U. ��

H accounts for
the frequency-independent Hartree energy shift.

Nonequilibrium self-energy

Diagrammatic expansions in the Coulomb interaction of
the self-energy74 have been investigated for systems in
equilibrium75–78 as well as in nonequilibrium.17–19,22–25,59,79,80

The self-energies can be evaluated either nonself-
consistently, where bare propagators are used as inner lines,
or in terms of skeleton diagrams, where fully dressed propa-
gators are taken into account.

In this study we focus on three different approximations
for the self-energy: �A� The bare expansion up to second
order in U, where Hartree-Fock �HF� propagators are used as
internal lines. The latter are just the noninteracting propaga-
tors but with a shifted level position Ed�=Ed+U /2. This ap-
proximation is labeled 2ndU and its diagrammatic represen-
tation is schematically shown in Figs. 1�a� and 1�b�. �B� The
self-consistent evaluation of the second-order skeleton dia-
gram of Figs. 1�a� and 1�b�. This approximation is called
second Born approximation �2BA� but in contrast to the
usual 2BA, no exchange contribution exists for the single-
impurity Anderson model in Eq. �2� with only one spinful
orbital. �C� In the GW approximation81,82 �GWA� the bare
Coulomb interaction U is screened by an infinite series of
particle-hole excitations, which can be summed as indicated
in Fig. 1�c�. No contributions with odd orders in the interac-
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tion occur in this series due to the definition of the matrix
elements of the Coulomb interaction in our model, Eq. �2�,
where we set matrix elements between electrons with the
same spin explicitly to zero.83

The 2BA and the GWA are both evaluated self-
consistently and thus the self-energies can be derived from a
Luttinger-Ward functional.74 Therefore, both constitute con-
serving approximations in the sense of Kadanoff and
Baym.84 It can be shown that elementary sum rules such as
charge and current conservation are obeyed.80 In contrast, the
nonself-consistent 2ndU approximation is not conserving
which can lead to the violation of current conservation as it
will be demonstrated later.

The Hartree shift is produced by the average occupation
of the quantum dot

��
H = U�n̂�̄� , �28�

�n̂�� =� d


2�i
G�

��
� �29�

and analytic expressions for the self-energies read

��
r �
� = i� dx

2�
G�

��x�W�
r �
 − x� + i� dx

2�
G�

r �x�W�
��
 − x� ,

�30�

��
��
� = i� dx

2�
G�

��x�W�
��
 − x� , �31�

where the effective interactions are given by

W�
r �
� = U2P�̄

r �
� �2BA� , �32�

W�
r �
� =

U2P�̄
r �
�

1 − U2P�
r �
�P�̄

r �
�
�GWA� , �33�

W�
��
� = W�

r �
�P�
��
�W�

a�
� , �34�

W�
��
� = W�

r �
�P�
��
�W�

a�
� �35�

and the particle-hole bubbles are

P�
r �
� = − i� dx

2�
G�

r �x�G�
��x − 
� − i� dx

2�
G�

��x�G�
a�x − 
� ,

�36�

P�
a�
� = − i� dx

2�
G�

a�x�G�
��x − 
� − i� dx

2�
G�

��x�G�
r �x − 
� ,

�37�

P�
��
� = − i� dx

2�
G�

��x�G�
��x − 
� . �38�

In the above expressions the advanced and greater Green’s
functions can be determined via Eqs. �23� and �24� and �̄=
−� denotes the opposite spin of �.

Equations �25�–�38� form a closed set, which is solved
self-consistently for the 2BA and GWA. For the 2ndU ap-
proximation all particle-hole propagators in Eqs. �36�–�38�
are evaluated only once with bare Green’s functions

g�
r �
� =

1


 + i	 − Ed − ��
H − ��
�

, �39�

g�
��
� = 2ig�

r �
�2feff�
� �40�

and Eq. �32� is used as the effective interaction. The Hartree
shift is included in order to determine the desired filling. The
effective Fermi function feff�
� was defined in Eq. �27�.

The GWA �Refs. 81 and 82� has been successfully applied
to overcome some shortcomings of local-density calculations
and estimate the screening of the Coulomb interactions in
solid-state physics. Recently, it has been employed to calcu-
late quantum transport through nanoscale devices.17–20,80 In
the context of the single-impurity Anderson model it was
shown to accurately describe the equilibrium properties in
the weakly interacting regime and in asymmetric situations
with a nearly empty or nearly full impurity orbital.80,85 In the
strongly interacting Kondo regime, i.e., �−U�Ed�−�, the
GWA produces a narrow peak in the spectral function at the
Fermi level, which could be interpreted as remnants of the
expected many-body resonance.80 However, the line shape of
this low-energy resonance as well as the high-energy Hub-
bard peaks at 
�Ed and 
�Ed+U are not correctly repro-
duced by this approximation.80,85 Additionally, for very large
interactions strength U /��8, all three perturbative ap-
proaches favor an unphysical magnetic ground state, which
is actually forbidden by the Mermin-Wagner theorem.86 In
the nonequilibrium situation, the proximity to bifurcation
points of these sets of equations leads to unphysical hyster-
etic response.19

D. Current as function of the bias voltage

The current flowing from lead � onto the impurity region
can be expressed as66

(a) Σ(ω) = � + �
(b) 2ndU, 2BA : � = �
(c) GWA : � = � + � + . . .

=

[
1 −

]−1

FIG. 1. �a� Schematic representation of the Kadanoff-Baym-
Keldysh self-energy. The first term represents the frequency-
independent Hartree shift while the second contribution represents
the interaction part. The double-dashed line is the effective interac-
tion W while the single-dashed line represents the bare interaction
�U. The second-order diagram is shown in �b�. For the nonself-
consistent second-order U �2ndU� approximation the internal solid
lines with arrows are taken as the HF propagators while for the 2BA
the internal lines denote fully dressed propagators. In the GWA �c�
the interaction is renormalized by an infinite series of particle-hole
pairs which can be summed as indicated in the last line. The internal
lines again denote fully dressed propagators.
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I� =
e

h
�
�
� d
���
��2iG�

��
,V� + f��
�4���
r �
,V�� ,

�41�

where ��
r �
 ,V�=−Im�Gr�
 ,V�� /� is the frequency- and

voltage-dependent spectral function of the retarded impurity
Green’s function. Since the steady-state current onto the in-
teracting region from the left must be equal to the current
leaving to the right lead, i.e., IL=−IR= I, we can symmetrize
the left and the right currents with a linear combination66 and
write it as

I = rR
2 IL − rL

2IR. �42�

In the wide band limit, ���
�→��=���0� and r�
2 =�� /�

holds such that the term proportional to G�
��
� drops out of

Eq. �42� and we obtain

I =
G0

e
�
�
� d
�fL�
� − fR�
������

r �
,V� , �43�

where we have defined G0

G0 =
e2

h

4�L�R

�2 . �44�

G0 reaches the universal conductance quantum e2 /h for a
symmetric point-contact junction, �L=�R, and is strongly
suppressed in the tunneling regime ����−�.

For the voltage drop across the two contacts of the impu-
rity to the leads we employ a serial resistor model where the
chemical potentials in the leads are given by �L=−rR

2 V and
�R=rL

2V. At zero temperature, the zero bias conductance G
=edI /dV V=0=G0�����r�0� is proportional to the spectral
function at the Fermi level. In the zero temperature Fermi
liquid and for a symmetric junction ��

r �0�=1 / ����. The con-
ductance is given by its universal value G=2G0 which shows
in the slope at zero bias of the I-V characteristics, i.e.,
Ie /G0=2V.

We also define a leakage current

�I = IL + IR =
2e

h
�
�
� d
��L�
� + �R�
��iG�

��
�

+
4e

h
�
�
� d
feff�
����

r �
� �45�

which must vanish due to current conservation, IL=−IR, in a
physical junction. Therefore, deviations from �I=0 mea-
sures shortcomings of an approximation.

III. RESULTS

In this section we compare and discuss the results ob-
tained from the different diagrammatic Keldysh approaches
with the SNRG. For simplicity, we used symmetric structure-
less leads characterized by a constant density of states with a
half-bandwidth D=20�, i.e., ���
�=����D− 
�. The total
�=�L+�R is used as the energy scale: All energies, voltages
and temperatures are measured in units of �=1 throughout
the paper.

For the SNRG a rather large �=4 was chosen and Ns
=2200 states were retained in each NRG-iteration step. z
averaging67 with either Nz=2 or Nz=4 different z values was
performed and the broadening parameter for the spectral
function87 was chosen b=1.3 /Nz. For large U some unphysi-
cal wiggles may emerge in the spectral function as it is ex-
plained below. In principle, these wiggles can be minimized
by choosing a smaller �, incorporating more states or per-
forming the z averaging with a larger number of z values.

We did not include an external magnetic field and no
magnetic solutions are encountered for the parameter values
used in this paper. Therefore, we will drop the spin index
from now. The two spin components of the spectral functions
and self-energies are identical, e.g., ��

r =��̄
r ��r and ��

r =��̄
r

��r, respectively.
Before we apply finite bias voltages, we will compare the

different equilibrium low-energy scales obtained with the
diagrammatic approaches to NRG results. While the dia-
grammatic approach becomes exact only in the weak-
coupling limit U→0, the NRG produces the correct scales
for all interaction strengths. We will identify the validity
range of the diagrammatic expansion. In that regime the dia-
grammatic approach produces correct results even in non-
equilibrium and we will therefore use it to benchmark the
SNRG for finite voltages.

A. Equilibrium low-temperature scales

The single-impurity Anderson model in equilibrium for
T→0 always forms a local Fermi liquid.12,88–90 The spectral
function for a symmetric junction approaches the zero-
temperature limiting value ��
=0, T=0�=1 / ���� in accor-
dance with the Friedel sum rule.91,92 The Fermi-liquid forma-
tion is associated with a characteristic low-energy scale,
which is identified with the Kondo temperature TK at large
Coulomb repulsions and near half-filling.

The SNRG coincides with the usual NRG �Refs. 26, 31,
and 89� in equilibrium, which accurately describes the cross-
over from high to low temperatures and provides the correct
low-energy scale TK depending exponentially on U.89 The
2ndU approximation, however, predicts a low-energy scale
which is perturbative in U and too large.93 The GWA does
produce a narrow many-body resonance in the spectral func-
tion at the Fermi level. Extracting a low-energy scale from
the full width at half maximum �FWHM� for an asymmetric
junction �Ed�−U /2�, as shown in Fig. 5 of Ref. 80, suggests
an exponential variation with the ionic level position Ed.
However, the exponent has the wrong prefactor as compared
to the exact analytic form.90,94

In order to extract the low-energy scale from our model
calculations we employ two different methods: we calculate
the temperature-dependent zero-bias conductance G
=dI /dV V=0 and fit it to a phenomenological form.5,95 Since
G is directly determined by the spectral function, it is sensi-
tive to the amount of spectral weight in the temperature win-
dow −T�
�T. The scale TK

charge extracted in this way con-
stitutes the energy scale relevant for the zero-bias charge
transport in the system. This procedure yields the same result
as the aforementioned extraction from the FWHM of the
resonance at the Fermi level.
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The second way utilizes the screening of the effective
local magnetic moment, �eff

2 =T��T�=TdM /dH H=0, where �
is the magnetic susceptibility, M the magnetization and H an
external magnetic field. We calculate M for a finite but small
external magnetic field 	H=10−9�, and extract the suscepti-
bility via the difference quotient. In the Fermi-liquid regime
the effective magnetic moment follows an universal curve as
function of temperature from which the low-energy scale is
determined by defining TK��TK��0.07.31,89 The resulting
TK

mag sets the scale for magnetic excitations in the system and
is directly linked to the Kondo screening of the local mag-
netic moment.

For large values of the Coulomb interaction, the scales
TK

mag and TK
charge should coincide �apart from a constant of

order one� and vary as exp�−�U /8�� for a symmetric quan-
tum dot. For very small values of the Coulomb repulsion
U�� both should approach �. The charge scale TK

charge is
expected to be roughly constant and on the order of TK

charge

�� for U /���1 since for such small interactions charge
fluctuations to and from the leads dominate the physics, and
the spectral function stays very close to its HF form. On the
other hand, the magnetic scale is known to decrease expo-
nentially for all U.96,97

Figure 2 shows the two scales extracted from NRG and
GWA calculations for a symmetric junction in equilibrium.
The NRG results show the expected U dependencies: The
charge scale TK

charge is on the order of � for small U�3� and
decreases exponentially for large U�4�. The magnetic scale
TK

mag decreases exponentially for all U as it is evident from
the comparison with a fit function a exp�−�U /8� also in-
cluded in the plot. Furthermore, there exists only one univer-
sality scale for large U which manifests itself by TK

mag

�TK
charge �not shown�.
On the other hand, the scales obtained from the GWA

agree with the NRG only for small U. The charge scale
TK

charge perfectly agrees with the NRG curve for U�4. Sig-
nificant deviations are observed for larger U, where the
GWA TK

charge decreases faster than the NRG. For U signifi-
cantly larger than the ones shown in the plot, no scales could

be extracted due to the artificial symmetry breaking already
reported in the literature.80,85

We added a second GWA charge scale T̃K
charge to the graph

which is obtained from the width of the low-energy feature at
75% of �r�0� �and not at the FWHM as for TK

charge�. The
correspondingly extracted scale should coincide with TK

charge,
apart from a prefactor. But it is found that both scales follow
the same trend only for small U and already for U�3 a
much stronger decrease than the expected exp�−�U /8�� is

observed in T̃K
charge.

Therefore, the extraction of the charge scale within the
GWA at intermediate U is somewhat ambiguous. A compari-
son of the zero-temperature equilibrium spectral function of
the GWA and NRG for U=4� is depicted in Fig. 3. The
low-energy feature of the GWA spectral function is too nar-
row and exhibits a rather spiky line shape which suggest at
too low charge scale. This is supported by the evolution of
�r�0� as a function of temperature which is shown in the
inset of Fig. 3. The logarithmic increase in �r�0� which oc-
curs at temperatures on the order of the relevant charge scale
also reveals that the charge scale is predicted as too low in
GWA compared to the NRG. However, a considerable broad-
ening occurs away from the Fermi level which leads to the
same FWHM for the GWA as in the NRG and consequently
the larger TK

charge emerges in thermodynamic quantities such
as G�T�.

The magnetic scale TK
mag extracted from the GWA exhibits

some peculiar U dependence. For small U�� the scale
agrees with the NRG. However, it develops a minimum at
U�2.5� and then increases again for increasing U. This
clearly indicates a failure of the GWA to describe magnetic
properties for intermediate and large interactions. Since the
GWA effective moments �eff

2 show universality as functions
of the dimensionless temperature t=T /TK

mag for low tempera-
tures �not shown�, the increase in TK

mag implies a too strong
screening of magnetic moments. The effective Coulomb in-
teraction is overscreened by W �see Eq. �33��. The electrons
remain itinerant even at rather large U and the GWA fails to

� � �

�

� � � � � �

T
K

U

Tmag
K � � � � � �

T charge
K � � � � � �

Tmag
K � �  � �

T charge
K � �  � �

˜T charge
K � �  � �

a exp(−πU/8)

FIG. 2. �Color online� The equilibrium low-energy scales as
functions of U extracted from the various approximations as de-
scribed in the text. A fit to the magnetic scale of the NRG to show
the exponential decay �exp�−�U /8� is also included in the plot.

�

� � �

� � �

� � �

� � �

� � � � � � � � � �

ρ
r
(ω

)

ω

� � �

� � �

� � �

� � � � � � � � � � � � �

T

ρr(0)

� � � �

�  �

FIG. 3. �Color online� Comparison of the NRG and the Keldysh
GWA equilibrium �V=0� zero-temperature spectral functions for
U /�=4 and Ed=−U /2 and a quantum-point contact �L=�R=1 /2.
The inset shows the temperature evolution of the spectral function
right at the Fermi level, �r�
=0,T�. The NRG parameters are �
=2, Ns=1500, Nz=4, and b=0.325, and 50 NRG iterations were
performed.
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capture the atomic limit. Therefore, the magnetic screening
scale TK

mag remains large in the GWA and actually increases
with U.

The scales extracted from the other two diagrammatic ap-
proximations all coincide with the GWA for small U��. For
larger U the 2ndU approximation produces the same differ-
ence as the GWA between the charge and the magnetic scale,
whereas within the 2BA both scales decrease with increasing
U, but in a polynomial rather than exponential fashion. We
have established that the diagrammatic approach produces
reliable results for interactions up to the order of the hybrid-
ization strength U�� which we will use in the following
section to benchmark the SNRG in that regime.

B. Weak correlation regime: U›�

We study the nonequilibrium properties of a symmetric
and an asymmetric junction in the weakly correlated regime
U /��1. We use a very low temperature T=0.006�, which is
sufficiently small compared to all other scales in the problem
so it can be considered as T=0 with impunity.

For such small interactions the diagrammatic approaches
and the SNRG yield identical results for all voltages. Figure
4�a� shows the nonequilibrium spectral function of a sym-
metric junction in the quantum-point contact regime, i.e.,
U=−2Ed=�=1 and �L=�R=� /2=0.5. For small voltages
V /��0.5 the spectra are even indistinguishable from the HF
result. Only at larger V small deviations around the Fermi
level as can be observed.

The imaginary part of the retarded self-energy
−Im��r�
�� for that junction obtained with the GWA is
shown in the inset of Fig. 4�a� for various voltages. The
overall scale of −Im��r�
�� is much smaller than � and,
therefore, the total self-energy �tot=�r+� is dominated by
the charge-fluctuation scale �. But the general influence of a
finite bias voltage can already be observed here: The quasi-
particle scattering amplitude is increased by the interplay be-
tween the voltage-induced fluctuations and the interaction.

The characteristic Fermi-liquid quadratic minimum in
−Im��r�
�� at the Fermi level is destroyed with increasing
voltage and the local Fermi liquid prevailing in equilibrium
�V=0� is suppressed at large enough bias. The evolution of
the minimum in −Im��r�
�� with voltage bears some resem-
blance with a temperature evolution. The quasiparticle coher-
ence is destroyed by a finite voltage in a similar fashion as
with increasing temperature.

The resulting I-V characteristics of a symmetric and an
asymmetric junction are shown in Fig. 4�b� for U=�. The
current is normalized to G0 /e and measured in units of �.
The rescaled current always saturates at 2�� for large volt-
ages independent of U �not shown�, as required by Eq. �43�.
The initial slope at zero voltage of the I-V curve remains
unaltered for all values of U, in accordance with the Fermi-
liquid nature of the model at small bias and zero temperature.

While a symmetric junction with symmetric coupling to
the leads always results in symmetric spectral functions,
�r�
 ,V�=�r�
 ,−V�, and antisymmetric I-V characteristics,
I�−V�=−I�V� �see Eq. �43��, an asymmetric junction in com-
bination with asymmetric coupling yields a nonantisymmet-
ric I-V characteristics with I�−V��−I�V�. This is clearly vis-
ible in Fig. 4�b�. The bias window ranges from �L=−rR

2 V to
�R=rL

2V and is not symmetric around the Fermi level. In
combination with the shift of spectral weight to higher ener-
gies in �r�
�—the center of the spectral function is at 2Ed

+U�0—this leads to a smaller contribution to the current
for negative voltages.

In contrast to the spectral functions, the I-V characteristics
of the SNRG and GWA agree perfectly with the HF results
for all voltages. The current is rather insensitive to the de-
tailed distribution of spectral weight and measures only the
total amount in the bias window ��L ,�R�.

The SNRG produces the correct results for small values
of the interaction U�� and has thus no principal limitations.
Therefore, the expectation that it is reliable at arbitrary inter-
action strengths as well is warranted.
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� � � � � � � � �
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FIG. 4. �Color online� �a� Spectral function of the retarded Green’s function and negative imaginary part of the retarded self-energy
�inset� of a symmetric junction with U=−2Ed=1 and �L=�R=0.5 for different voltages. Results for the spectral functions are shown for HF,
GWA, and SNRG while the self-energy is shown for the GWA only. �b� Current as a function of voltage for a symmetric �U=−2Ed=1 and
�L=�R=0.5� and an asymmetric junction �U=1, Ed=−0.25, and �L=4�R=0.8�. I is normalized to G0 /e=h /e �symmetric� and G0 /e
=0.64h /e �asymmetric� and measured in units of �=1. A small temperature of T=0.006 was used for all calculations. Parameters for the
SNRG calculations are �=4, Ns=2200, Nz=2, and b=0.65, and 12 NRG-iterations were performed.
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C. Intermediate correlation regime: �›U›10�

As demonstrated in the previous section the interaction
plays a minor role for small U /�. On the other hand, with an
odd number of electrons on the quantum dot and at very
large U /� and �−U�Ed�−�, the system develops a
Kondo effect as T→0 �see for example Refs. 12 and 13�.
The SNRG was shown14 to correctly describe the strongly
correlated Kondo regime out of equilibrium. The enhance-
ment of the conductance in the Coulomb-blockade region
was reproduced for small bias and the destruction of the
many-body resonance at the Fermi level with increasing
voltage has been studied.

In this section we will focus on the intermediate interac-
tion regime, where correlations become increasingly impor-
tant. Since the diagrammatic Keldysh approximations al-
ready show deficiencies in equilibrium—see, for example, in
Sec. III A or Ref. 85—discrepancies will extend to finite
voltages.

1. Nonequilibrium spectral functions of a symmetric junction

The nonequilibrium spectral function for various voltages
and intermediate interaction U=4 is shown in Figs. 5�a�–5�c�
for a symmetric junction �Ed=−2� with symmetric coupling
to the leads ��L=�R=� /2=0.5� at T=0.1. Now all diagram-
matic approximations yield different results.

At low voltages, the SNRG and 2ndU approximation re-
produce the slight humps at energies 
� �U /2 which are
the first indicators of upper and lower Hubbard satellites
forming at large U. The GWA only produces the broad high-
energy tails without the indication of forming separate peaks
and the 2BA completely fails to produce the enlarged spec-
tral weight at high energies.

As the voltage is raised, the Coulomb interaction causes
additional dephasing, leading to increasingly broadened
spectra. However, the 2ndU approximation produces system-
atically too broad high-energy tails and an unphysical plateau
around 
=0, which even develops a slight dip as seen in Fig.
5�c�. We attribute this to a tendency to overestimate the Cou-
lomb repulsion. This might already be guessed from the
equilibrium spectral functions, where the 2ndU approxima-
tion unexpectedly produces the high-energy Hubbard satel-
lites for arbitrary large Coulomb repulsion. These are con-
nected to the ionic many-body states of the isolated atom
which are not expected to be described by a second-order
perturbation theory. However, the analytic structure of the
retarded self-energy, Eqs. �30�, �32�, �36�, and �39�, has two
direct consequences: �i� for small coupling to the leads or
large U it favors a �r�
��U2 / �
+ i	� behavior. This results
in a two-peak structure with the peak positions and widths
roughly given by �U and �, respectively. �Incorporating a
screened and dynamic Coulomb interaction, as it is done in
the 2BA and GWA, leads to a prefactor smaller than U2 and
additional imaginary parts enter in the frequency dependence
of �r�
�. The Hubbard satellites are then moved to lower
energies and broadened.� �ii� The Fermi functions entering
Eq. �36� through G� lead to a narrowing of the integration
interval for decreasing temperature. At zero temperature this
always produces a vanishing imaginary part of the self-
energy at the Fermi level, Im��r�
=0, T=0��=0,98 given

that the noninteracting propagators are nonsingular at 
=0.
�This reasoning also holds for the 2BA and GWA�.

The combination of �i� and �ii� gives rise to the two-peak
structure in the spectral function for large U and the emer-
gence of an additional peak at the Fermi level for low tem-
peratures which is usually interpreted as the Kondo reso-
nance. But, in principle, there is no justification why the
2ndU approximation should be reliable for large values of U
under arbitrary conditions. Already for the asymmetric
model in equilibrium the phase-space argument �ii� does not
guarantee the correct description of the low-temperature
Fermi liquid anymore and it is well known that the 2ndU
approximation produces unphysical results.99,100 Therefore,
the large differences to all other methods at finite voltages, as
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FIG. 5. �Color online� Spectral functions of the SNRG and the
Keldysh approaches for a quantum-point contact with �L=�R=0.5
and U=−2Ed=4 at T=0.1. The bias voltages are �a� V=0.5, �b� V
=2, and �c� V=7. SNRG parameters are �=4, Ns=2200, Nz=4, and
b=0.325, and eight NRG iterations were performed.
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it is observed here for U /�=4, is not surprising.
The SNRG tends to produce additional features in the

spectral function for large bias voltages at the positions of
the chemical potentials of the leads, 
���. These are the
humps visible for larger voltages in the curves of Fig. 5.
They are artifacts of the NRG discretization and dependent
on the broadening procedure of the NRG spectral
functions.26 In equilibrium, the NRG only resolves spectral
information above a cut-off frequency 
�
c�T� where 
c
is on the order of the temperature T. The NRG broadening
parameters26,68,87,95 are usually adjusted such that artifacts
are minimized. Additionally the spectral function is interpo-
lated between −
c�
�
c. This translates itself to the
present implementation of the SNRG which does not provide
spectral information in the intervals I�= ���−
c :��+
c�
centered around the two chemical potentials. Here, �+

=max��L ,�R� and �−=min��L ,�R�. Furthermore, the time-
dependent NRG introduces additional discretization errors62

which increase with increasing value of U. z averaging over
different discretizations67 improves the spectral functions
and these artifacts could be removed by adjusting the broad-
ening parameter depending on the voltage. In this paper,
however, we keep the broadening26,68,87,95 parameter fixed at
b=1.3 /Nz independent of the bias and performed z averaging
with Nz=2 and 4.

Let us focus on the different behavior of the spectral func-
tions around 
=0 depicted in Figs. 5�a�–5�c�. The height
�r�0� is reduced for increasing V and the spectral functions of
the SNRG, 2BA, and GWA approach each other and eventu-
ally coincide. For V=7, the 2BA curve is still a little higher
compared to SNRG and GWA but at even larger voltages
�not shown� it also falls on top of the SNRG and GWA. In
contrast, the 2ndU spectral function does not approach this
large voltage limit and the zero-frequency value of the spec-
tral function is considerably reduced compared to the other
approaches. This is in accord with an enhanced scattering
amplitude at the Fermi level, visible in the imaginary part of
the self-energy depicted in the insets.

Upon increasing the voltage, the 2ndU approximation does
not follow a systematic trend since �r�0� is larger than the
SNRG at low voltages and smaller at high V. The other ap-
proximations show systematic deviations as the 2BA is al-
ways larger than the SNRG while the GWA is always
smaller.

In the present calculations, the temperature T=0.1 is only
about on fifth of the equilibrium Kondo temperature for these
parameter values, i.e., T /TK�0.2. As discussed in Sec. III A,
the GWA produces a too small charge scale, which results in
an even higher effective temperature. This leads to a reduc-
tion in the spectral function at the Fermi level in addition to
the effect of the small bias. The imaginary part of the self-
energy is correspondingly too large compared to the SNRG,
as can be seen in the inset of Fig. 5�a�. The 2BA, on the other
hand, overestimates the low-energy scale, which explains the
trends in �r�0� and −Im��r�0��.

Increasing the current through the junction by applying a
larger bias enhances the charge fluctuations on the local or-
bital. As already mentioned in Sec. III B, theses additional
fluctuations introduce dephasing38 and destroy the coherent
quasiparticles which constitute the low-temperature Fermi

liquid. The accompanying destruction of the characteristic
quadratic minimum in −Im��r�
�� around 
�0 is observed
in the insets. The system is driven away from the equilibrium
Fermi-liquid fixed point and the spectral functions at the
Fermi level decreases. At very large voltage V /TK�1 the
coherent quasiparticles are completely suppressed, as it can
be seen from the large imaginary part of the self-energy
around 
�0. The spiky features in the SNRG self-energy
for V=7 are due to the aforementioned discretization errors
and have no physical meaning.

2. I-V characteristics of a symmetric junction

A Coulomb interaction U /�=4 leads to a reduction in the
current compared to its HF value as depicted in Fig. 6. This
is characteristic for the onset of the Coulomb blockade. All
approaches predict this reduction but slight differences can
be noticed. The 2ndU approximation overestimates the Cou-
lomb blockade resulting in a current which is systematically
smaller than the SNRG result. Even though the 2ndU spectral
function differs strongly from all other approaches for large
V, this failure to describe the correct single-particle dynamics
is concealed in the current as all approaches yield identical
results. It again shows the insensitivity of the current to the
detailed distribution of spectral weight in �r�
�. The 2BA
slightly overestimates the current for intermediate voltages,
which is again explained by the too large low-energy scale
TK

charge and the accompanying underestimation of correlation
effects. The GWA current merges with the SNRG result for
V�2, which—together with the satisfactory spectral func-
tion for these voltages—indicates a good description of the
nonequilibrium properties for intermediate to large V.

3. Asymmetric junction

The spectral function for a quantum dot with a level po-
sition Ed=−1, Coulomb interaction U=4, and asymmetric
coupling �L=4�R=0.8 is shown in Fig. 7. The asymmetry
between positive and negative voltages is directly visible in
the spectral functions.

Apart from voltage-induced broadening which was al-
ready discussed in previous sections, an additional shift of
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FIG. 6. �Color online� I-V characteristics for U=−2Ed=4 ob-
tained from the spectral functions presented in Fig. 5 for a quantum-
point contact with �L=�R=0.5. The current is normalized to
G0 /e=h /e and measured in units of �=1.
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spectral weight in �r�
� is observed with increasing V. While
the SNRG moves spectral weight to higher energies for posi-
tive bias and toward 
=0 for negative V, the diagrammatic
approaches produce the opposite trends.

Due to the stronger coupling to the left lead, �L=4�R, the
left-moving scattering states dominate the excitations and the
spectral function of the impurity orbital, as can be seen from
Eqs. �9� and �10�. The effective noninteracting single-particle
excitation energy of an � mover is given by ���=Ed−��,
which implies almost symmetric parameters for the left mov-
ers at the negative voltage V=−7 since then ��L=−2.4.
Therefore, the asymmetry of the spectral function is expected
to be reduced and �r�
� to be closer to that of a symmetric
junction, which is indeed observed in the SNRG.

The diagrammatic approaches underestimate correlations
in the ionic many-body states and the occupancy of the im-
purity is overestimated for negative voltages. It increases al-
most linearly with negative voltage as can be seen from the
inset of Fig. 7�b�. Therefore, the Hartree shift of Eq. �28�
also increases and spectral weight is moved toward higher
energies opposite to what would be expected from the physi-
cal argument presented above. As a consequence the spectral
functions are strongly attracted to �L.

The effective single-particle excitation energy of a left-
moving scattering state for a positive voltage V=7 is greater
than zero, ��L=0.4. This produces an intermediate valence
situation for the left movers, where correlations renormalize
the effective excitation energies to even larger frequencies90

and a shift of spectral weight to higher energies results. An
additional drag of spectral weight toward the chemical po-
tential of the weaker coupled right lead, �R=0.8V=5.6, is
expected. The SNRG produces such a shift as can be seen in
Fig. 7�b�. The diagrammatic approaches, however, underes-
timate the level renormalization in the presence of strong
valence fluctuations, a tendency already observable in equi-
librium �not shown�. Additionally, the reduced occupancy
�inset� diminishes the Hartree energy which again leads to a
shift toward the stronger coupled chemical potential
�L=−1.4.

Figure 8 shows the I-V characteristics of this junction.
The asymmetry of I�V� is clearly visible when compared to
the result from the symmetric junction �also included in the
plot�. For V�0, the rescaled current is very close to its val-
ues from the symmetric junction and the discrepancies be-
tween the 2BA, GWA, and SNRG follow the already dis-
cussed characteristics: the 2BA underestimates correlations
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FIG. 7. �Color online� Spectral functions for the asymmetric junction, U=4 and Ed=−1, with asymmetric coupling �L=4�R=0.8 for
small �left� and large �right� bias, V= �0.5 and V= �7, respectively. The vertical dashed lines indicate the location of the left and right
chemical potentials. The inset shows the total occupation �n̂� of the impurity as a function of the bias voltage obtained with the diagrammatic
approaches. SNRG parameters are the same as for Fig. 5.
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FIG. 8. �Color online� �a� I-V characteristics of the asymmetric junction, Ed=−1, U=4, and �L=4�R=0.8, calculated with the spectral
functions depicted in Fig. 7. The result for the symmetric junction already shown in Fig. 6 is included for comparison. �b� The leakage
current �I�V� for the Keldysh approaches obtained from Eq. �45�. The currents are normalized to G0 /e=0.64h /e and measured in units of
�=1.
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and yields a slightly too large current. The GWA has the
correct distribution of spectral weight in the bias window and
produces a rather good estimate for the current, despite its
deficiencies in the description of the single-particle spectra.
The failure to produce the correct shifts of spectral weights
in �r�
� causes the current in the diagrammatic approaches
to be smaller than the SNRG for negative voltages.

The 2ndU approximation, however, reveals its noncon-
serving nature in the violation of current conservation for
this asymmetric junction. This is illustrated in Fig. 8�b� dis-
playing the leakage current �I of Eq. �45�. In contrast to the
conserving 2BA and GWA methods and the SNRG, �I does
not vanish for the 2ndU approximation. Thus, left and right
current of Eq. �42� do not have the same magnitude, i.e.,
IL�−IR, and the current calculated from Eq. �43� does not
make sense since different linear combinations aIL− �1
−a�IR �0�a�1� yield different results. Therefore, we did
not include the calculated I-V curves in Fig. 8�a�.

Increasing the asymmetry further, i.e., �L��R, recovers
the equilibrium spectral functions of a quantum dot coupled
to a single lead in all approaches �not shown�. In the SNRG,

the backscattering term Ô�
back, Eq. �13�, is suppressed, and

the model approaches an equilibrium single-channel prob-
lem. In the diagrammatic approaches, the nonequilibrium
conditions enter only through the effective Fermi function
feff, Eq. �27�, which approaches its equilibrium value for
�R→0. In this regime, all differences in the spectral func-
tions of the presented approaches are given by the known
discrepancies already present in equilibrium.

IV. SUMMARY

In the recently developed SNRG approach to open quan-
tum systems the scattering states of a noninteracting quan-
tum impurity model are used to construct the nonequilibrium
Green’s functions for the steady state at finite bias voltage.
We have established the reliability of the SNRG by bench-
marking it against the diagrammatic Kadanoff-Baym-
Keldysh approach, which becomes exact in the limit U→0.
It has been shown that the spectra and the current-voltage
characteristics agree excellently for small Coulomb interac-
tions for symmetric and asymmetric junctions at arbitrary
bias voltage.

For intermediate values of U we have compared the
SNRG to three different approximations obtained from the
Keldysh approach, namely, the second-order perturbation
theory �2ndU�, the fully self-consistent second-order �2BA�
and the GWA. As correlation effects play an increasingly
important role discrepancies occur between the different
methods. These were explained by the insufficient treatment
of the Coulomb interaction within the diagrammatic ap-
proaches.

The Fermi liquid at zero bias voltages is characterized by
a single low-energy scale which is captured accurately by the

SNRG but is not properly reproduced by the diagrammatic
approaches. No single low-energy scale can be extracted
from the 2ndU approximation and the GWA at intermediate
and large U. While the scale associated with charge fluctua-
tions decreases with increasing U, the magnetic scale exhib-
its a qualitatively different U dependency since it develops a
minimum for intermediate U and increases again toward
larger U. The GWA shows a tendency to overscreen mag-
netic moments for increasing values of U and fails to repro-
duce the atomic limit. These deficiencies translate them-
selves to finite bias and explain the discrepancies at small to
intermediate voltages.

At large bias voltages the self-consistent diagrammatic
approaches �2BA and GWA� reproduce the SNRG spectral
functions for a symmetric junction while the second-order
perturbation theory yields an unphysical plateau around the
Fermi level. All diagrammatic approximations and the
SNRG capture the onset of the Coulomb blockade in the I-V
characteristics of the symmetric junction. The small discrep-
ancies are explained by the deficiencies in the treatment of
the interaction. However, the failure of the 2ndU approxima-
tion to correctly describe the single-particle dynamics at
large bias is masked in the current since there only the total
spectral weight in the bias window enters.

In contrast to the other methods, the 2ndU approximation
reveals its nonconserving nature by producing a finite leak-
age current for an asymmetric junction, which is unphysical.
This raises the question about the reliability of the results
obtained within that method or extensions of it,22,23,25,101,102

even for a symmetric junction. They are only well justified
for cases where �r�
��� for all frequencies.

The voltage-dependent redistribution of spectral weight
for an asymmetric junction is not well reproduced by the
diagrammatic approaches. This has been attributed to too
large Hartree shifts due to the wrong occupation number of
the impurity and the inaccurate renormalization of the single-
particle level in intermediate-valence situations. It leads to
the underestimation of the current for large negative volt-
ages.

The SNRG provides access to the description of nonequi-
librium steady-state properties of nanoscale junctions for ar-
bitrary Coulomb interaction and voltages. It opens promising
perspectives for future investigations, such as the influence
of charge fluctuations when approaching the strongly corre-
lated regime or the effects of an applied magnetic field.
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