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We explore the rotational degree of freedom between graphene layers via the simple prototype of the
graphene twist bilayer, i.e., two layers rotated by some angle �. It is shown that, due to the weak interaction
between graphene layers, many features of this system can be understood by interference conditions between
the quantum states of the two layers, mathematically expressed as Diophantine problems. Based on this general
analysis we demonstrate that while the Dirac cones from each layer are always effectively degenerate, the
Fermi velocity vF of the Dirac cones decreases as �→0°; the form we derive for vF��� agrees with that found
via a continuum approximation in �J. M. B. Lopes dos Santos, N. M. R. Peres, and A. H. Castro Neto, Phys.
Rev. Lett. 99, 256802 �2007��. From tight-binding calculations for structures with 1.47° ���30° we find
agreement with this formula for ��5°. In contrast, for ��5° this formula breaks down and the Dirac bands
become strongly warped as the limit �→0 is approached. For an ideal system of twisted layers the limit as
�→0° is singular as for ��0 the Dirac point is fourfold degenerate, while at �=0 one has the twofold
degeneracy of the AB stacked bilayer. Interestingly, in this limit the electronic properties are in an essential way
determined globally, in contrast to the “nearsightedness” �W. Kohn, Phys. Rev. Lett. 76, 3168 �1996�� of
electronic structure generally found in condensed matter.
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I. INTRODUCTION

In addition to offering a possible route toward exploiting
the many remarkable properties of graphene,1 the epitaxial
growth of graphene on SiC �Refs. 2–5� presents a number of
mysterious aspects. Principle amongst these is that the ther-
mally induced growth of graphene on the C face typically
results in several graphene layers and yet, remarkably, this
complex graphene-based system shows behavior identical to
that of single layer graphene �SLG�. In striking contrast, bi-
layer graphene produced by mechanical exfoliation has al-
ready a different low energy electronic structure to that of
SLG; a quadratic dispersion instead of linear.

An insight into this intriguing behavior of the C-face
growth was recently provided by Hass et al.6 These authors
showed that growth on the C face results in a high density of
twist boundary faults, i.e., layers with a relative rotation.
Furthermore, ab initio calculations by the same authors
showed that if two graphene layers were rotated with the
same relative rotation observed in experiment, �
=30° �2.20°, then these layers exhibited a linear spectrum
near the Dirac point, exactly as in SLG. Rotation and trans-
lation of graphene layers thus have profoundly different im-
pact on the low energy spectrum, and this lies at the heart of
the C-face behavior.

While rationalizing the SLG nature of the C face, these
findings raised a number of questions. Firstly, as to the char-
acter of the rotational degree of freedom in few layer
graphene systems: do all rotations cause such an electronic
decoupling or, alternatively, only a subset of “magic” angles?
This question is relevant to experiments as subsequent inves-
tigations have shown that various angles of rotation may
occur during growth on the C face.5,7 Clearly, a related ques-

tion is the nature of the mechanism responsible for this elec-
tronic decoupling: how does the rotation lead to the emer-
gence of an effective Dirac-Weyl equation for low energies?

These questions, at first sight, appear difficult from the
point of view of theory as one ultimately requires general
statements to be made about an infinite class of possible
lattices. Initially, theoretical progress was made by example
of specific rotation angles or limits, with graphene bilayer
and trilayer systems calculated ab initio in Ref. 8, while in
Ref. 9 the �→0° limit of the twist bilayer was investigated
via a continuum approximation to the tight-binding Hamil-
tonian. In the former case a low energy linear spectrum was
noted for all layers experiencing a relative rotation, while the
latter work found also a linear spectrum but with the Fermi
velocity at the Dirac point, vF, strongly suppressed as
compared to SLG. Subsequent Raman spectroscopy
experiments10,11 differ on whether this effect is present in
misoriented graphene samples; in Ref. 10 a blueshift of the
graphene two-dimensional �2D� peak was attributed to this
effect, however in Ref. 11 this was instead attributed to a
modification of the phonon dispersion in misoriented layers.

In Ref. 12 it was shown that the rotational degree of free-
dom was associated with a destructive interference of quan-
tum states from each layer, and that this resulted in a cou-
pling that becomes progressively weaker as the size of the
commensuration cell increases. In fact, coupling at the Dirac
point is already very weak for the smallest possible commen-
suration, a cell of 28 carbon atoms, with a splitting of 7 meV
found in ab initio calculations.12 All misoriented graphene
layers are, therefore, predicted to show effectively decoupled
Dirac cones.

Further theoretical investigations have been undertaken
with regard to both the energetics of misoriented layers,13
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for such layers.14 In the former work it was noted that the
sliding energy of relatively rotated graphene layers is essen-
tially zero, in dramatic contrast to the case without rotation
where the AB configuration is energetically favored. Most
recently, tight-binding calculations have been performed for
a wide range of misorientation angles.15 This latter work
demonstrates a reduction in the Fermi velocity that, for a
wide range of rotation angles, agrees with the result of
Ref. 9.

In this paper we aim to accomplish two things. Firstly, the
formalism presented in Ref. 12 is extended to explain, on
general lattice grounds �i.e., without deploying a continuum
approximation�, both the Dirac cone decoupling and Fermi
velocity suppression. Secondly, we provide a numerical
implementation of this formalism using the tight-binding
method. We demonstrate that this numerical scheme is at
least an order of magnitude faster than the usual tight-
binding basis, and using this explore the electronic structure
as a function of rotation angle for 1.47° ���30°.

We now present a brief summary of the content of this
paper. Firstly, in Sec. II we discuss in detail the crystal struc-
ture of mutually rotated graphene layers, and derive the con-
ditions for a commensurate crystal structure to occur. An
important feature of this system is the emergence, for �
�15°, of a so-called moiré pattern.16 This is a hexagonal
interference pattern, consisting of regions of AA and AB
stacking, the periodicity of which represents a new structural
length scale of the system.

Section III then describes the electronic structure of the
bilayer in terms of a basis formed from the quantum states of
the two mutually rotated layers with, in addition, the bilayer
one-electron potential treated as a superposition of two
single layer potentials, i.e. V�1�+RV�2� with R the rotation
operator and V�1,2� potentials with the in-plane translation
symmetry of SLG, an approach first described in Ref. 12. It
is shown how this leads to a convenient separating out of
purely symmetry related aspects of the electronic structure,
leading to simple conditions for determining if the overlap
elements of the potential with single layer states are vanish-
ing or not. As the interlayer interaction part of the full bilayer
Hamiltonian may be constructed from such overlap ele-
ments, an understanding of how and why these vanish leads
in turn to an understanding of the nature of the interlayer
decoupling in this system.

In this context we investigate how the overlap between
states from the constituent layers depends on their k vectors
�i.e., their k vectors in the two mutually rotated single layer
Brillouin zones�. We find that this dependence is rather
subtle, and that the vanishing or not of such overlaps de-
pends crucially on these k vectors. On this basis we demon-
strate a number of general features of the bilayer electronic
structure, and in particular show that �i� for the Dirac bands
the first-order term of a perturbation theory in the interlayer
interaction is negligible for all rotations and that, further-
more, �ii� second-order terms in perturbation theory lead to a
Fermi velocity suppression of the form found in Ref. 9. We
further develop two consequences of �i�; if second �and
higher� order terms are unimportant then the Dirac cones
effectively decouple, and that the Dirac bands from each
layer are degenerate regardless of the role of higher order
terms.

Discussed also in this section is the rather unusual �→0
limit, which is a singular limit as for any ��0 the electronic
structure is dramatically different from that at �=0. This is,
of course, simply an electronic manifestation of the fact that
the lattice geometry is also singular in this limit: for any
small but nonzero � one has a moiré pattern, while at �=0
the graphene layers are simply AB �or AA3� stacked. An
interesting aspect of this limit is a breakdown in the notion of
“nearsightedness,” i.e., that electronic properties are essen-
tially determined locally. As the moiré periodicity diverges
as �→0° and, furthermore, as the twist bilayer electronic
structure must, for any finite �, be different from both the AA
and AB stacked bilayers, one concludes that in this limit the
electronic properties are, in contrast, in an essential way de-
termined globally.

Finally, Sec. IV is devoted to a presentation of tight-
binding calculations for the graphene twist bilayer. We dem-
onstrate that a basis formed by the quantum states of the two
mutually rotated layers converges remarkably quickly, and
leads to a dramatic improvement in computational efficiency.
Using this we then investigate the bilayer electronic structure
for 1.47° ���30° and find a suppression of the Fermi ve-
locity, vF, that is dramatic for small angles �at �=1.47° the
reduction in vF is 95%� but, in agreement with all ab initio
calculations to date,6,8,12 insignificant for �� �15°. How-
ever, while the expression for the Fermi velocity suppression
derived here and in Ref. 9, describes almost perfectly the
tight-binding results for 5° ���30°, it breaks down for �
�5°. This breakdown is a result of the fact that the Fermi
velocity suppression is a second-order effect in layer interac-
tion, and in the limit �→0° the resulting near degeneracy of
the Dirac cones entails the importance of terms beyond this
order.

II. COMMENSURATION CONDITIONS OF THE TWISTED
BILAYER

A prerequisite to exploring the electronic structure of the
twisted bilayer is an elucidation of the crystallography of
such a system, i.e., determining the conditions under which
two misoriented layers are in commensuration. This problem
was studied in Ref. 12 where a complete solution was pre-
sented; here we provide a more detailed derivation of those
results with, additionally, a somewhat simpler and more sym-
metrical choice of commensuration vectors.

Evidently, the existence of a commensuration depends
only on the relative rotation of the lattice vectors of each
layer, and not on the structure of the unit cells of each layer.
Thus we need not, at this stage, concern ourselves with
which axis the rotation is taken about and the initial configu-
ration �AB or AA, and so on� of the graphene bilayer; these
amount to different choices of initial basis vectors within
each cell. The commensuration condition may be written as

r1 = Rr2, �1�

where r1 ,r2 are hexagonal lattice vectors, and R the rotation
operator. The set �r1� is the resulting coincident points be-
tween the two layers, while �r2� is the same set, but viewed
from the rotated coordinate system. Utilizing the unrotated
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lattice as a coordinate system, i.e., r= ia1+ ja2 with i , j�Z,
Eq. �1�, with a standard choice of lattice vectors a1= ��3,0�
and a2= �

�3
2 ,3 /2�, may be written as

	m1

m2

 =�cos � −

1
�3

sin � −
2
�3

sin �

2
�3

sin � cos � +
1
�3

sin ��	n1

n2

 .

�2�

�Here and throughout this article our unit of length is chosen
to be the graphene C-C separation.� This maps one integer
pair �n1 ,n2� to another �m1 ,m2� and, for this to be possible, a
necessary and sufficient condition on the matrix in Eq. �2� is
that it assumes only rational values.17 This leads to the fol-
lowing conditions on �:

1
�3

sin � =
i1

i3
, �3�

cos � =
i2

i3
, �4�

where i1 , i2 , i3�N. These are therefore related by the follow-
ing second order Diophantine equation

3i1
2 + i2

2 = i3
2. �5�

Solution of this equation proceeds in a standard way18

�analogous to the case of Pythagorean triples� by dividing by
i3
2 and making the substitution x=

i1

i3
, y=

i2

i3
. There is thus a one

to one mapping between solutions of Eq. �5� and rational
points on the ellipse 3x2+y2=1. One such point is �0,1� and
any other may be found by the intersection with the ellipse of
a line passing through �0,1� and �q / p ,0�. The coordinates of
this latter point then lead to the following solution for i1 , i2 , i3

i1 = 2pq , �6�

i2 = 3q2 − p2, �7�

i3 = 3q2 + p2, �8�

where p ,q�N. From these equations we immediately find
the set of rotation angles leading to commensurations,

� = cos−1	3q2 − p2

3q2 + p2
 . �9�

For q	 p�0 this formula produces rotation angles that lie in
the range 0���60°. All other rotation angles are equivalent
due to the symmetry of the hexagonal lattice. Clearly, the
limit p /q→0 corresponds to �→0° while, on the other
hand, the limit p /q→1 corresponds to �→60°. Note that
changing the sign of p or q sends �→−�. Since the limit �
→60° is equivalent to �→0° taken from below, and since
formally little changes by the substitution p→−p or q→−q,
our focus in this work will be on angles in the range 0°
���30°.

We also require the corresponding primitive vectors of the
commensuration lattice. Substitution of Eqs. �3� and �4� into

Eq. �2� results in the following coupled linear Diophantine
equations:

	m1

m2

 =

1

i3
	i2 − i1 − 2i1

2i1 i2 + i1

	n1

n2

 . �10�

The solution of these equations follows by a similarity trans-
form such that the matrix multiplying �n1n2�T is diagonal.
Crucially, the eigenvectors of this matrix are independent of
p ,q and thus the problem is recast as coupled linear Dio-
phantine equations that are linear in p ,q. These may then be
solved by inspection yielding the result that

	n1

n2

 = 
	p + 3q

− 2p

 + �	 2p

− p + 3q

 , �11�

	m1

m2

 = 
	− p + 3q

2p

 + �	 − 2p

p + 3q

 , �12�

with 
 ,� are arbitrary constants such that n and m are inte-
ger valued. The final step is to determine the primitive vec-
tors of the commensuration lattice. This calculation we
present in Appendix A, and here quote only the result. The
form of the commensuration vectors turns out to depend on a
parameter �=3 /gcd�p ,3�. For the case where �=1 we find

t1 =
1



	p + 3q

− 2p

, t2 =

1



	 2p

− p + 3q

 , �13�

while for the case �=3 we find

t1 =
1



	− p − q

2q

, t2 =

1



	 2q

− p + q

 , �14�

where 
=gcd�3q+ p ,3q− p�. Values that this parameter may
take when gcd�p ,q�=1 are indicated in Table I.

Thus every possible commensuration between misori-
ented layers is uniquely specified by an integer pair p	q
�0 such that gcd�p ,q�=1. Given this we can completely
characterize the commensuration; the rotation angle may be
obtained from Eq. �9�, while the lattice vectors are given by
either Eqs. �13� or �14�, depending on whether the parameter
�=3 /gcd�p ,3� assumes the values of 1 or 3, respectively.
The various notations introduced in this derivation are illus-
trated in Fig. 1.

It is worth reflecting on the reason that two integers, p and
q, are needed to specify a commensuration while, on the
other hand it is clear that any bilayer lattice �commensurate
or incommensurate� is uniquely specified by a single number
�. This is a consequence of the relation between the real and
rational number fields: given a � there are infinitely many
choices of p and q in Eq. �9� such that � may be reproduced
to an arbitrary accuracy �.

TABLE I. Possible values that the parameter 
 can take.

�=1 �=3

p, q odd 6 2

Otherwise 3 1
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The ratio of the total number of lattice vectors to coinci-
dent lattice vectors for the twist boundary is found to be
given by

N =

�t1 � t2� . ẑ


�a1 � a2� . ẑ


=
3

�

1


2 �3q2 + p2� , �15�

with the number of carbon atoms in the commensuration cell
NC=4N. �The factor 4 simply arising from the fact there are
two layers in the cell, and two basis atoms in the honeycomb
structure.� In Fig. 2 is plotted NC, as a function of misorien-
tation angle; the minimum NC is 28 corresponding to �

=30° �8.21, however NC diverges in the �→0° �or �
→60°� limits. Combining Eqs. �9� and �15� we find that

N =
3


2�

p2

sin2 �/2
. �16�

and so for �→0° N diverges as 1 /�2. This small angle limit
is associated with the emergence of a new structural length
scale, that of the moiré periodicity D; such a moiré pattern is
shown in the inset of Fig. 2. The relation between D and � is
given by19

D =
a

2 sin �/2
. �17�

where a is the graphene lattice constant. The relation be-
tween the lattice constant of the commensuration cell and the
moiré periodicity may be seen by setting p=1, �=3, 
=2 in
Eq. �16�, �corresponding to cells generated by p=1 and q an
odd integer, see Table I�, and using N=D2 /a2 which then
gives back the formula for the moiré periodicity, Eq. �17�. In
this case, therefore, the moiré periodicity is equal to the com-
mensuration cell lattice constant. For these commensuration
cells we find NC= �sin2 � /2�−1, and this is the lower bound
function plotted in Fig. 2. On the other hand, for all other
commensuration cells the “commensuration periodicity” is
greater than the moiré periodicity.

Finally, we note that the analytic results presented here
are in agreement with the numerical solution to this problem
provided recently by Campenara et al.;16 special cases of
these results have been found in Ref. 9 �the case p=1, �=3,

=2� and more recently in Ref. 15 �the case �=1�.

III. ANALYSIS OF THE INTERLAYER INTERACTION

In this section we shall describe how the problem of un-
derstanding the general electronic properties of the twist bi-
layer for any � is solved. Our approach is that described in
Ref. 12 which, in broad outline, may be characterized as
“constructing the bilayer system from single layer compo-
nents.” We take the bilayer potential as a superposition of
single layer potentials, and use as a basis for this new system
the eigenkets of the single layer systems. The advantage of
this is that the resulting matrix elements may then be ana-
lyzed as a commensuration problem of reciprocal space lat-
tices. Such commensuration problems can be readily under-
stood for any angle, and thus one may then understand the
physics of the twist bilayer for general angle.

The remainder of this section proceeds as follows. In Sec.
III A we first setup the Hamiltonian and basis used to ana-
lyze the twist bilayer. Following this, in Sec. III B the vari-
ous reciprocal lattices and associated Brillouin zones are de-
scribed. In Sec. III C a condition is derived that determines
the vanishing of overlap elements found in the model of Sec.
III A. Finally, in Secs. III D–III F, we use this understanding
to determine a number of generic electronic properties of the
twist bilayer.
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FIG. 1. �Color online� Illustration of the commensuration cell
for the case of a misorientation angle of �=21.78°, generated by a
�p ,q� pair of �1,3� �lattice vectors t1 and t2�. Shown also are the unit
cells of the unrotated graphene layer �vectors a1, a2� and rotated
graphene layer �vectors Ra1, Ra2�. For explanations of other sym-
bols refer to Sec. II.

���
��

�

��
��

0 10 20 30 40 50 60
Rotation angle (degrees)

0

1000

2000

3000

4000

5000

6000

7000

N
um

be
r

of
at

om
s

in
tw

is
tc

el
l 4

3

2 1

FIG. 2. �Color online� Shown is the number of C atoms, NC, in
the commensuration cell as a function of the relative orientation of
the two graphene layers, for NC�7000. Inset displays the moiré
pattern for the cell indicated number 4. Band structures of twist
bilayers corresponding to the points labeled 1–4 are displayed in
panels 1–4 of Fig. 8. The dashed line corresponds the lower bound
NC= �sin2 � /2�−1; for commensuration cells that fall on this line the
moiré periodicity is equal to the commensuration periodicity, see
Sec. II for details.
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A. Model Hamiltonian and basis

In considering the interaction between misoriented layers
it is useful to take the bilayer potential as simply the super-
position of two single layer potentials, i.e.,

H =
p2

2m
+ V�1� + V�2�. �18�

Here V�n� are one-electron single layer graphene potential
operators that satisfy

H�n�
�ik
�n�� = 	 p2

2m
+ V�n�

�ik

�n�� = �ik
�n�
�ik

�n�� , �19�

where �ik
�n� are SLG eigenvalues, and i and k represent band

and k-vector quantum numbers, respectively. These one-
electron SLG potentials are invariant under different in-plane
translations; we have TV�1�=V�1� and RTR−1V�2�=V�2�. We
shall take the superscript “1” to denote objects associated
with the unrotated layer, and superscript “2” for objects as-
sociated with the rotated layer. �Such a designation is, in
mutually rotated layers, clearly arbitrary and made only for
convenience.� Given the weak interaction �and thus large
separation� of the graphene layers, this approximation of the
bilayer potential as a superposition of single layer potentials
is expected to be good, but, in any case, is certainly sufficient
for the qualitative understanding presented here.

As a basis for this Hamiltonian we take the combined
eigenkets of the unrotated and rotated layers, i.e.
�
�i1k1

�1� �� , �
�i2k2

�2� ��. One should note that since each SLG basis
set by itself is complete on R3, this is generally an overcom-
plete basis set. On the other hand for minimal basis methods,
such as the pz tight-binding method in which the basis con-
sists of a pz atomic orbital centered at every site in the crys-
tal, a bilayer basis set consisting of the combined eigenkets
from each layer is clearly isomorphic to the usual basis set
that would be employed.

B. Reciprocal space properties of the bilayer system

Here we describe the reciprocal space lattices correspond-
ing to the various real space lattices introduced in Sec. II.
First a note of nomenclature; we denote the reciprocal lattice
vectors corresponding to the unrotated �rotated� real space
vectors a1 and a2 �Ra1 and Ra2� by b1 and b2 �Rb1 and
Rb2�, while the reciprocal space lattice vectors correspond-
ing to the real space commensuration vectors t1 and t2 are
denoted by g1 and g2. We shall refer to this latter reciprocal
space lattice as the bilayer reciprocal lattice.

The vectors g1 and g2 are found from Eq. �13� to be

g1 =



3�3q2 + p2�
��p + 3q�b1 + 2pb2� , �20�

g2 =



3�3q2 + p2�
�− 2pb1 − �p − 3q�b2� , �21�

for the case where �=1 and from Eq. �14�, to be

g1 =



3q2 + p2 �− �p − q�b1 + 2qb2� , �22�

g2 =



3q2 + p2 �− 2qb1 − �p + q�b2� , �23�

for the case �=3. The Brillouin zones associated with each
of these sets of primitive vectors, �b1 ,b2�, �Rb1 ,Rb2�, and
�g1 ,g2�, are shown in Fig. 3 for the twist bilayer �p ,q�
= �1,5�. For convenience of exposition these Brillouin zones
�BZ� will be referred to by the abbreviations UBZ �for the
unrotated BZ�, RBZ �for the rotated BZ�, and BBZ for the
BZ of the bilayer reciprocal lattice.

These bilayer reciprocal lattice vectors determine a map
by which k vectors in the UBZ and RBZ are related to those
of the BBZ �the usual so-called “folding back” condition of
k vectors�. It should be emphasized at this point that there
are three separate k indices in the problem as it is formulated
here. We have a k vector in the BBZ which is a good quan-
tum number for the bilayer Hamiltonian and eigenkets, but
we also have the k indices of the single layer basis used to
solve the Hamiltonian at this k, labeled by k1 and k2. To
solve the Hamiltonian at k, the single layer basis then con-
sists of all those eigenkets which map back from the UBZ
and RBZ to the point k in the BBZ.

An interesting, and for the nature of the interlayer inter-
action crucial, relationship exists between the special K
points of all these BZ’s: to each special K point of the BBZ
is mapped back one of the special K point from the UBZ and
one from the RBZ. The precise manner in which this hap-
pens depends in a rather complex way on the p, q parameters
of the commensuration, detailed in Tables II and III. The
overall scheme, however, is clear: for commensurations char-
acterized by �=1 K points connected by �K �see Fig. 3� map
to the same special K point of the BBZ while, for �=3, it is

KU

KU
*

KR

KR
*

θ/2

b2

b1

R b1

R b2

g1

g2

KB
KB

*

θ

∆K
1

∆K

∆K
2

FIG. 3. �Color online� Brillouin zones of the unrotated �U� and
rotated �R� graphene layers, as well as the Brillouin zone of the
bilayer supercell �B� for the case �p ,q�= �1,5�, corresponding to
�=13.17°. In this Figure b1, b2 are the reciprocal lattice vectors of
the unrotated graphene layer, Rb1, Rb2 the reciprocal lattice vectors
of the rotated layer, and g1, g2 the reciprocal lattice vectors of the
bilayer supercell. Special K points of various Brillouin zones indi-
cated by subscript U, R, and B. The separations of special K points
indicated are �K= 
KR−KU
= 
KR

� −KU
� 
, �K1= 
KU

� −KR
, and �K2

= 
KU−KR
� 
.

ELECTRONIC STRUCTURE OF TURBOSTRATIC GRAPHENE PHYSICAL REVIEW B 81, 1 �2010�

1-5



the conjugate pairs �KU
� ,KR� and �KU ,KR

��, separated by �K1
and �K2, respectively, that map back to the same special K
points of the BBZ �these special K points and their separa-
tions are indicated also in Fig. 3�.

Thus without any layer interaction, i.e., what translational
symmetry alone requires, is that the Dirac cones from the
unrotated and rotated layers are mapped to the special K
points of the BBZ. With no layer interaction we therefore
find two degenerate Dirac cones situated at each special K
point of the BBZ. It should be stressed that this mapping is
particular to the K star; a similar map does not, for example,
exist for the M star. Interestingly, this implies that M-point
chiral fermions �which may be generated by the application
of a periodic scalar potential20� would behave rather differ-
ently in this context.

We may now consider what happens to this degeneracy
when we turn on a layer interaction. In general, of course,
such an interaction would result in a splitting of the Dirac
cones, however this is not what happens for the case of mu-
tually rotated graphene layers. The key to understanding this,
as we now describe, lies in the remarkable behavior of the
overlap elements of the bilayer Hamiltonian, Eq. �18�, with
states from the mutually rotated graphene layers.

C. Matrix elements of the bilayer Hamiltonian

Given a bilayer potential of the form V�1�+V�2�, and a
basis set of single layer eigenkets �
�i1k1

�1� �� , �
�i2k2

�2� ��, the elec-
tronic structure will be determined by interlayer matrix ele-
ments of the type ��i1k1

�1� 
V�1�
�i2k2

�2� �. Using this matrix ele-
ment as a specific example, we now show how one may
derive a general condition that determines whether such a
matrix element vanishes or not. Using a plane-wave expan-
sion for each of the objects in this matrix element, i.e.,

V�1� = �
G1�

VG1�
�1�eiG1�.r, �24�

�i1k1

�1���z� = �
G1�

ci1k1+G1�
�1�� �z�e−i�k1+G1��.r, �25�

�i2k2

�2� �z� = �
RG2

ci2k2+RG2

�2� �z�ei�k2+RG2�.r, �26�

we find

��i1k1

�1� 
V�1�
�i2k2

�2� � = �
G1,RG2

	�
G1�
� dzci1k1+G1+G1�

�1�� �z�

�VG1�
�1��z�ci2k2+RG2

�2� �z�
�k1+G1=k2+RG2

= �
G1,RG2

Ck1+G1

k2+RG2�k1+G1=k2+RG2
, �27�

where we have made the convenient substitution G1�−G1�
=G1. As the structure of Eq. �27� arises simply from the
differing in-plane translation groups of the constituent ob-
jects, any such interlayer matrix element may be cast into
this form �although the coefficients Ck1+G1

k2+RG2 will obviously
be different�.

Clearly, it is the Kronecker delta term in Eq. �27� that is
the most significant consequence of rotation. This Kronecker
delta term ensures that in the double sum over G1 and RG2
only terms satisfying

G1 = RG2 + k2 − k1 �28�

contribute. This is just a commensuration condition between
the reciprocal lattices of the unrotated and rotated layers.
However, in contrast to the real space commensuration con-
dition, a1=Ra2, this involves not only the geometry via the
R operator, but also a dependence on the single layer states
through the term k2−k1. This removal of contributions from
the interlayer matrix elements is a direct consequence of the
mutual rotation of the layers, and can be seen as a destructive
interference of the quantum states from each layer. It is now
clear that the advantage of the approach deployed here is that
we have separated the symmetry aspects of the problem,
which generate a selection condition for the coefficients
Ck1+G1

k2+RG2, from details of the electronic structure which are
contained in the actual values of these coefficients.

Continuity of wave functions and potentials in real space
implies that these coefficients will decay to zero with in-
creasing 
G1,2
 and will be largest for G1,2 at or near the

TABLE II. Structure of the mapping of special K points of the
unrotated �U� and rotated �R� layer Brillouin zones to the special K
points of the bilayer �B� Brillouin zone, for the case �=1. The
designation of the special K points corresponds to that of Fig. 3.


=3 
=6

mod�q ,3�=1 KU→KB KU→KB
�

KU
� →KB

� KU
� →KB

KR→KB KR→KB
�

KR
� →KB

� KR
� →KB

mod�q ,3�=2 KU→KB
� KU→KB

KU
� →KB KU

� →KB
�

KR→KB
� KR→KB

KR
� →KB KR

� →KB
�

TABLE III. Structure of the mapping of special K points of the
unrotated �U� and rotated �R� layer Brillouin zones to the special K
points of the bilayer �B� Brillouin zone, for the case �=3. The
designation of the special K points corresponds to that of Fig. 3.


=1 
=2

mod�p ,3�=1 KU→KB
� KU→KB

KU
� →KB KU

� →KB
�

KR→KB KR→KB
�

KR
� →KB

� KR
� →KB

mod�p ,3�=2 KU→KB KU→KB
�

KU
� →KB

� KU
� →KB

KR→KB
� KR→KB

KR
� →KB KR

� →KB
�
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origin. In addition, the coincident points between the lattices
G1 and RG2+k2−k1 become increasingly separated as �
→0° �just as the size of the real space commensuration cell
diverges in this limit, see Sec. II�. Since these coincident
points represent the only symmetry allowed contributions to
the bilayer matrix elements, we see that for sufficiently small
� there can be at most one contributing term, which occurs in
the case of a coincident point close to the origin of reciprocal
space. For example, if k1=k2 in Eq. �28� then G1=RG2=0 is
a solution and, as the coefficient C0

0 is generally nonzero, so
in turn will the matrix element will remain finite for all �. On
the other hand, in the case where all coincident points are
sufficiently far from the origin, the matrix element will van-
ish for sufficiently small �. �An illustration of these two
cases is given in the left and right hand side panels of Fig. 4�.

As we shall now show the term k2−k1 in Eq. �28� results
simply in a shift from the origin of the commensuration lat-
tice �i.e., the lattice of coincident points� that would be found
for the case k2−k1=0. The relation between the term k2
−k1 and this shift, which can be found by solving Eq. �28�,
thus plays a crucial role in determining which bilayer matrix
elements will vanish.

The solution follows by the casting of Eq. �28� into a
Diophantine problem, exactly as outlined in Sec. II for the
real space case. This, and the solution of the resulting Dio-
phantine problem, are described in Appendix B. Here we
summarize the results with the solutions expressed in terms
of the unrotated reciprocal lattice vectors as m1b1+m2b2.
One finds that for the case �=1 two possible solutions given
by

m = 

1



	p + 3q

2p

 + �

1



	 − 2p

− p + 3q

 +




6q
	l1

l2

 �29�

and

m = 

1



	p + 3q

2p

 + �

1



	 − 2p

− p + 3q

 +




6p
	l1 − 2l2

2l1 − l2

 .

�30�

While for the case �=3 one finds

m = 

1



	− p + q

2q

 + �

1



	 2q

p + q

 −




2p
	l1

l2

 �31�

and

m = 

1



	− p + q

2q

 + �

1



	 2q

p + q

 +




6q
	l1 − 2l2

2l1 − l2

 . �32�

Here 
 and � are arbitrary integers, 
=gcd�3q+q ,3q− p�,
and l1 and l2 are the integers that result when k2−k1 is ex-
pressed in coordinates of the bilayer reciprocal lattice, i.e.,

k2 − k1 = l1g1 + l2g2. �33�

�Note that since both k1 and k2 fold back, under translations
by the bilayer reciprocal lattice vectors g1 and g2, to the same
k point of the BBZ then their difference can be expressed as
integer multiples of g1 and g2. Hence in coordinates of the
bilayer reciprocal lattice the difference k2−k1 will always be
integer.� Clearly, in all cases the solutions are of the form


G̃1 + �G̃2 + �G̃ , �34�

with the important constant shift �G̃ determined by k2−k1.
It should be noted that these expressions provide only a

partial solution to Eq. �28�. The reason is for this is that
while �m1 ,m2� must be integer valued, the shift terms are
obviously not integer valued unless, e.g., both l1 and l2 are
divisible by 6q /
 in Eq. �29�. This absence of a complete
solution is due to the fact that, as shown in Appendix B, Eq.
�28� results in an inhomogeneous simultaneous linear Dio-
phantine problem �in contrast to the homogeneous problem
of the real space commensuration� which is known to have
no analytic solution. However, as we now demonstrate, this
partial solution provides sufficient insight into the selection
rule, Eq. �28�, that several generic features of the bilayer
electronic structure may be elucidated.

D. Decoupling of the Dirac cones

Here we shall prove that for all commensuration cells
with NC greater than some critical value the Dirac bands
from the unrotated and rotated layers will be effectively de-
generate in energy. Thus there will be a fourfold degeneracy
at the Dirac points of the bilayer band structure, with the
Dirac bands themselves twofold degenerate. While this deri-
vation demonstrates the existence of such a critical value, the
numerical value of this parameter will depend on the coeffi-
cients Ck1+G1

k2+RG2 and can, of course, only be determined by
actual calculation of the electronic structure.

It should be stressed that this result requires only �i� mu-
tually rotated and weakly interacting layers of hexagonal
symmetry and �ii� the low energy spectrum to located at the
vectors of the K star; it is, therefore, applicable to other
contexts in which graphene may be created.

Our approach is based on a perturbative treatment and the
use of the selection rules for terms in the matrix element
sums derived in the previous section. Since in the absence of
any interlayer interaction we have two degenerate Dirac
cones at the special K points of the BBZ �see Sec. III B�,
then the first-order energy shift will be given by the secular

FIG. 4. �Color online� Example of the relationship between k2

−k1 and the shift of the lattice of solution vectors of the equation
G1=RG2+k2−k1. Shown in the middle panel are those k points
that fold back to the � point of the commensuration Brillouin zone,
for the case �p ,q�= �11,31�. The left and right panels display the
reciprocal lattices G1 and RG2+k2−k1 along with the solution vec-
tors for the two different cases of k2−k1 indicated in the central
panel. See Sec. III E for details.
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equation of degenerate state perturbation theory.
One should note that, without interaction, the degeneracy

at and away from the Dirac points will be different: fourfold
at the Dirac point and twofold away. In fact, as our consid-
erations are entirely based on the in-plane translation groups,
and not on point group symmetry arguments, then there will
be no fundamental difference in how we treat these two
cases, and for simplicity we consider here the case of a two-
fold degeneracy. The resulting secular equation is then

	�H11 �H12

�H21 �H22

	a1

a2

 = ��i

�1�	a1

a2

 , �35�

where the elements �Hij are given by

�H11 = ��i1k1

�1� 
V�2�
�i1k1

�1� � , �36�

�H12 =
1

2
��i1k1

�1� + �i2k2

�2� ���i1k1

�1� 
�i2k2

�2� � + ��i1k1

�1� 
V
�i2k2

�2� � ,

�37�

�H21 =
1

2
��i1k1

�1� + �i2k2

�2� ���i2k2

�2� 
�i1k1

�1� � + ��i2k2

�2� 
V
�i1k1

�1� � ,

�38�

�H22 = ��i2k2

�2� 
V�1�
�i2k2

�2� � , �39�

and with V= �V�1�+V�2�� /2. Here �i1 ,k1� and �i2 ,k2� are the
k vectors and band indices of the states from the Dirac cones
of the UBZ and RBZ that map to the BBZ Dirac cone.

Using the approach of the previous section we can now
determine when the matrix elements involved in Eqs. �36�
and �37� vanish. In particular, we know that for a sufficiently
small misorientation � the vanishing or not of these matrix

elements is governed solely by the shift term �G̃, i.e. by
k2−k1.

To determine �G̃ we must therefore specify the difference
k2−k1, that is the difference between the k vectors of the
two single layer Dirac cone states that map back to the same
k vector in the BBZ. If we consider the case �=3 then,
reading from Table III, we find that the special K-point pair
�KU

� ,KR�, or its conjugate pair, is folded back to the same
special K point in the BBZ. Clearly k-point differences are
unchanged by shifting all k points by some �k, and therefore
k2−k1=KU

� −KR.
Expressing KU

� −KR in coordinates of the bilayer recipro-
cal lattice we then find KU

� −KR= �q− p� / �2
��g1+g2�, i.e.,
that l1= l2= �q− p� / �2
� in Eq. �33�. Using this and substitut-
ing into the shift term of Eq. �31� we find

�G̃ = −
q − p

2p
	1

1

 . �40�

We can easily ensure this is integer valued �as it must be�
by the choice q= p�1+2n�, with n an integer. We thus con-
clude that both the commensuration reciprocal lattice vectors
and the shift from the origin diverge as q→�, that is, as �
→0°. The first-order shift will therefore be negligible for all
q that result in commensuration cells greater than some criti-

cal size, which will depend on the particular form of the
Ck1+G1

k2+RG2, i.e., on details of the electronic structure.
If we reflect that as �→0 then both �K1= 
KU

� −KR

→2 /3 and �K2= 
KU−KR

� 
→2 /3 while, at the same time,
g= 
g1
= 
g2
→0 �see Eq. �42��, then it is not surprising that

�G̃ diverges. The behavior of �G̃ in the case where �=1 is,
however, not so clear. In this case K points separated by �K
map back to the BBZ K points, and so k2−k1=KU−KR
=KU

� −KR
� , and this, as may be seen from Fig. 3 goes to zero

as �→0. In this case neither Eqs. �29� or �30� yield an inte-

ger valued �G̃ and so they may not be used. The Diophan-
tine problem can, however, be solved numerically with the

result that, as shown in Fig. 5, 
�G̃
 diverges as �→0 in this
case also.

The question then arises if higher order terms in pertur-
bation theory may lead to a splitting of the Dirac cones. In
fact, it is easy to show that such terms may lead only to an
equal shift of both bands. This can be seen by an examina-
tion of the quantities involved in higher orders of perturba-
tion theory. Let us first consider the calculation of the shift of
the unrotated layer Dirac band. All terms in the perturbation
expansion �which we do not need to consider explicitly� will
involve matrix elements ��i1k1

�1� 
V
�i2k2

�2� � and ��i1k1

�1� 
V�2�
�i1k1

�1� �,
and the unperturbed eigenvalues, which are just those of
single layer graphene. Now, if we consider the shift of the
rotated layer Dirac band we see that the relevant matrix ele-
ments are either the conjugate of those involved in the
former case, ��i2k2

�2� 
V
�i1k1

�1� �= ��i1k1

�1� 
V
�i2k2

�2� ��, or are equal
by the symmetry of the bilayer, ��i2k2

�2� 
V�1�
�i2k2

�2� �
= ��i1k1

�1� 
V�2�
�i1k1

�1� �. Since the unperturbed eigenvalue spec-
trum is again that of single layer graphene we immediately
see that all terms in the perturbation expansion for the eigen-
value shift of the rotated and unrotated layers will be identi-
cal, and hence also the final energy shift.

Thus it is only the first-order term that can break the de-
generacy of the Dirac cones from each layer and, as we have
shown above, this is zero for all NC greater than some critical
value. Since it is known from ab initio calculations11 that this
degeneracy is already very small for the smallest cell NC
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FIG. 5. �Color online� Shown is the shift term 
�G̃
 correspond-
ing to the separations k2−k1=KU

� −KR for p=1,2 ,17 ��=3�, and
k2−k1=KU−KR for p=3��=1�. Note that this shift diverges in all
cases as �→0.
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=28, corresponding to �p ,q�= �1,3�, we can then conclude
that for all commensuration cells the Dirac bands will be
effectively degenerate, with exact degeneracy in the �→0°
limit or incommensurate rotations.

When higher order terms in the perturbation expansion
are unimportant the enforced vanishing of the first-order
term therefore leads to a decoupling of the Dirac cones.
Higher orders in perturbation theory, while unable to split the
Dirac cones, may, as we shall see subsequently, lead to a
suppression of the Fermi velocity of the degenerate Dirac
cones and nonlinear band warping for very small misorien-
tation angles.

E. Rotation angle versus cell geometry dependence
of the coupling of single layer states

Given a relative rotation � between the two graphene lay-
ers there exists an infinite set of integer pairs �p ,q� that, via
Eq. �9�, reproduce the rotation angle to arbitrary accuracy.
This includes also incommensurate rotations, corresponding
to the limit of diverging p and q. Each of the bilayer unit
cells in this set have differing in-plane primitive vectors t1
and t2 and reciprocal lattice vectors g1 and g2. The symmetry
allowed coupling of two single layer states �i1 ,k1� and
�i2 ,k2�, governed by g1 and g2, can, therefore, be dramati-
cally different for very similar �. As the electronic structure
of the bilayer is determined by the coupling of single layer
states through the interlayer interaction, this situation is
counterintuitive: one would expect electronic properties to
depend smoothly on the rotation angle.

Recalling the analysis of Sec. III C, we note that the mag-
nitude of the interlayer coupling is determined by the selec-
tion rule, Eq. �28�, for the coefficients of the Fourier expan-
sion of interlayer matrix elements, see Eq. �27�. As has been
discussed, the coefficients in such a Fourier expansion decay
with increasing G1,2 and are largest at or near the origin of
reciprocal space. Now, the shift term of, e.g., Eq. �31� de-
scribes a scale relation between the resulting shift of allowed
G vectors in the Fourier sum, and the k-vector difference of
the coupled states k2−k1: states coupled by 2p /
�i1g1
+ i2g2� correspond to a shift of −�i1 , i2�. Thus it is not the gi
that control how single layer states couple, but rather the
vectors gi

�c�=2p /
gi.
This is illustrated in Fig. 4. Shown in the central panel are

the UBZ, RBZ, and BBZ of the �p ,q�= �11,31� twist bilayer
�rotation angle �=23.16°�. Indicated are two different pos-
sible couplings of single layer states: �i� k2−k1=g2, and �ii�
k2−k1=11g1=g1

�c�. The solution vectors of G1=RG2+k2
−k1 corresponding to each of these cases are shown in the
left- and right-hand side panels, respectively. The single
layer states coupled by g1

�c� have contributing vectors close to
the origin indicating a strong coupling, while the states
coupled by g2 have contributing vectors far from the origin,
indicating a comparatively weaker coupling.

The extent to which states connected by gi
�c� dominate

other symmetry allowed couplings depends on the nature of
the decay of the Fourier coefficients Ck1+G1

k2+RG2, i.e., on details
of the electronic structure. For graphene, as we show in Sec.
IV, the situation is of a coupling dominated entirely by the

vectors k2−k1=n1g1
�c�+n2g2

�c� with 0�ni�1. Regardless of
the particular details of the Fourier coefficients, allowing

ti
→� and 
gi
→0 for a given rotation angle �, beyond a
certain point, introduces no new interlayer coupling to the
bilayer system as all additional symmetry allowed couplings
will have zero magnitude by the arguments above. Thus the
ultimate smoothness of electronic properties with � is guar-
anteed by the fact of the decay the Fourier coefficients
Ck1+G1

k2+RG2, a natural result. Clearly, the faster the decay of
these coefficients the greater the dominance of a few gi

�c� in
the coupling of single layer states and, hence, the less the
electronic structure depends on details of the real space cell.

To determine a general form of the gi
�c�, we first calculate

g= 
gi
 which, for �=1 is given by

g =
2


�9�p2 + 3q2�
=

2


3p
sin �/2 =

2


3�3q
cos �/2. �41�

and for �=3 by

g =
2


�3�p2 + 3q2�
=

2


�3p
sin �/2 =

2


3q
cos �/2. �42�

To determine g�c�= 
gi
�c�
 we then multiply g by the inverses of

the prefactors to the shift terms in Eqs. �29�–�32�, i.e., by
6q /
, 6�3p /
, 2p /
, and 6�3q /
, respectively �the factors
of �3 arise from the different �l1−2l2 ,2l1− l2�T structure of
Eqs. �30� and �32��. In this way we find that the relevant g�c�

is given by

g�c� =
4�3

�
sin

�

2
, �43�

and that gi
�c�=g�c�ĝi with ĝi the unit vectors formed from the

primitive vectors gi. As expected, these coupling vectors de-
pend only on the misorientation angle. Interestingly, g�c� may
be expressed in terms of �K, i.e., in terms of the separation
of pairs of special K points �KU ,KR�, see Fig. 3, as

g�c� =
3�3

�
�K . �44�

In Ref. 9 it was noted that �K constitutes an energy scale of
the twist layer physics. Here, in our more general lattice
treatment, we see that this is also an important reciprocal
space length scale, describing the coupling of single layer
states by the interaction.

F. Reduction in Fermi velocity of the Dirac cones

Here we examine the impact upon the degenerate Dirac
cones of the bilayer of the nonzero matrix elements. Let us
consider the Dirac cone state from the unrotated layer situ-
ated at KU+�k which, therefore, has eigenvalue

��1� = s1
�k
 , �45�

where we set �vF=1, and s1 is a sign indicating whether the
eigenvalue belongs to the electron or hole Dirac cone. From
Sec. III C we know that this state will couple with the two
states from the rotated layer Dirac cone also having k vector
KU+�k. These states have energies
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��2� = s2
�k − �K
 . �46�

In this equation �K is a reciprocal space vector connecting
nearest neighbor Dirac cones �for ��30° that we consider
here�, see Fig. 3. Due to the translational symmetry, there
may also be coupling with states at KU+�k−n1g1

�c�−n2g2
�c�

which have energies

�n1n2

�2� = s2
�k − �K − n1g1
�c� − n2g2

�c�
 , �47�

where n1,2 are integers. Note the use the coupling vectors
gi

�c�, that determine which single layer states couple through
the interlayer interaction, see Sec. III E. Choosing �=3 we
find from Eq. �44� that

g1
�c� = �3�Kĝ1, �48�

g2
�c� = �3�Kĝ2, �49�

with ĝ1 and ĝ2 the unit vectors of the bilayer reciprocal lat-
tice. Using this one may then show that


�K + n1g1
�c� + n2g2

�c�
 = �K�n1n2
, �50�

where

�n1n2

2 = 1 + n1n2 + 3�n1 − n2��n1 − n2 − 1� , �51�

i.e., that the � dependence of 
�K+n1g1
�c�+n2g2

�c�
 is entirely
through �K. We may then expand �n1n2

�2� as

��n1n2

�2� �2 = �k2 + �K2�n1n2

2 − 2�k�K�n1n2
cos �n1n2

. �52�

In this expression �= � ��k ,�K+n2g1
�c�+n2g2

�c��, and �k
= 
�k
. The overall eigenvalue shift may be written to second
order as

�� = �
n1n2

� 
n1n2

s1−

��1� + �n1n2

�2� +

n1n2

s1+

��1� − �n1n2

�2� � , �53�

where 
n1n2

s1− and 
n1n2

s1+ are coupling constants between the
different states �i.e., squares of overlap elements of the kind
discussed in Secs. III C and III D�. Finally, from Eqs.
�50�–�53� may then be derived that this shift leads to a re-
duction in the Fermi velocity given by

vF = vF
�SL�	1 −




�K2
 , �54�

where vF is the Fermi velocity of the misoriented layers,
vF

�SL� the Fermi velocity of SLG, and 
 an overall coupling
constant given by


 = �
n1n2


n1n2

s1− + 
n1n2

s1+

�n1n2

2 . �55�

Thus 
�0 as required for Eq. �54� to actually describe a
reduction in the Fermi velocity.

The angle dependence contained in �K can, equivalently,
be expressed via the moiré periodicity �see Sec. II� D leading
to the form

vF = vF
�SL��1 − �D2� , �56�

where � is a related coupling constant.
Note that while Eq. �54� is of the same form as that de-

rived by Santos et al. in Ref. 9, the origin is somewhat dif-
ferent. Rather than use a continuum approximation, as de-
ployed in Ref. 9, we have retained the lattice physics which,
in fact, only enters in the form of the “coupling” primitive
vectors, Eqs. �48� and �49�.

IV. TIGHT-BINDING ANALYSIS

We now turn to tight-binding calculations of the twist
bilayer structures elucidated in Sec. II. Given that the num-
ber of atoms in the real space commensuration cell diverges
as the rotation angle �→0° the tight-binding method offers
perhaps the only way of exploring this interesting limit; ab
initio calculations are certainly not practical. Here we shall
employ the same tight-binding method deployed by Santos et
al. in their continuum approach to the twist bilayer,10 one of
the so-called environment dependent tight-binding
methods.21

In the original article by Tang et al. the environment de-
pendent parameterization for carbon that these authors pro-
posed was checked against a database including, amongst
other three dimensional lattices, diamond and graphite, as
well as a one dimensional carbon chain. Unfortunately,
graphene and graphene-based structures were not part of this
dataset, and it is thus important to first verify the accuracy of
this method for this case. A sensitive test of accuracy is pro-
vided by the Dirac point splitting of graphene bilayer struc-
tures, which may be quite large in the case of the AB stacked
bilayer �the ab initio value is 0.78 eV� and on the other hand
rather small in the case of twist bilayers, e.g., 7 meV for both
the �=30° �8.21° twist bilayers.12 This latter case entails a
particularly sensitive test as, although both the �=38.21° and
�=21.79° systems have the same Dirac point splitting, the
crystal geometries are actually quite different.12

In Fig. 6 are shown calculations of the Dirac point split-
ting for the AB bilayer, as well as the two twist bilayers with
�=30° �8.21°. Surprisingly, one finds that even the Dirac
point splitting of the AB bilayer is not well reproduced; a
much reduced interlayer separation is required to recover the
ab initio result of 0.78 eV. In addition, the splitting of the
�=30° �8.21° twist bilayers is also underestimated and, fur-
thermore, is quite different between the �=38.21° and �
=21.79° cases.

Fortunately, this situation is significantly improved by
switching off the environment dependence of the hopping
integrals, in which case the method is simply the usual tight-
binding scheme with distance dependent pairwise hopping
matrix elements �see Ref. 21�. Given this, a reasonable
agreement with ab initio calculations may be found. For a
somewhat reduced interlayer distance of 3.17 Å �5% smaller
than the nominal experimental interlayer distance of
3.34 Å�, we find �7 meV for the twist bilayer splitting,
which is in very good agreement with ab initio data, and a
splitting of 0.63 eV for the AB bilayer, which is less good
but still reasonable. This interlayer distance is indicated by a
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dashed vertical line in Fig. 6. Our choice of calculation
method is therefore the parameterization of Tang et al., but
with the environment dependence suppressed, and the inter-
layer distance set to 3.17 Å.

While the tight-binding method extends the domain of
direct band structure calculation far beyond that which may
be achieved by the ab initio approach, for the particular case
of bilayer graphene �or more generally graphene stacks� one
may do significantly better. In particular, if it is only the low
energy band structure that is of interest, the single layer
graphene basis introduced in Sec. III is much more appropri-
ate that the full tight-binding basis set. In this basis the bi-
layer Hamiltonian is

�H�k��i1k1i2k2
= 	��i1k1

�1� 
H
�i2k2

�1� � ��i1k1

�1� 
H
�i2k2

�2� �

��i1k1

�2� 
H
�i2k2

�1� � ��i1k1

�2� 
H
�i2k2

�2� � 
 ,

�57�

where i1k1 and i2k2 are the band and k indices of states that
fold back to k �a reciprocal lattice vector in the BBZ�, and
the superscript of the kets has the same meaning as in Sec.
III, i.e., �1�/�2� refers to eigenkets of the unrotated/rotated
layers. Eigenvalues at k may then be obtained by diagonal-
izing the matrix consisting of all states i1k1 and i2k2 that fold
back to k.

Matrix elements in Eq. �57� will involve both on-site
terms and terms involving interlayer hopping integrals

��in�kn�

�n�� 
V
�inkn

�n� � where V̄= 1
2 �V�1�+V�2��. The matrix elements

��i1k1

�1� 
V�2�
�i1k1

�1� � and ��i2k2

�2� 
V�1�
�i2k2

�2� � are equivalent to three
center hopping integrals, and so may be set to zero, while the
matrix element ��i1k1

�1� 
V
�i2k2

�2� � may be evaluated as

��i1k1

�1� 
V
�i2k2

�2� � =
1

NC
�
n1n2

eik2.Rn2e−ik1.Rn1ai1k1

pz ai2k2

pz �nz
2tpp�

+ �1 − nz
2�tpp�� . �58�

where Rn1
and Rn2

are vectors from layer 1 �unrotated� and

layer 2 �rotated�, respectively, the sum is over all atoms in
the twist boundary primitive cell, ainkn

pz is the pz coefficient of
the eigenvector corresponding to the inkn state from layer n,
nz a directional cosine, tpp� and tpp� distant dependent hop-
ping integrals, and NC the number of carbon atoms in the
bilayer primitive cell.

The advantage of this approach is that if it is only the low
energy band structure that is of interest, then only low energy
eigenkets of the unrotated and rotated layers are needed in
constructing the SLG basis. In practice, the number of such
low energy states required will depend on the strength of the
interlayer interaction, which for graphene layers is weak and
leads to a rather rapid convergence of the basis set, as shown
in Fig. 7. For the case of the �=3.48° bilayer shown the
maximum size of the basis set is 2048 states, and numerical
convergence is reached at 24 states. A further advantage for
the special case of twist bilayers lies in fact that from the
selection rule analyzed in Sec. III C one knows that a priori
many of the matrix elements in Eq. �57� will be zero. Inspec-
tion of the numerical value of the interlayer matrix elements,
Eq. �58�, shows that they are negligible for k2−k1=n1g1

�c�

+n2g2
�c� with ni�1 �see Sec. III E for a description of g1,2

�c� �; a
typical case is illustrated in the inset of Fig. 7.

For actual calculations one may then utilize a truncated
basis in which only a fraction of the actual matrix elements
required need be calculated. This extends by more than an
order of magnitude the number of carbon atoms that may be
considered: within the SLG approach NC=26 068 could be
treated within the same time that, by direct tight-binding cal-
culations, a system of NC�1200 could be calculated.

We now consider the low energy electronic structure of a
selection of twist bilayers, shown in Fig. 8, with the band
structure plotted along the MK� high symmetry points path
in the BBZ. In panels 1–4 are shown four twist bilayers in
the set p=1, q�odd Z with q=3,7 ,25,45 �misorientation
angles of �=21.79°, 9.43°, 2.65°, and 1.47°, respectively�. In
panels 1–3 are shown band structures generated by both di-
rect tight-binding calculation as well as the SLG basis out-
lined above; clearly these two approaches lead to identical
results, as expected. A number of interesting features may be
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noted from these band structures. Firstly, as expected from
the general analysis of Sec. III the Dirac point always de-
couples, i.e., there is no splitting of the degenerate Dirac
bands from each layer, see Fig. 9. On the other hand, in
agreement with ab initio calculations,6,8,11 one observes that
away from the Dirac point the bilayer band structure clearly
shows a perturbation due to layer interaction, as may be ob-
served in Fig. 8 by the strong band hybridization at the �
point. This, as discussed in Sec. III C, is due to the term k2
−k1 in the selection rule G1=RG2+k2−k1; when k2−k1
=0 the interlayer matrix elements never vanish leading to a
strong coupling for these states. In addition, one notes a re-
duction in Fermi velocity of the Dirac cone as the rotation
angle �→0°.

In Fig. 10 is shown this Fermi velocity suppression as a
function of the rotation angle of the twist bilayer. Clearly,
this effect is quite substantial, and for �=1.47° �the smallest
angle calculated� vF is only 5% of the value of SLG. Inter-
estingly, for ��5° the tight-binding data are very well de-
scribed by Eq. �54�, in the small angle limit, however, the
failure of any fitting of the form Eq. �54� indicates the im-

portance of higher orders of perturbation theory. Clearly, the
band structure in the �→0° limit is profoundly altered from
that of SLG with, however, the degeneracy of the Dirac
bands from each layer preserved, as was proved must be the
case in Sec. III D. �One should note that, in contrast to the
first principles calculation of Ref. 12, we find a small reduc-
tion in Fermi velocity for the case of �=9.43°; such a differ-
ence presumably reflects the fact that parameterization of
Tang et al.,21 not explicitly designed for low energy graphene
physics, has scope for improvement.�

As has been mentioned, this preservation of the degen-
eracy is a striking illustration of the singular nature of the
�→0° limit; for any finite � one has a fourfold degeneracy at
the Dirac point, while at �=0 one has the AB bilayer with a
twofold degeneracy at the Dirac point, and with the other
Dirac bands split by 0.78 eV. An interesting question, which
we shall only pose here and not answer, is how this Fermi
velocity reduction would be altered by both charge self-
consistency and many-body effects. Both of these may be
expected to become more important as the Fermi velocity is
reduced, and may dramatically change the nature of the
small angle electronic structure.

Graphene stacks grown on the C face of SiC typically
have Fermi velocity reductions of 20–30 % which then im-
plies, assuming that such a reduction is entirely due to rota-
tion, misorientations of ��5°. Given that the formation en-
ergy of a twist bilayer increases as �→0°,13 with the
minimum defect energy for 30° �2.20°,12 it makes sense
that, on average, misorientation angles with ��5° should
play a less important role. On the other hand, it is clear that
samples with ��5° do exist; scanning tunnel microscopy
experiments detect moiré patterns that correspond to angles
in the 1.9° –19° range.7 In contrast, for a graphene slab
dominated by 30° �2.02° rotations, or simply large angle
rotations �such a system was studied in Ref. 6, see also Ref.
22� one would expect to have, in addition to a Dirac spec-
trum over a wide energy range, a Fermi velocity exactly that
of SLG.

V. CONCLUSIONS

To conclude we have given a complete description of the
possible commensurations of graphene layers misoriented by
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some angle �. We find that the condition for a commensura-
tion to occur is that, expressed in lattice coordinates of the
unrotated layer, the rotation matrix connecting the layers be
rational valued, and thus the complete set of commensura-
tions is described by two integers, which we denote �p ,q�.
For any such bilayer, we have shown that the K points of the
unrotated and rotated layers map directly to K points of the
bilayer Brillouin zone; a fact that plays an important role in
the interlayer interaction.

We have further shown that the nature of the interlayer
interaction may be understood by a k-dependent interference
condition that may be expressed as a commensuration of the
single layer reciprocal lattices. This guarantees the decou-
pling of the Dirac point and the degeneracy in the Dirac
cones from each layer, but does not preclude interactions
between all states. These latter interactions in fact give rise
to a reduction of the Fermi velocity in the �→0° limit, and
we find a form of this Fermi damping which agrees with that
presented by Santos et al.,10 although our derivation is inde-
pendent of any continuum approximation. As an interesting
consequence of this analysis, we are able to show that the
bilayer electronic structure will, in general, depend only on
the misorientation angle of the layers and not on the details
of the real space unit cell.

To complement this general analysis we have calculated
band structures of a wide range of graphene twist bilayers via
the tight-binding method. By the introduction of a basis of
single layer graphene eigenkets, which we show to be sig-
nificantly more efficient for the case of the twist bilayer, we
are able to probe the band structure in the small angle limit
with relative computational ease. We find Fermi velocity re-
duction that, for rotation angles in the range 5° ���30°
agrees very well with the form presented here and in Ref. 9,
but that for ��5°, where at �=1.47° the Fermi velocity is
only 5% of the SLG value, the reduction cannot be described
in this way. In fact, the Dirac bands in the small angle limit,
while guaranteed to be degenerate, show nonlinear distortion
away from the Dirac point. Thus the graphene twist bilayer
encompasses a wide range of electronic behavior, from es-
sentially SLG behavior for large angle rotations to quite dif-
ferent behavior in the small angle limit which, nevertheless,
shares important features with the large angle case. While
small angle rotations7 �as low as 1.9°� have been observed
experimentally, the electronic properties of such low angle
misoriented layers has yet to be experimentally explored.
The possibility of a graphene type behavior different from
both SLG and the AB bilayer makes interesting the further
study of this low angle limit.
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APPENDIX A: DERIVATION OF THE COMMENSURATION
LATTICE PRIMITIVE VECTORS

In this appendix we wish to determine the primitive lattice
vectors of the commensuration lattice given by Eq. �11�, i.e.,
the lattice defined by

m = 
	− p + 3q

2p

 + �	 − 2p

p + 3q

 . �A1�

We first notice that only coprime p ,q correspond to
unique solutions. Given this, a necessary condition for recov-
ering lattice vectors is obviously the elimination of the great-
est common divisor �gcd� of the components of all the �inte-
ger valued� vectors in Eqs. �11� and �12�. This leads to
following commensuration primitive vectors:

t1 =
1



	p + 3q

− 2p

, t2 =

1



	 2p

− p + 3q

 �A2�

with 
=gcd�3q+ p ,3q− p�, and where we have used the fact
that gcd�x ,y�=gcd�x+cy ,y� with c an arbitrary integer. Pos-
sible values of 
 involve the additional parameter �
=3 /gcd�p ,3�, and are displayed in Table I.

To prove that these are indeed the primitive vectors re-
quires further that there is no linear combination of them
yields integer valued vectors of smaller length. In fact, as we
will now show, the vectors given in Eq. �A2� are primitive
only for the case where �=1, and that when �=3 it is the
linear combinations 1 /3�−t1+2t2� and 1 /3�−2t1+ t2� that
form the primitive vectors of the commensuration lattice.

We first take a linear combination of the supposed primi-
tive vectors as follows:


i

Ni
t1 +

�i

Ni
t2 = ti�, �A3�

where 
i ,�i ,Ni�Z and the index i=1,2. By eliminating
common factors of 
i and �i from Ni we may choose
gcd�
i ,�i�=1. Defining t= 
t1
= 
t2
 and t�= 
t1�
= 
t2�
, t1 and t2
are primitive only if there exists no 
i ,�i ,Ni such that t�
� t. Suppose that for a given set of these parameters t�� t
then we may write

Nit � Nit� = 

it1 + �it2
 � �

i
 + 
�i
�t �A4�

so that if t�� t then 

i
+ 
�i
�Ni and hence 

i
+ 
�i
�Ni
implies t�� t. Thus if there exist 
i ,�i ,Ni such that 

i

+ 
�i
�Ni and the linear combinations Eq. �A3� remain inte-
ger valued then the supposed primitive vectors t1 and t2 are
in fact not primitive.

From Eq. �A2� and Eq. �A3� we find

� �
i + 2�i�

Ni

p +
3
i


Ni
q� = z1, �A5�

− � �2
i + �i�

Ni

p −
3�i


Ni
q� = z2, �A6�

where z1 ,z2�Z in order that ti� be integer valued. As
gcd�
i ,�i�=1 and gcd�p ,q�=1, then for z1,2 to be integer
valued as claimed we require 
Ni to be a common factor of
the coefficients of p and q on the left-hand sides of Eqs. �A5�
and �A6�. Using the fact that gcd�
i ,�i�=1, we find that
possible values of gcd�3
i ,
i+2�i� and gcd�3�i ,2
i+�i�
are 1, 2, 3, and 6. Therefore, as the minimum possible value
of 
=1, then the maximum possible value of Ni is 6. As


i
+ 
�i
�Ni this in turn restricts the possible values of 
i,
�i.
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We have used the requirement that ti� be integer valued to
place a condition 
Ni�6, not Ni�6, and hence we need to
eliminate �
i ,�i ,Ni� that lead to noninteger ti�. From the full
set of ��
i ,�i ,Ni�� this then leaves only the cases
�
i ,�i ,Ni�= ��1,1 ,3� , �−1,2 ,3� , �−2,1 ,3��, and using these
latter two we finally find the new primitive vectors

t1 =
1



	− p − q

2q

, t2 =

1



	 2q

− q + q

 , �A7�

However, for the case �=1 then we have 3 

 and 3 
 p and
since gcd�p ,q�=1 then 3�q and t1 and t2 given by Eq. �A7�
cannot be integer valued. Hence for �=1 then Eq. �A2� are
already the primitive vectors of the commensuration lattice.
On the other hand if �=3 then if both p and q are odd then

=2 and t1 and t2 given by Eq. �A7� are integer valued while
if one of p ,q is even then 
=1 and again this is so.

To summarize we find that for the case �=1 the vectors
given by Eq. �A2� are already primitive, while for the case
�=3 instead Eq. �A7� gives the primitive vectors.

APPENDIX B: SOLUTION OF EQUATION
G1=RG2+(k2−k1)

We wish to determine the solutions to the equation

G1 = RG2 + �k2 − k1� . �B1�

This represents a similar equation to the real space commen-
suration equation, but with an additional term �k2−k1�. Uti-
lizing the coordinate system of the unrotated reciprocal lat-
tice we may write G1=m1b1+m2b2 and G2=n1b1+n2b2
where m= �m1 ,m2�T and n= �n1 ,n2�T must be integer valued.
Furthermore, the term �k2−k1� is integer valued in the coor-
dinate system of the bilayer reciprocal lattice, i.e., �k2−k1�
= l1g1+ l2g2. The transformation from the bilayer to unrotated
reciprocal lattice coordinate systems is

TBU =



i3
	− p + q − 2q

2q − p − q

 �B2�

and the rotation operator, transformed to the unrotated recip-
rocal lattice coordinate system, is be found to be

RL =
1

i3
	i2 + i1 − 2i1

2i1 i2 − i1

 , �B3�

where, as before, we have

i1 = 2pq , �B4�

i2 = 3q2 − p2, �B5�

i3 = 3q2 + p2. �B6�

Using these we may rewrite Eq. �B1� as

	m1

m2

 =

1

i3
	i2 + i1 − 2i1

2i1 i2 − i1

	n1

n2



+



i3
	− p + q − 2q

2q − p − q

	l1

l2

 . �B7�

Our solution of this equation is based on diagonalizing RL

and TBU which, it turns out, may be simultaneously diago-
nalised. We find the eigenvalues of RL to be

a� = −
p � i�3q

p � i�3q
�B8�

and those of TBU to be

b� =
− 


p � i�3q
. �B9�

The eigenvectors in both cases are given by

u� =
1
�2�1

2
�1 � i�3�

1
� . �B10�

Using these results we may rewrite Eq. �B7� as

U−1m = �U−1RLU�U−1n + �U−1TCUU�U−1l . �B11�

Equating the real and imaginary parts of this equation we
find

�n2 + m2�p = ��2n1 − n2� − �2m1 − m2��q − 
l2, �B12�

��2n1 − n2� + �2m1 − m2��p = �m2 − n2�3q − 
�2l1 − l2� ,

�B13�

and by introducing the new variables n3=2n1−n2 and m3
=2m1−m2 we can recast these equations as a Diophantine
problem,

�m2 + n2�p = �n3 − m3�q − 
l2, �B14�

�n3 + m3�p = �m2 − n2�3q − 
�2l1 − l2� . �B15�

By absorbing the terms involving 
 either in the coefficient
of p or q these equations may now be solved by inspection
giving

	m2 + n2 +

l2

p

p = �n3 − m3�q , �B16�

	n3 + m3 +

�2l1 − l2�

p

p = �m2 − n2�3q , �B17�

which leads to the solutions

n = 

1



	p + q

2p

 + �

1



	 2q

− p + q

 −




2p
	l1

l2

 �B18�

and

m = 

1



	− p + q

2q

 + �

1



	 2q

p + q

 −




2p
	l1

l2

 �B19�

with 
 and � integers. Note that we have immediately writ-
ten down the solution in terms of primitive vectors; which
may be done in a similar fashion to the real space case �Ap-
pendix A�.

Alternatively we may write

�m2 + n2�p = 	n3 − m3 −

l2

q

q , �B20�
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�n3 + m3�p = 	m2 − n2 −

�2l1 − l2�

q

3q , �B21�

which in turn leads to the solutions

n = 

1



	p + q

2q

 + �

1



	 2q

− p + q

 −




6q
	l1 − 2l2

2l1 − l2



�B22�

and

m = 

1



	− p + q

2q

 + �

1



	 2q

p + q

 +




6p
	l1 − 2l2

2l1 − l2

 .

�B23�

The case where �=1 proceeds in exactly the same man-
ner, the only difference being a different form for the trans-
formation matrix TBU. The solutions are then found to be

n = 

1



	− p + 3q

− 2p

 + �

1



	 2p

p + 3q

 −




6q
	l1

l2

 , �B24�

m = 

1



	p + 3q

2p

 + �

1



	 − 2p

− p + 3q

 +




6q
	l1

l2

 �B25�

and

n = 

1



	− p + 3q

− 2p

 + �

1



	 2p

p + 3q

 +




6p
	l1 − 2l2

2l1 − l2

 ,

�B26�

m = 

1



	p + 3q

2p

 + �

1



	 − 2p

− p + 3q

 +




6p
	l1 − 2l2

2l1 − l2

 .

�B27�
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