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We investigate dynamical transport aspects of a combined nanomechanical-superconducting device in which
Cooper pair tunneling interfere with the mechanical motion of a vibrating molecular quantum dot embedded in
a Josephson junction. Six different regimes for the tunneling dynamics are identified with respect to the
electron level and the charging energy in the quantum dot. In five of those regimes new time scales are
introduced which are associated with the energies of the single-electron transitions within the quantum dot
while there is one regime where the internal properties of the quantum dot are static.
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I. INTRODUCTION

Inelastic scattering processes carry dynamical degrees of
freedom which have a large influence on the electron dynam-
ics. Signatures in the conductance of molecular electronics
devices1–6 indicate coupling between electronic and vibra-
tional degrees of freedom, whereas spin inelastic scattering
effects have been utilized in experimental studies of the mag-
netic properties of magnetic atoms and clusters.7–12 A huge
effort has been spent on studies of the influence of spin and
vibrational degrees of freedom on the transport through
quantum dots �QDs�.13–18 Studies of various aspects of in-
elastic scattering effects are of fundamental importance.

Recent developments toward incorporating superconduct-
ing electronics into nanoelectromechanical devices open pos-
sibilities of cooling19,20 and Cooper pair shuttling.21–24 In this
paper we focus on the dynamical aspects of a QD embedded
in a Josephson junction, which to our knowledge has not
been studied previously.

In this paper, we consider the influence of the mechanical
motion of a molecular QD, embedded in a Josephson junc-
tion, on the supercurrent flowing across the junction. The
mechanical motion of the QD couples to the electronic de-
grees of freedom of the tunneling electrons, which dramati-
cally influence the dynamics of the electronic occupation in
the QD. We can clearly distinguish between six different
regimes, with respect to the electron level �0 and charging
energy U in the QD, see Fig. 1, in which the dynamical
aspects of the transport properties are different. In regimes
II–VI, the dynamics of the QD properties generate new time
scales to the transport which are intimately associated with
the energies of the single-electron transitions in the QD. In
regime I, on the other hand, the internal properties of the QD
are static, even for finite bias voltages. The motion and Jo-
sephson current are, thus, set solely by the applied bias volt-
age and phase difference between the electrodes.

The paper is organized as follows. In Sec. II we introduce
the model of the Josephson junction in which the molecular
QD is embedded, and we derive the basic expressions for the
Josephson current, the two-electron tunneling process, and
the occupation numbers in the QD. The results are analyzed
in Sec. III and we conclude the paper in Sec. IV.

II. MODEL OF THE JOSEPHSON CURRENT

We start by considering a molecular QD embedded in a
Josephson junction, where the QD is exposed to mechanical
oscillations which are modeled with a Hook’s law constant
kc, and we assume that there is a bias voltage applied across
the junction. We illustrate the system schematically in Fig. 2.

The Hamiltonian for the setup is expressed by

H = HL + HR + HQD + HT, �1�

where H�=�k����kck�
† ck�+�k����ck�

† c−k�̄
† +H.c.�, �=L ,R,

are usual s-wave BCS Hamiltonians, whereas HQD
=����d�

†d�+Un↑n↓ defines the QD, with single-electron lev-
els ��=�0+�B /2 which are spin split by the effective field
B, and with charging energy U. Finally, HT=�k�t��ck�

† d�

+H.c.� accounts for the single-electron tunneling between
the lead � and the QD with rate t�. The local vibrational
mode of the island is in the linear coupling regime given by

tL = tL
�0��1 + �Lq�, tR = tR

�0��1 + �Rq� , �2�

where �L�R� describes the coupling between the tunneling
electrons and the vibrational mode corresponding the to left
�right� tunnel junction. The quantity q is the displacement
operator for the oscillator. The tunneling matrix element t� is
exponential in the displacement q, thus, the assumed linear
coupling is a good approximation for small q. This allows
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FIG. 1. Phase diagram of the dynamics of the molecular QD,
embedded in a Josephson junction, with respect to the energy level
�0 and charging energy U. Here, �pq=Ep−Eq and �E0 ,E↑ ,E↓ ,E2�
= �0,�↑ ,�↓ ,�↑+�↓+U�, where ��=�0+�B /2, with B=0, whereas
��� is the superconducting gap in the electrodes.
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evaluation of �L�R� in terms of the tunneling matrix elements
and their distance dependence. We assume here a very gen-
eral equilibrium geometry with no particular symmetry being
required. The equilibrium position �q=0� for the QD within
the junction may be placed anywhere in between the leads.

A. Derivation of the current

We derive the basic formula for the supercurrent through
the system using an analogous procedure as in Refs. 23 and
24. The total current flowing between the QD and lead � can
be fundamentally expressed as I�

�tot��t�=−e�t��p���ck�
† ck��,

from which we obtain

I�
�tot� = 2e Re�

−�

t

���A��t�,A�
†�t��	�ei���t−t��

+ ��A��t�,A��t��	�ei���t+t���dt�. �3�

Here, we have defined the current operator

A��t� = �
k��,�

t��t�ck�
† �t�d��t� �4�

using that ck�
† �t�=ei�H�−��N��tck�

† e−i�H�−��N��t and analogously
for the d operators, where �� and N�=�k���ck�

† ck� is the
chemical potential and total number of electrons in lead �,
whereas we put the chemical potential for the QD to zero,
i.e., �QD=0.

The total current comprise one component of single-
particle, or electron, current which is contained in the first
term of the above expression while the second term describes
the supercurrent. In the present paper, we are interested in
the supercurrent only and, therefore, we discard the first con-
tribution to the total current in the following discussion.

The average ��A��t� ,A��t��	� is decoupled into the aver-
ages, e.g., �ck�

† �t�ck�̄
† �t��� and �d��t�d�̄�t��� of which the

former is further handled via, e.g., Bogoliubov-Valatin trans-
formation ck�=uk	k�−�vk

�	k�̄
† , such that �
= t− t��

Fk��̄
†,� �t,t�� 
 �− i��ck�

† �t�ck�̄
† �t���

= i�uk
�vk�f�− Ek�e−iEk
 − f�Ek�eiEk
	 , �5a�

Fk��̄
†,� �t,t�� 
 i�ck�̄

† �t��ck�
† �t��

= i�uk
�vk�f�− Ek�eiEk
 − f�Ek�e−iEk
	 . �5b�

Here, Ek=���k−���2+ ����2 defines the quasiparticle ener-
gies, whereas uk=��1+ ��k−��	 /Ek� /2 and vk
=��1− ��k−��	 /Ek� /2, which satisfy �uk�2+ �vk�2=1 and
uk

�vk= ����ei
� / �2Ek�, with the macroscopic phase 
�. We
shall proceed at low temperatures, such that we can approxi-
mate f�Ek��0 and f�−Ek��1.

The average �d��t�d�̄�t��� is handled by transforming the
QD Hamiltonian into diagonal form using the expansion d�

=X0�+�X�̄2 for the operators Xpq= �p��q�, �pq=Ep−Eq, p ,q
� 
0,� ,2�,25 such that HQD=�p=0,�,2EpXpp, �E0 ,E↑ ,E↓ ,E2�
= �0,�↑ ,�↓ ,�↑+�↓+U�. Then, since d��t�d�̄�t��= �X0�

+�X�̄2��t��X0�̄+ �̄X�2��t��, we define the anomalous aver-
ages for the QD according to

F�̄�
� �t�,t� 
 �− i��d�̄�t��d��t�� = �− i��̄N02e

i��̄0
, �6a�

F�̄�
� �t�,t� 
 i�d�̄�t��d��t�� = i�̄N02e

i�2�
, �6b�

where N02= �X0�X�2�= �X02� is the average rate for the two-
electron transition X02
�0��2� at the energy �20=E2−E0.

Using the prescribed procedure, we find that the supercur-
rent between the superconducting lead � and the QD at low
temperatures can be written

I��t� = − Re� N02�J���L��1 + ��q�2sin���t + 
��

− �������1 + ��q���q̇ cos���t + 
��	e−i�
dt�
d�

2�
,

�7�

where ��=2��, and where we have assumed the local ap-
proximation t��t��� t��t�−
ṫ��t�, which is justified since the
vibrational motion is much slower than the electronic tunnel-
ing processes. The amplitudes J� and �� of the Josephson
current in absence and presence of the coupling to the vibra-
tional mode are given by

J����� = 2e �
k���

�����t�
�0��2

2Ek
�Lk−�� + ��̄0� − Lk+�� + �2��	 ,

�8a�

������ = 2e �
k���

�����t�
�0��2

2Ek
�Lk−

2 �� + ��̄0� − Lk+
2 �� + �2��	 ,

�8b�

respectively, where Lk����=1 / ��− ����Ek	�, k��.
The quadratic dependence of the displacement q in the

current, Eq. �7�, is justified since the q2�q for small q. The
quadratic component, thus, merely provides a minor modifi-
cation to the linear displacement.

V

kc
mc

SC L
SC R

FIG. 2. Schematic view of the mechanically and electronically
coupled QD to the superconducting electrodes �SC L� and �SC R�.
The QD is suspended on a cantilever which is modeled as a har-
monic oscillator with spring constant kc and mass mc. The device is
biased with the voltage V.
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B. Two-electron tunneling process

The dynamics of the average N02
�X02� is calculated
through the equation of motion

�i�t − �20�N02 = − �
k�

�t���X0� + �X�̄2�ck�̄�e−i��t, �9�

where the correlation function is treated by using perturba-
tion theory, which to first order in t� gives

���X0� + �X�̄2�ck�̄	�t��

= i�
−�

t

t�
�G0�
� �t,t�� + G�̄2

� �t,t��	Fk��̄
� �t�,t�

− �G0�
� �t,t�� + G�̄2

� �t,t��	Fk��̄
� �t�,t��e−i��t�dt�.

�10�

The lesser and greater GFs for the QD, are here given by

G0�
� �t,t�� = iN�e−i��0
, G0�

� �t,t�� = − iN0e−i��0
,

�11a�

G�̄2
� �t,t�� = iN2e−i�2�̄
, G�̄2

� �t,t�� = − iN�̄e−i�2�̄
,

�11b�

where Np= �Xpp�, denotes the occupation number for the QD
state �p� whereas the anomalous GFs for the leads are ex-
pressed as

Fk��̄
� �t,t�� 
 − i�ck��t�ck�̄�t���

= i�ukvk
��f�Ek�eiEk
 − f�− Ek�e−iEk
	 ,

Fk��̄
� �t,t�� 
 i�ck�̄�t��ck��t��

= i�ukvk
��f�Ek�e−iEk
 − f�− Ek�eiEk
	 .

The equation for N02 is, thus, given by

�i�t − �20�N02 = − �
�
� 
�1 + ��q���1 + ��q�U���,t��

− i��q̇V���,t��	�e−i��t−t��d�

2�
dt�e−i���t+
��,

�12�

where the amplitudes U� and V� are

U���,t� = − �
k���

�����t�
�0��2

2Ek
�N0Lk−���0 − ��

+ N�̄Lk−��2�̄ − ��

+ N�Lk+���0 − �� + N2Lk+��2�̄ − ��	 ,

�13a�

V���,t� = �
k���

�����t�
�0��2

2Ek
�N0Lk−

2 ���0 − �� + N�̄Lk−
2 ��2�̄ − ��

+ N�Lk+
2 ���0 − �� + N2Lk+

2 ��2�̄ − ��	 . �13b�

Those amplitudes describe the cotunneling processes in
which two electrons are either added or removed from the
QD in absence and presence of the coupling to the vibra-
tional mode, respectively.

C. Quantum-dot occupation numbers

It is clear that the supercurrent is to a great extent deter-
mined by the time evolution of the electron occupation Np in
the QD. We obtain those from the density matrix ��t�
= 
�Xpp���t��pp� requiring �pNp=1. Within the employed level
of approximation, � is determined from the master equation
�tN=��t�

2U�N, where N= �N0N↑N↓N2�T, whereas

U� =���
�0�

�
�0↑

� �0↓
� 0

− �0↑
� − �0↑

� + �↑2
� 0 �↑2

�

− �0↓
� 0 − �0↓

� + �↓2
� �↓2

�

0 − �↑2
� − �↓2

� − ��
��2

�
�
�14�

and where

�pq
� = 2�N��qp

� ���qp
� − �����

���qp
� �2 − ����2

, �15a�

�pq
� = 2�N��qp

� ��− �qp
� − �����

���qp
� �2 − ����2

. �15b�

Here, N� is the density of electron states in lead �, whereas
�pq

� =�pq−��.

III. DYNAMICS OF THE QUANTUM DOT

It can be seen in Tables I and II, and Fig. 1 that there are
several regimes in the ��0 ,U� space, in which the time de-
pendence of the quantum-dot occupation numbers is very
different. Here, we analyze each of the regimes in order to
elucidate the characteristic time scales involved in the elec-
tromechanical dynamics of the QD.

TABLE I. The three regimes in which at least one transition
energy lies within the superconducting gap.

I
��0

� �−����
��2�

� �� ����

II
���0

� �� ����
��2�

� �� ����

III
���0

� �� ����
�2�

� � ����

�0�
� 0 0 0

��2
� 0 0 �0

�0�
� �0 0 0

��2
� 0 0 0
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A. Regime I: Both transitions within the gap

Beginning with regime I, we find that the occupation
numbers are constants of motion since the matrix U�=0,
hence, �tN=0. The nondynamical charge distribution on the
QD, implies that the QD motion can be linearly excited by
varying the bias voltage and superconducting phases. Inte-
grating Eq. �12�, we obtain

N02 = �
�


��1 + ��q�2U�� − ��
�1 + ��q�q̇ + ��q̈�V��

− 2��
2q̇2U��	cos���t + 
�� − ��q̇��1 + ��q�V��

+ 2�1 + ��q�U�� − 2��q̈V��	sin���t + 
��� , �16�

where U��=U� / ��20−���, U��=U� / ��20−���2, and U��
=U� / ��20−���3, and analogously for V��, V��, and V��.

An order of magnitude estimate for the relative ratios be-
tween the parameters JS

�, �S
�, U�, and V� gives

��

��

J�

� � eV

�����
2

, ��

V�

U�

� 1,
e

�

U�

J�

�
eV

����
. �17�

As we are considering small bias voltages, eV� ����, we
proceed by neglecting the �� terms, and since we are con-
sidering weak coupling between the vibrational mode and
the electronic degrees of freedom, we only keep terms at
most linear in ��. The current, thus, reduces to

I��t� = J��
��


��1 + 2��q + 2���q	U��
� − ���q̈V��

� �

� cos����t + 
��� + ���q̇�2U��
� − V��

� 	

��sin����t + 
���	�sin���t + 
�� , �18�

We note several things in this formula for the Josephson
current. The first term would arise when the QD is rigid in
space since there is no coupling to the vibrational motion. All
other terms, which are proportional to ��, arise due to the
movability of the QD in the Josephson junction. There are
two terms directly depending on the position q of the QD, as
expected from previous studies.23,24 More interesting, how-
ever, is the dependence on the velocity q̇ and acceleration q̈
of the QD, displayed in the fourth, fifth, and sixth terms.
These dependences, hence, open possibilities for novel mea-
surements and applications of shuttling QDs.

Following the procedure introduced in Refs. 23 and 24,
we derive the effective Hamiltonian HJ by requiring that
2e�HJ /�
�= I�, where I� is given in Eq. �18�. We briefly
discuss the salient features of the result while a detailed deri-

vation will be presented elsewhere. Within the given level of
approximation, the Hamiltonian is linear in the coordinates
q , q̇ , q̈. Hence, the classical equation of motion from the
Hamiltonian Hosc= p2 / �2m�+kcx

2 /2+HJ is expected to be
simple, in the sense that all features derived from the super-
conducting current act as a driving force F�t�. The equation
of the QD motion will, therefore, be that of a driven oscilla-
tor, i.e., mcq̈+	Nq̇+kcq=F�t�, where the damping factor 	N
contains the external damping due to mechanical friction. We
notice en passant that a quadratic approximation in �� pro-
vides contributions that add a Josephson stiffness and damp-
ing. The linear spatial motion of the QD is, however, given
by

q�t� = q0 sin��̃0t + �0�e−	Nt/2m

− q0�
�

1

K�
� 3�̃�

4
U�� −

�̃�

4
�3U�� − 2���2U�� − V���	

�H���,
�� + �
����

�Q��������H����,
���

−
1

2
Q������� − ���H���� − ��,
�� − 
��

−
1

2
Q������� + ���H���� + ��,
�� + 
���� , �19�

where

Q�����,
� = ��̃� + 2�̃��	U��
� + �̃����2U��

� − V��
� 	 ,

H��,
� =
1 − ��/�0�2

�1 − ��/�0�2	2 + �	N�/kc	2

� �cos��t + 
� +
	N�

kc

sin��t + 
�
1 − ��/�0�2�

whereas �̃�=q0�� and K�=kcq0
2 /EJ

� are dimensionless pa-
rameters, whereas EJ

�=J� /2e is the Josephson energy. The
first term in Eq. �19� describes the unperturbed damped mo-
tion of the QD around its equilibrium position qeq, where q0
and �0 are to be determined from the initial conditions,
whereas �̃0=��0

2− �	N /2m	2 ��0=�kc /mc� is the eigenfre-
quency of the damped �undamped� mechanical oscillations.
The only time scales introduced in the Josephson current are
the ones associated with the eigenfrequency �̃0 and the Jo-
sephson frequencies ��, which is contrasted by the proper-
ties of the other regimes, as we shall see below.

This extended analysis of the expected Josephson current
in term of the QD motion is possible only since the occupa-
tion numbers are constants of motion. Hence, for the remain-
ing regimes we will be content with establishing the charac-
teristic time scales.

B. Regimes II and III: Single transition within the gap

Within regime II, the parameters �pq
� =0, for all transitions

pq, and also ��2
� =0 since �2�

� �−����, whereas �0�
� �0

since ��0
� �−����. Hence, the number N2 is a constant of

TABLE II. The three regimes in which both transition energies
lie outside the superconducting gap.

IV
�pq

� �−����
V

���0
� ��−���� ��2�

� �� ����
VI

�pq
� � ����

�0�
� 0 �0 �0

��2
� 0 �0 �0

�0�
� �0 �0 0

��2
� �0 �0 0
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motion while the remaining system of equations has the so-
lution

N0�t� = Ñ0�
��

e�0�
� �t0

t t�
2�t��dt�, �20a�

N��t� = − �
�

�0�
� �

t0

t

t�
2�t��N0�t��dt� �20b�

for some initial time t0 at which Ñ0=N0�t0�. Under the local
approximation of the tunneling rate, N0 acquires the time
evolution

�
��

e�0�
� �t�

�0��3��q̇
�1+��q	�1−��q̇�t−t0�	+��
2q̇2�t − t0�2/3��t−t0�.

The exponent periodically changes sign with the QD velocity
q̇, and position q, which provides an oscillatory behavior of
the occupation numbers N0 as well as for N�. Physically, this
means that the electron density in the QD periodically grows
and wanes as the QD moves, which opens for possibilities to
load and unload electron density on the QD at different
leads, or, single electron shuttling between the superconduct-
ing leads via the QD. The properties of the QD in regime III
are analogously obtained by interchanging the roles of N0
and N2.

The time scale 
 for loading �unloading� electron density
on the QD is related to the transition energy ��0

� ��2�
� �, and it

can be noted that 
→0 as ��0
� →−���� ��2�

� → �����, while it
is determined solely by the density of electron states, 

�1 /N�, in the leads for transition energies far below �above�
the superconducting gap. The dynamics of the occupation
numbers introduce an additional time scale to the ac Joseph-
son current which is associated with the energies of the QD
transitions, and which is different from the one introduced
through the Josephson frequency.

C. Regimes IV and VI: Both transitions
below or above the gap

In regime IV, all transition energies �pq�−����, which
implies that �pq

� =0, whereas �pq
� �0. We can, then, integrate

the occupation of the empty state according to Eq. �20a�
whereas the occupations for the one- and two-electron states
are given by

N��t� = − �
�
�

t0

t

e��2
� �

t�
t

t�
2�t��dt��

��

t��
2 �t���0�

��N0�t��dt�,

�21a�

N2�t� = − �
�

��2�
t0

t

N��t��dt�. �21b�

While both the empty and one-electron states, again, depend
on the periodic motion and velocity of the QD, the two-
electron state also acquires an oscillatory behavior since it
depends on the integrated time evolution of the occupation of
the other states. It is noticeable, however, that the time evo-
lution of the electron occupation in the QD here is related to

the �four� time scales associated with the transition energies
��0 and �2�. In particular, the one-electron occupations N�

strongly depend on the rate of the transitions X0� and X�2.
The properties of regime VI are obtained by noticing that all
�pq�0 and all �pq=0 such that the roles of N0 and N2 be-
come interchanged.

D. Regime V: Gap between the lower and upper transitions

In regime V, finally, ��0
� �−���� and �2�

� � ����, which
leads to that �0�

� �0, ��0
� =0, ��2

� =0, and ��2
� �0. N0 and N2

are, thus, determined by Eq. �20a�, requiring the replace-

ments �0�
� →��2

� and Ñ0→ Ñ2 in the expression for N2. It is
understood that N0 decreases �increases� while N2 increases
�decreases�, which is expected from conservation of prob-
ability. The one-electron occupations N� depend on the inte-
grated time evolution of N0 and N2, that is,

N��t� = − �
�
�

t0

t

t�
2�t����0�

� N0�t�� − ��2
� N2�t��	dt�. �22�

The occupation of the one-electron states can, thus, be
viewed as resulting from the imbalance between the occupa-
tion in the empty and two-electron states

IV. SUMMARY AND CONCLUSIONS

We have studied the dynamics of a single-level molecular
QD embedded in a Josephson junction, in which the me-
chanical motion of the QD is couples to the supercurrent. In
the static limit, i.e., when the QD is rigid, the supercurrent
between the superconducting electrodes is mediated via two-
electron transitions in the QD, a behavior which remains also
when the QD moves between the electrodes. The rate of the
two-electron transitions naturally depends on the occupation
of the QD states and the energies of the transitions between
the states. The rate does, in addition, explicitly depend on the
motion of the QD.

Our main focus has, in the present paper, been devoted to
extract the time scales that are involved in the dynamics of
the QD occupation numbers. It turns out that we can clearly
distinguish between six separate regimes in the phase space
of the single-electron energy level �0 and the QD charging
energy U, see the phase diagram in Fig. 1. The boundaries
between the various regimes are set by pairing potential �gap
function� of the electrodes and the dynamics of the QD oc-
cupation depends on whether the single-electron transitions
in the QD lie within or outside the gap.

In all regimes but one, there are more than two time scales
involved in the dynamics of the QD occupation. Those addi-
tional time scales are typically defined by the energies of the
single-electron transitions relative to the superconducting
gap �and the chemical potential�. For transition energies very
far below �above� the gap, the time scale for occupying, or
deoccupying, the corresponding states are set by the density
of electron states in the electrodes, while the time scale tends
to zero as the transition energies approach the edge of the
gap from below �above�. As the transition energies lie within
the gap function, the occupation numbers of the QD are con-
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stants of the motion which implies that the dynamics of the
QD occupation depends solely on �i� the two basic time
scales set by the bias voltage �Josephson frequency� and the
eigenfrequency �̃0 of the oscillator, and �ii� the phase differ-
ence between the electrodes.

An experimental setup to test our predictions would be
possible by having gap functions ����10 meV, which is
pertinent to MgB2,26 in order to obtain a sufficiently small
mechanical damping. By also acquiring a vibrational fre-
quency of �0 /2��1 GHz,27 one should be able to tune the
Josephson frequency such that �0 /�J�0.1. A coupling
strength of28 � /�0�10−1–10−3 should be sufficient for an
efficient readout. Finally, the charging energy U of the QD
may be on the order of 1–10 meV while the level spacing

should preferably be larger than U in order to control the
electron occupation. For this requirement on the charging
energy, one would have access to the regimes I–IV and VI,
whereas the regime V would become accessible by requiring
a charging energy U�2���.
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