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The charge and energy transport in some highly conducting quasi-one-dimensional organic crystals is stud-
ied. Two electron-phonon interactions and scattering on impurity are considered. It is found that the
Wiedemann-Franz law is strongly violated. The Lorentz number is diminished for a large interval of Fermi
energy: �1� due to faster decrease in thermal conductivity than the electrical conductivity when the conduction
band width is decreased, and �2� due to strong dependence of relaxation time on carrier energy. The Lorentz
number becomes dependent on crystal purity and may be reduced by up to ten times and even more in
comparison with ordinary materials. This is favorable for the increase of thermoelectric figure of merit ZT. It
is predicted that in really existing crystals of tetrathiotetracene-iodide, when after the optimization of carrier
concentration ZT=1.4 is expected, the Lorentz number is reduced by 1.6 times with respect to the usual value.
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I. INTRODUCTION

Presently, large application of thermoelectric converters
of energy is limited by their low efficiency. The latter is
determined by low thermoelectric figure of merit ZT of used
materials. In order to increase ZT, it needs to increase in the
same material the electrical conductivity �, the thermopower
�Seebeck coefficient� S, and to diminish the thermal conduc-
tivity � at operating temperature T. However, this strategy
applied to known bulk materials has not yet produced mate-
rials with ZT�1 at room temperature, because �, S and �
are not independent each of other.

Recently, significant increase in ZT has been obtained in
thermoelectric materials prepared as low-dimensional struc-
tures or composites.1 The growth of ZT is determined first,
by the growth of electronic density of states, which leads to
the growth of the thermoelectric power factor P=�S2 and,
second, by additional scattering of phonons at interfaces of
structure which leads to the decrease in thermal conductivity.

Really, an increase in P has been measured in n- and
p-type PbTe/PbEuTe quantum-well superlattices.2,3 How-
ever, theoretical investigations4–7 have shown rather limited
possibilities to increase P and ZT in such structures. The
increase in ZT has been obtained,8–11 but mainly due to the
reduction of lattice thermal conductivity, than the increase in
power factor. A 100-fold reduction in � has been obtained in
arrays of Si nanowires, yielding ZT=0.6 at room
temperature12 and13 ZT�1 at 200 K. The phonon contribu-
tion to � is reduced to the limit of amorphous Si.

Note that from the theoretical point of view there is no an
upper limit for ZT. Therefore, it is clear that mainly by the
increase of P it will be possible to obtain really high values
of ZT. But the increase in � leads to the increase in carriers’
contribution �e to the total thermal conductivity k, in accor-
dance with the Wiedemann-Franz law. This law is generally
valid in ordinary materials at high temperatures. In the Q1D
organic crystals the temperatures near the room one can be
considered as high because such T is significantly greater
than the Debye temperature which is rather low,
�85–100 K. Therefore, it is necessary to search new mate-
rials with more complicated internal interactions that would

overcome this difficulty. This problem is very important and
urgent.

The aim of this paper is to show that under certain con-
ditions the Wiedemann-Franz law is strongly violated in
Q1D organic crystals and the Lorentz number may be sig-
nificantly less then in ordinary materials for a large interval
of carriers’ concentrations. This is favorable for thermoelec-
tric applications of such materials, because it gives a possi-
bility to increase ZT. It will be demonstrated for concrete
Q1D organic crystals of tetrathiotetracene-iodide, TTT2I3.
Note also that the TTT2I3 crystals can be considered as nano-
structured bulk materials, because they consist of conducting
chains of molecules the distances between the chains being
of the order of one nanometer.

II. ELECTRON-PHONON AND ELECTRON-IMPURITY
INTERACTIONS

Let us consider a Q1D organic crystal of a tetragonal
symmetry formed from linear chains of molecules. The lat-
tice constant along the chains is considerably smaller than
between the chains. As a result, the overlap of conduction
electrons wave functions along chains is much greater than
that of electrons from different chains. Accordingly, the
transport mechanism along chains is of the band type and
between chains is of hopping type. In the transport processes
the latter is of less importance and can be neglected. Usually
the ratio of longitudinal electrical conductivity along chains
to the transversal one across the chains is of the order of 103.
Thus, the electrons are moving in a 1D conduction band.

The Hamiltonian of a linear chain of molecules in the
tight-binding and nearest-neighbors approximations takes the
form14

H = �
k

��k�ak
†ak + �

q

��qbq
†bq

+ �
k,q

�A1�k,q� + A2�q��ak
†ak−q�bq

† + b−q�

+
Id

Na
�
k,p

�
l=1

Ni

exp�iprl�ak
†ak−p. �1�
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Here the first term is the energy operator of the free elec-
trons with the projection of wave vector k along the chains
and the energy ��k�=2w�1−cos ka�, where �w� and a are the
energy of an electron transfer between the nearest molecules
and the lattice constant along chains, ak

†�ak� are the creation
�annihilation� operators of such carrier. The second term in
Eq. �1� is the energy of longitudinal acoustic phonons with
the projection q of the wave vector along the chains and the
frequency �q=2vsa

−1�sin qa /2�, where vs is the sound veloc-
ity along the chains. The third term in Eq. �1� represents the
electron-phonon interactions. Two mechanisms of such inter-
actions are considered. The matrix element A1�k ,q� describes
the interaction caused by the fluctuations of the transfer en-
ergy �w�, due to intermolecular vibrations �phonons�

A1�k,q� = 2i�1/2w��2NM�q�−1/2�sin ka − sin�k − q�a� ,

�2�

where M is the mass of molecule, N is the number of mol-
ecules in the basic region of the chain. This interaction is
similar to that of deformation potential and the coupling con-
stant is proportional to the derivative w� of w with respect to
the intermolecular distance.

The matrix element A2�q� describes the interaction, due to
fluctuations of the polarization energy of molecules sur-
rounding the conduction electron, caused by the same
phonons

A2�q� = 4i�1/2e2�0a−5�2NM�q�−1/2sin qa . �3�

Here e is the charge of carrier. The coupling constant of
this interaction is proportional to the average polarizability
�0 of the molecule. So as �0 is roughly proportional to the
volume of molecule, this interaction is important for crystals
formed from big molecules. Such are, usually, the Q1D or-
ganic crystals.

The last term in Eq. �1� describes the scattering of carriers
on impurities that always exist in crystals. For simplicity the
impurities are considered neutral and pointlike. In Eq. �1� Ni
is the number of impurities with the random coordinate rl
along the chain, I and d are the effective height and width of
the impurity potential, p is the transferred wave vector be-
tween a carrier and the impurity. In order to obtain the
Hamiltonian of crystal it needs to sum up in Eq. �1� on all
chains in the basic region of the crystal.

This model will be applied to the Q1D organic crystals of
tetrathiotetracene-iodide, TTT2I3, for which the conduction
band width15–17 	=4w=0.64 eV�25k0T0, �k0 is the Boltz-
mann constant, T0=300 K� is rather large that justifies the
application of band model. The Coulomb interaction between
carriers is neglected in Eq. �1� because it is strongly screened
by highly polarizable molecules.

III. CHARGE AND ENERGY TRANSPORT

Let us consider the charge and energy transport under the
action of a weak electric field E and a temperature gradient
�T, applied along the chains of the Q1D crystal in the above
presented model. The electrical Ie and thermal IQ current
densities are determined as

Ie = �E − �S � T, IQ = T�SE − K � T , �4�

where K is the electronic thermal conductivity at zero elec-
tric field. The usual electronic thermal conductivity at zero
electric current �e is defined by ke=K−T�S2. The current
densities from Eq. �4� can be calculated using the expres-
sions

Ie =
2ez

Nabc
�

k
vkfk

1, IQ =
2z

Nabc
�

k

���k� − EF�vkfk
1, �5�

where fk
1 is the deviation from equilibrium distribution func-

tion of carriers, vk is the velocity of carrier, a, b, and c are
the lattice constants, z is the number of chains through the
transversal section of the unit cell, EF is the Fermi energy. In
Eq. �5� the summing up on all chains is carried out.

We will study the transport at temperatures T close to
room temperature. As it is shown in Ref. 14 at such T the
scattering processes on acoustic phonons can be considered
elastic. The linear kinetic equation takes the form of Boltz-
mann equation and is solved as in Ref. 14. We obtain the
following expressions for electrical conductivity � and elec-
tronic thermal conductivity �e:

� = R0, �e = �e2T�−1�R2 − �R1�2/R0� , �6�

where Rn are the transport integrals,

Rn = −
2e2az


�2bc
�

0

	

�E − EF�n�E�	 − E��1/2��E�f0�dE . �7�

Here E is the carrier energy, 0�E�	, f0��E� is the de-
rivative of Fermi distribution function with respect to E, and
��E� is the relaxation time. So as the conduction band width
is not too large, the integration in Eq. �7� is carried out on all
energies in the band. Replacing the phonon distribution func-
tion by its high-T limit, we obtain for the relaxation time

��E� =
�Mvs

2w2�E�	 − E��1/2

2a2k0Tw�2
2��E − E0
s,p�2 + 4w2
−2D�

, �8�

where 
 is the ratio of amplitudes of above mentioned
electron-phonon interactions 
=2e2�0 / �a5�w��� and
characterizes the relative role of these interactions,
E0

s,p=2w�
�1� /
 is the resonance energy �for s- and p-type
bands, respectively�, which corresponds to the maximum of
��E�, when 0�E0

s,p�	. The dimensionless parameter D in
Eq. �8� describes the scattering of carriers on impurities. It
has the meaning of ratio of relaxation time �0�E�, determined
only by the electron-phonon interaction of deformation po-
tential type, caused by w� �when 
=0, D=0�, to the relax-
ation time �im�E�, determined only by the carriers’ scattering
on impurities,

D = �0�E�/�im�E� = nimI2d2Mvs
2/�4a3k0Tw�2� , �9�

where nim is the linear concentration of impurity. So as D is
proportional to nim, it can be made much less than unity, if
the crystal purity is sufficiently high.

Earlier, we have shown theoretically18–20 that in some
highly conducting Q1D organic crystals it is expected to ob-
tain very high values of ZT�20. This increase can be
achieved mainly due to significant mutual compensation14,21
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of both above mentioned electron-phonon interactions for a
narrow strip of states in the conduction band. As a result, the
relaxation time ��E� as a function of carrier energy E takes
the form of Lorentzian which can be rather sharp. Note that
the model of the best thermoelectric material proposed by
Mahan and Sofo22 is characterized by a narrow distribution
of the energy of carriers participating in the transport process
of the Dirac delta function form. It was proposed in Ref. 22
to use the carriers’ density of states close to a Lorentzian of
very narrow width that could come from the contribution of
electronic f-levels of rare-earth elements. We propose to use
the Lorentzian form of relaxation time �Eq. �8�� that has a
number of advantages: �1� high values of relaxation time
ensure high values of mobility and of electrical conductivity;
�2� sharp dependence on carrier energy ensures high values
of the thermopower S, leading in such a way to significant
growth of the power factor P; �3� as it will be shown further,
the Lorentz number can be diminished under certain condi-
tions and this can give important contribution to the growth
of ZT. Recently, high values of ZT have been predicted in the
one-molecule contact,23 where the transmission function
takes also the form of a Lorentzian. A violation of the
Wiedemann-Franz law has been predicted in a single-
electron transistor,24 in some heavy-fermions compounds,25

in weakly disordered Luttinger liquids,26 but these systems
do not refer to thermoelectric applications.

IV. LORENTZ NUMBER

The Lorentz number is defined as

L = �e/�T . �10�

It has been modeled for different values of EF, 
, and D at
room temperature.

First, we find that in the case of only the electron-phonon
interaction caused by w� �small molecules, �0 is negligible
small� and nondegenerate gas L can be calculated analyti-
cally. For a large conduction band �w�k0T0� it follows from
Eq. �10� the usual result for scattering on acoustic phonons
L=2�k0 /e�2. For strongly degenerate gas, when the approxi-
mation method of calculation of integrals with f0��E� can be
applied, we also obtain from Eq. �10� a usual result
L= �
2 /3��k0 /e�2. These limited cases are seen in the Fig. 1
as horizontal parts of solid line, calculated numerically after
Eq. �10� with 
=0 and D=0 for a large conduction band
�w=1.6 eV� and the other parameters as for the dashed line.
The latter is calculated for a narrower conduction band with
the parameters of Q1D organic crystal of tetrathiotetracene-
iodide, TTT2I3: w=0.16 eV, w�=0.26 eV Å−1,
M =6.5�105me �me is the mass of free electron�,
a=18.46 Å, b=18.35 Å, c=4.96 Å, �c is the direction of
chains�, vs=1.5�105 cm /s, the lattice thermal conductivity
�l=0.6 W m−1 K−1. The dimensionless Fermi energy
�F=EF /2w is varied between −0.5�EF=−6 k0T0� and unity
�EF=12k0T0�. It is seen �dashed line in Fig. 1� that even in
crystals formed from small molecules, when only one
interaction mechanism is involved and the mutual
compensation14 of mentioned electron-phonon interactions
does not take place, the Wiedemann-Franz law is violated

and L is diminished in the whole interval of �F variation. The
analysis shows that it is occurred because with the decrease
of conduction band width �e decreases faster than �. The
diminution of L is more significant for �F�0.1–0.3. So, for
�F=0.1, L is reduced by 1.5 times in comparison with the
case of large band. It is favorable for thermoelectric applica-
tions of such materials.

Let us consider in more details the Q1D “synthetic metal”
TTT2I3. It has been investigated many years ago15–17 with the
aim to create a high critical temperature Tc organic supercon-
ductor. After the discovery of high Tc cuprates and the un-
derstanding that for a superconducting transition the Q2D
gas of carriers is required, the investigations of TTT2I3 were
stopped. Recently it was found27 that these crystals may have
prospect thermoelectric properties. It has been shown theo-
retically that in really existing such crystals it is possibly to
increase the figure of merit ZT up to 1.4 at room temperature,
if the carriers concentration is diminished by approximately
2.5 times with respect to the concentration in stoichiometric
crystals. More over, the crystals have needlelike form as al-
most ready legs for thermocouples. When the crystals are
obtained from solution,17 they have in the same batch
��800–1800 �−1 cm−1, whereas being grown from gas
phase,16 they have ��103–104 �−1 cm−1 at room tempera-
ture. The electrical conductivity � is very sensitive to crystal
purity and perfection. If only the electron-phonon interaction
caused by w� is considered, it is difficult to explain such high
values of �. In this case it would expect unreal small value of
w� in such materials. Therefore, we will consider both
electron-phonon interactions and their mutual compensation
�i.e., put 
�0�, as in Ref. 14. In mixed valence compound
TTT2I3 the carrier concentration is n=1.2�1021 cm−3 which
corresponds to �F a little less than 0.4. Only the TTT chains
are conducting and the carriers are holes. The compound
admits the formation of nonstoichiometric crystals with in-
creased or diminished iodine contents and holes concentra-
tion, respectively.

The parameter 
 is not known in TTT2I3 because the mol-
ecule polarizability �0 is not known. In the Fig. 2 the depen-
dences of L on D are presented for �F=0.1, 0.2, 0.3, and 0.4.
We have put 
=1.7 that corresponds to �0=45 Å3. For com-
parison, in antracene �0=25 Å3, but TTT molecule is bigger
and �0 must be greater too. It is seen that L is additionally
diminished in comparison with the values of dashed line in

FIG. 1. Lorentz number L as a function of �F for the case of
only the interaction caused by w�. The solid and dashed lines are for
a large and a narrower conduction bands.
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Fig. 1. The diminution is especially strong in purer crystals
�for smaller D� at higher values of �F. So, at �F�0.4 and
D=10−3 it results from Fig. 2 L=0.3�k0 /e�2. This means that
L is 11 times less than in ordinary materials and 9 times less
than for dashed line from Fig. 1 in presence of only one
electron-phonon interaction. This additional diminution is
determined by the stronger energy dependence of relaxation
time than in the case of only the deformation potential inter-
action.

The dependence of relaxation time on carrier energy is
presented in Fig. 3 for 
=1.7 and different degrees of crystal
purity �D=0.2, 0.1, and 0.04�: the dashed and dotted lines
correspond to existing crystals of TTT2I3 with �=5�103

and 104 �−1 cm−1, respectively, but the solid line is calcu-
lated for slightly purer crystals with �=2�104 �−1 cm−1 at
room T. For comparison, in Fig. 3 the case of only the de-
formation potential interaction �
=0, D=0� is also
presented—by the dash-doted line. In the last case the energy
dependence of relaxation time is rather smooth and L corre-
sponds to dashed line in Fig. 1. When 
=1.7, the relaxation
time has a maximum which grows with the decrease of D
and becomes even sharp at D=0.04 �solid line in Fig. 3�. The
maximums occur at � close to 0.4, or E�0.128 eV
�5k0T0. As it is seen form Fig. 4, near this value of �F the
Lorentz number has a minimum which also is more pro-
nounced for smaller values of D. For D=0.04 the minimum
is L=1.2�k0 /e�2 or is by 2.7 times less than in ordinary ma-
terials.

The minimums of L are determined by the carriers with
energies around the maximums of relaxation time. The con-

tribution of these carriers to the charge transport leads to an
increase in �, which obtains high maximums at �F�0.4, due
to the growth of relaxation time. Simultaneously �e grows
too, but not so strongly as �, due to narrower interval of
energy of carriers that give main contribution to the energy
transport. In the limit when the Lorentzian in Eq. �8� is trans-
formed in � function, �e→0, because all carriers participat-
ing in the transport have the same energy. The maximums of
�e are relatively lower and larger than those of � and are
displaced to higher values of Fermi energy �F�0.6. Such
behavior of � and �e explains also the growth of L for
�F�0.05 and especially for 0.75��F�1. In these intervals
of Fermi energy � decreases faster than �e, due to larger
maximums of �e than of � as functions of �F and to the
displacement of �e maximum to higher values of �F.

The analysis shows that in TTT2I3 crystals at usual carri-
ers concentration n ��F a little less than 0.4� ZT weakly de-
pends on D and is only �0.1, because the thermopower is
small and the power factor P is only �10 �W cm−1 K−2.
Nevertheless, the diminution of L can give important contri-
bution to the increase in ZT for lower values of �F. For this
it needs to diminish the carriers’ concentration. Thus, the
calculations show that when n is diminished from
1.2�1021 cm−3 by 2.5 times �to �F=0.1, D=0.1�, and
ZT�1.4 is expected27 in really existing TTT2I3 crystals the
Lorentz number becomes �2�k0 /e�2 in comparison with the
usual value of �3.2�k0 /e�2 at given Fermi energy, i.e.,
L is diminished by 1.6 times. The calculated parameters
in this case are �=2.1�103 �−1 cm−1, S=194 �V /K,
�e=1.0 W m−1 K−1.

In purer crystals with higher values of � the diminution of
L will be more over, as it is seen in Fig. 2. This means that
highly conducting Q1D organic crystals, as synthetic metal
TTT2I3, are very prospect materials for thermoelectric appli-
cations.

V. CONCLUSION

In conclusion, we have investigated theoretically the
charge and energy transport in some highly conducting
quasi-one-dimensional organic crystals with the application
to the thermoelectric properties of tetrathiotetracene iodide,
TTT2I3, crystals. The interactions of charge carriers with
acoustic phonons determined both by the variation of energy
transfer of the carrier from a molecule to the nearest one

FIG. 2. Lorentz number L as a function of dimensionless param-
eter D for different values of �F and 
=1.7.

FIG. 3. Relaxation time as a function of carrier energy in unities
of 2w for 
=1.7 �dashed, dotted and solid lines�, and 
=0 �dash-
dotted line�.

FIG. 4. Lorentz number L as a function of �F for TTT2I3 crys-
tals with 
=1.7 and different degree of purity.
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along the one-dimensional chains �interaction of deformation
potential type� and by the variation of polarization energy of
molecules surrounding the carrier �interaction of polaron
type� are considered. The scattering on impurities is also
taken into account. We found a strong violation of the
Wiedemann-Franz law. The Lorentz number L is diminished
into a large interval of Fermi energy and is increased in other
intervals as compared with the usual values. The diminution
of L is determined, first, by a faster decrease of thermal
conductivity than the electrical conductivity when the con-
duction band width is decreased and, second, by stronger
dependence of relaxation time on carrier energy. The Lorentz
number becomes dependent on crystal purity and may be
reduced up to ten times and even more in comparison with

ordinary materials. It is favorable for thermoelectric applica-
tions of such materials. The calculations show that in really
existing crystals of TTT2I3, when after the optimization of
carriers concentration the value of the thermoelectric figure
of merit ZT=1.4 is expected, L is diminished by 1.6 times in
comparison with the usual value at given Fermi energy. It is
expected that in purer crystals with higher values of � the
diminution of L will be more over.
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