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Change in the bonding environment at the free edges of graphene monolayer leads to excess edge energy and
edge force, depending on the edge morphology �zigzag or armchair�. By using a reactive empirical bond-order
potential and atomistic simulations, we show that the excess edge energy in free-standing graphene nanorib-
bons can be partially relaxed by both in-plane and out-of-plane deformation. The excess edge energy and edge
force are calculated for graphene nanoribbons with parallel zigzag or armchair edges. Depending on the
longitudinal constraint, the compressive edge force leads to either in-plane elongation of the ribbon or out-of-
plane buckling deformation. In the former case, the longitudinal strain is inversely proportional to the ribbon
width. In the latter case, energy minimization predicts an intrinsic wavelength for edge buckling to be 6.2 nm
along the zigzag edge and 8.0 nm along the armchair edge. For graphene nanoribbons of width less than the
intrinsic wavelength, interaction between the two free edges becomes significant, leading to antiphase corre-
lation of the buckling waves.
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I. INTRODUCTION

Since isolation of monolayer graphene was first reported
in 2005,1 graphene has drawn tremendous interests for re-
search in physics, materials science, and engineering. To har-
vest the unique physical properties of monolayer graphene
for potential applications in nanoelectronics and electrome-
chanical systems, graphene ribbons with nanoscale widths
�W�20 nm� have been produced either by lithographic
patterning2–4 or by chemically derived self-assembly
processes.5 The edges of the graphene nanoribbons �GNRs�
could be zigzag, armchair, or a mixture of both.6 It has been
theoretically predicted that the special characteristics of the
edge states lead to a size effect in the electronic state of
graphene and controls whether the GNR is metallic, insulat-
ing, or semiconducting.6–8 Recently, the effects of free edges
on the mechanical properties of GNRs have also been
studied,9–11 suggesting a size and chirality dependence.

Experimentally it remains a great challenge to observe the
atomic structures near free edges of graphene
monolayers.12–16 First-principle calculations based on
density-functional theory �DFT� have suggested in-plane re-
constructions of the edges17,18 as a way to relieve the excess
edge energy and thus stabilize the planar edge structure. On
the other hand, atomistic simulations using empirical poten-
tials have shown rippling, warping, and twisting, with out-
of-plane deformation along free edges of graphene
monolayers.19–21 In addition to the excess edge energy, edge
stresses and elastic edge moduli have been proposed as con-
tinuum thermodynamic properties of the edges.9,18,20–23

However, the reported values for the excess edge energy and
the edge stresses are scattered even among different DFT
calculations �Table I�. In particular, the relative stability of
the armchair and zigzag edges has been shown to depend
strongly on the choice of the density functional.24 As listed
in Table I, the DFT calculations17,18,22 have yielded similar
values for the edge energy but it is not clear what mecha-
nisms �or approximations� have resulted in the quantitative
scattering �up to about 25%�. Moreover, the two DFT

calculations18,22 yielded dramatically different values for the
edge stresses �renamed edge forces in Table I�. A couple of
previous studies based on empirical potentials predicted edge
stresses for the zigzag and armchair edges in opposite
orders.20,21 To resolve these discrepancies, it is necessary to
investigate the physical origins that lead to the excess energy
and edge stresses as well as the approximations made in the
calculations based on either a particular form of the empiri-
cal potential or a particular DFT method.

In the present study, using a well-established empirical
potential, we show that the change in the bonding environ-
ment along the edges leads to excess energy while the mis-
match between the edge bonds and the interior bonds induces
edge forces. Furthermore, the excess edge energy can be par-
tially relaxed by either in-plane elongation of the graphene
nanoribbons or out-of-plane buckling along the edges. While
the accuracy of the quantitative results may be limited by the
empirical potential used in the present study, the approach
and the qualitative understanding shall be valid for other
potentials.

TABLE I. Comparison of predicted excess edge energy and
edge forces �both in electron volt per nanometer� of monolayer
graphene.

Edge energy ��� Edge force �f�
r0

�nm�Armchair Zigzag Armchair Zigzag

DFTa �GPAW� 9.8 13.2 0.142

DFTb �VASP� 10 12 −14.5 −5 0.142

DFTc �SIESTA� 12.43 15.33 −26.40 −22.48 0.142

MMd �AIREBO� −10.5 −20.5 0.140

MDe −20.4 −16.4 0.146

MM �REBO� 10.91 10.41 −8.53 −16.22 0.142

aReference 17.
bReference 18.
cReference 22.
dReference 20.
eReference 21.
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II. 1D RELAXATION

Based on a reactive empirical bond-order �REBO�
potential,25 the chemical binding energy between two carbon
atoms takes the form

V�r� = VR�r� − b̄VA�r� , �1�

where r is the interatomic distance, VR and VA are the repul-
sive and attractive pair potential functions, respectively, and

b̄ is the bond-order function that depends on the local bond-
ing environment and multibody interactions.

Take an infinite, planar graphene monolayer as the refer-
ence state. The potential energy per atom is

U0 =
3

2
V�r0� , �2�

where r0=0.142 nm is the equilibrium bond length and the

corresponding bond-order function b̄= b̄0=0.9510. The bond
energy at the reference state is V0=V�r0�=−4.930 eV and
thus the energy per atom is U0=−7.395 eV.

Now consider an infinitely long ribbon cut from the
graphene monolayer with two parallel edges �zigzag or arm-
chair�. Assuming no deformation of the graphene lattice for
the moment, the change in the bonding environment along
the free edges leads to a change in the bond-order function
and thus a change in the bond energy. To be specific, the
bond-order function of the REBO potential25 takes the form

b̄ = b�−� + bDH + bRC, �3�

where b�−� is a function of the bond angles, bDH is a function
of the dihedral angles, and bRC represents the influence of
radical energetics and �-bond conjugation. For a planar
graphene monolayer at the reference state, bDH=bRC=0 and

b�−�= b̄0. Along the free edges of a graphene ribbon, how-

ever, bRC�0 and b�−�� b̄0, due to the change in the number
of neighboring carbon atoms. In particular, for a zigzag edge
�Fig. 1�a��, the bond-order function for the edge bond be-

comes b̄Z1=0.9478 while the effect on the other bonds is
negligibly small. With the same bond length �r=r0�, the bond
energy along the zigzag edge is increased from V0=
−4.930 eV to VZ1=−4.858 eV. Consequently, the energy
per atom in the first row of the zigzag edge increases from
U0=−7.395 eV to UZ1=−4.858 eV. Note that each edge
atom is associated with two edge bonds instead of three. In
addition, the energy per atom in the second row of the zigzag
edge also increases because of association with the edge
bonds: UZ2= �2VZ1+V0� /2=−7.323 eV. Together, relative to
the reference state, the excess energy per unit length of the
zigzag edge is

�Z =
1

�3r0

�UZ1 + UZ2 − 2U0� , �4�

which gives 10.61 eV/nm or 1.70 nN by the REBO potential.
Similarly, for an armchair edge �Fig. 1�b��, the bond en-

ergy changes in the first and second rows: VA1=−5.268 eV
and VA2=−4.858 eV. The energy per atom is then UA1
= �VA1+VA2� /2=−5.063 eV in the first row and UA2= �VA2

+2V0� /2=−7.359 eV in the second row, both greater than
the reference value. The excess energy per unit length of the
armchair edge is thus

�A =
2

3r0
�UA1 + UA2 − 2U0� , �5�

which is 11.12 eV/nm or 1.78 nN, slightly higher than that of
the zigzag edge.

The above analysis of the excess edge energy has as-
sumed no deformation or bond reconstruction along the
edges, termed as unrelaxed edges. However, the change in
the bonding environment also leads to changes in the equi-
librium bond length and bond angles along the edges. As a
result, the interatomic forces acting on each atom are not
balanced along the unrelaxed edges. As illustrated in Fig. 1,
the forces acting on the atoms in the first two rows of the
unrelaxed zigzag edge are unbalanced in the direction per-
pendicular to the edge while the unbalanced forces are in
both perpendicular and parallel directions for atoms along
the unrelaxed armchair edge. On the other hand, the inter-
atomic forces acting on each atom are balanced in the paral-
lel direction along the zigzag edge due to symmetry. Conse-
quently, the edge atoms tend to displace in the direction of
the unbalanced forces, leading to spontaneous deformation
of the graphene lattice near the free edges and relaxation of
the excess edge energy. Using the REBO potential, we simu-

FIG. 1. �Color online� Illustration of the bond structures, bond
energies, and unbalanced interatomic forces at the unrelaxed �a�
zigzag and �b� armchair edges. V0 is the bond energy at the refer-
ence state; VZ1, VA1, and VA2 are the bond energies near the free
edges. Dark arrows indicate directions of unbalanced forces acting
on the edge atoms.
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late the edge relaxation by a standard molecular mechanics
�MM� method, minimizing the total potential energy in a
graphene ribbon with two parallel free edges.

For comparison, we first calculate the average potential
energy per atom with unrelaxed edges, for which the lattice
structure of each ribbon is taken directly from the reference
state of a fully relaxed, planar graphene monolayer. As
shown in Fig. 2, the potential energy per atom increases lin-
early with the inverse of the ribbon width, which can be
understood as a result of the excess edge energy, namely,

Ū�W� = U0 +
2�

N
= U0 +

S0

W
� , �6�

where Ū is the average energy per atom, W is the ribbon
width, � is the excess edge energy per length, S0= 3

2
�3r0

2 is
the area of the unit cell of graphene �containing two carbon
atoms�, and N=2W /S0 is the number of carbon atoms per
unit length of the ribbon. Equation �6� reveals the depen-
dence of the average energy on the ribbon width, which
agrees closely with the atomistic calculations for the unre-
laxed edges �Fig. 2�.

Next, in the MM simulations, we allow the atoms to move
in the direction that reduces the total potential energy by a
quasi-Newton algorithm. Only in-plane displacements of the
atoms are allowed for the moment. Periodic boundary con-
ditions are assumed at both ends of the graphene ribbons,

with the end-to-end distance fixed. Upon such relaxation, the
ribbon width shrinks slightly while the ribbon length does
not change, thus termed as one-dimensional (1D) relaxation.
Figure 2 shows that the average energy per atom in each
ribbon decreases slightly after the 1D relaxation. By Eq. �6�,
the excess edge energy after the 1D relaxation is calculated
from the average energy and plotted in Fig. 3. Before relax-
ation, the excess edge energies agree closely with those pre-
dicted by Eqs. �4� and �5� for the zigzag and armchair edges,
respectively. After 1D relaxation, both the edge energies are
reduced by roughly 2%, i.e., �Z=10.41 eV /nm and �A
=10.91 eV /nm. The excess edge energy is independent of
the ribbon width before and after 1D relaxation for the range
of the ribbon width shown in Fig. 3.

Upon 1D relaxation, the interatomic forces acting on each
atom are balanced in all directions. However, the mismatch
between the equilibrium bond length at the edges and that at
the interior of the graphene ribbon leads to a compressive
internal force along the free edges, which was called edge
stress previously.18,20–23 The internal edge forces are self-
balanced in an infinitely long ribbon, as illustrated in Fig. 4.
To evaluate the magnitude of the edge force, we calculate the
total internal force acting on a cross section of the graphene
ribbon �with two parallel edges� after the 1D relaxation,
which equals twice the corresponding edge force. This cal-
culation gives the edge forces: fZ=−16.22 eV /nm or
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FIG. 2. �Color online� Average energy per atom of graphene
nanoribbons with �a� zigzag edges and �b� armchair edges, as a
function of the ribbon width �W�, for unrelaxed edges and after 1D
edge relaxation. � is the excess edge energy per length.
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FIG. 3. �Color online� Excess energy per unit length vs ribbon
width �W�: �a� zigzag edge and �b� armchair edge. The dashed lines
are analytical predictions �Eq. �7�� for 2D relaxation based on the
edge energy and edge force from 1D relaxation.
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−2.60 nN for the zigzag edge and fA=−8.53 eV /nm or
−1.36 nN for the armchair edge, both compressive as indi-
cated by the negative sign and independent of the ribbon
width. Alternatively, the edge forces can be determined from
variation in the excess edge energies in strained graphene
ribbons.20,22,23 As will be discussed in Sec. III, both methods
predict essentially the same edge forces.

It is noted that, while the excess edge energies for the
zigzag and armchair edges differ slightly ��5%�, the edge
force of the zigzag edge is nearly twice that of the armchair
edge. Table I compares the edge energies and edge forces
from the present study �after 1D relaxation� with other cal-
culations. Several DFT calculations have predicted similar
excess edge energies.17,18,22 Notably, the excess energy for
the zigzag edge �without reconstruction� from the DFT cal-
culations is higher than that for the armchair edge, opposite
to the predictions by the REBO potential. As the edge ener-
gies are related to the thermodynamically stable shapes of
finite graphene sheets or flakes,23 qualitatively different
shapes would be predicted based on the DFT edge energies
and atomistic simulations using empirical potentials. Experi-
mentally both armchair and zigzag edges have been observed
in graphene monolayers,13–16 suggesting small energy differ-
ence between the two edges. Recently, in situ TEM observa-
tions have reported mostly zigzag edges at the sublimation
fronts15,16 and conversion of armchair edges to zigzag
edges,14 suggesting a lower excess energy and thus better
stability of the zigzag edge. Although reconstruction of the
zigzag edge was predicted by the DFT calculations to have a
lower excess energy than that of the armchair edge,17,18 the
type of edge reconstruction has not been confirmed experi-
mentally. In the present MM simulations, no edge recon-
struction is observed.

For the edge forces, the DFT calculations have predicted
quite different values among themselves,18,22 possibly due to
the uses of different approximations and methods. On the
other hand, edge forces similar to the present MM calcula-
tions were predicted previously using a different empirical
potential20 while a molecular-dynamics �MD� simulation us-
ing an earlier version of the REBO potential predicted con-
siderably larger edge forces.21 The differences may result
from different equilibrium bond lengths �r0� of graphene pre-
dicted by the different empirical potentials, as listed in Table
I. The REBO potential used in the present study predicts an
equilibrium bond length in close agreement with the DFT
calculations. Despite the discrepancies, all calculations have
predicted compressive edge forces for both the zigzag and
armchair edges, which lead to further deformation and relax-
ation along the edges, as discussed in the subsequent sec-
tions.

III. 2D RELAXATION

Due to the compressive edge forces, the total potential
energy in a graphene ribbon can be partially relaxed either by
elongation in the longitudinal direction of the ribbon
�namely, two-dimensional �2D� relaxation� or by out-of-
plane displacement of the atoms �edge buckling, Sec. IV�. To
simulate the 2D relaxation, only in-plane displacements of
the atoms are allowed, while the end-to-end distance of the
graphene ribbon is varied gradually to impose a longitudinal
strain ��� until the total potential energy reaches a minimum.
Figure 5 shows representative results from the MM simula-
tion for 2D relaxation of a graphene ribbon with zigzag
edges.

The average energy per atom in the graphene ribbon is
calculated, which reaches a minimum at a positive longitu-
dinal strain, ��0.005. In addition, the total force �F� acting
at each end of the graphene ribbon is evaluated, which is
compressive at zero strain and becomes zero at the same
strain for the minimum energy. The results can be understood
as follows. First, the energy per atom of the graphene ribbon
can be written as a function of the imposed longitudinal
strain,

Ū��,W� = U0 +
S0

W
���� +

S0

4
Y�2, �7�

where Y is the 2D Young’s modulus of the monolayer
graphene �Y =243 N /m by the REBO potential26� and �
=���� is the excess edge energy taken as a function of the
strain. The third term on the right-hand side of Eq. �7� ac-
counts for the interior elastic strain energy of the graphene
ribbon in addition to the edge energy. Here we assume linear
elastic behavior of graphene under infinitesimal strain ��
�1�.

As illustrated by the inset of Fig. 5, the work done by the
longitudinal force equals the increase in the total potential

energy, namely, N�Ū=F��, where N=2W /S0 is the number
of carbon atoms per unit length of the ribbon. Thus, the
longitudinal force is

FIG. 4. �Color online� The bond structures �with bond lengths in
angstrom� at �a� zigzag and �b� armchair edges after 1D relaxation.
The dashed rectangular boxes represent effective edge layers that
are subjected to compressive edge forces �fZ and fA�.
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F = N
dŪ

d�
= YW� + 2

d�

d�
. �8�

In the special case of 1D relaxation, we have �=0 and thus
F=2�d� /d���=0. On the other hand, we have F=2f by force
balance between the internal edge force �f� and the external
force. Therefore, the edge force after the 1D relaxation is
related to the edge energy function as f = �d� /d���=0. Assum-
ing infinitesimal strain, the edge energy function is approxi-
mately

���� � �0 + f� , �9�

where �0 is the excess edge energy after 1D relaxation as
those obtained in the previous section for the zigzag and
armchair edges, respectively. Previous works included a qua-
dratic term in the expansion,9,20 which is found to have neg-
ligible effect �except for very narrow ribbons� and thus ig-
nored in the present study.

By inserting Eq. �9� into Eq. �7�, we see clearly that,
while the interior elastic strain energy increases with the lon-
gitudinal strain, the excess energy along the edges decreases
linearly with positive strain due to the compressive edge
force �f �0�. The competition between the two strain-
dependent terms leads to a minimum energy at a positive
strain �elongation�,

� = −
2f

YW
, �10�

at which point the corresponding force vanishes �F=0�. As
shown by the dashed lines in Fig. 5, by using the values after
1D relaxation for �0 and f in Eq. �9�, the energy and the
force predicted by Eqs. �7� and �8� agree closely with the
MM results at small strains. This confirms that the edge
forces evaluated by force calculations in the previous section
are identical to those based on Eq. �9�; the latter was used in
several previous studies.20,22,23

Figure 6 plots the longitudinal strain corresponding to the
minimum energy in graphene ribbons with different ribbon
widths �W�. As predicted by Eq. �10�, the longitudinal strain

after 2D relaxation is inversely proportional to the ribbon
width. By substituting Eq. �10� into Eq. �7�, we obtain an
apparently width-dependent excess energy after 2D relax-
ation, as shown in Fig. 3.

IV. EDGE BUCKLING

An alternative mode of edge relaxation can be achieved
by three-dimensional deformation of the graphene ribbon.
The compressive edge force motivates out-of-plane buckling
along the free edges but opposed by the bending stiffness of
graphene.27 The competition leads to an intrinsic wavelength
for the edge buckling. Figure 7 shows two examples of
graphene ribbons with edge buckling by MM simulations.
The color indicates the magnitude of out-of-plane displace-
ments of the atoms. Clearly, the buckle amplitude maximizes
along the free edges and decays away from the edges. Simi-
lar edge buckling was predicted previously,19–21 using differ-
ent empirical potentials.

Figure 8 shows the excess energy calculated by MM
simulations of graphene ribbons with edge buckling. For
each graphene ribbon, the end-to-end distance is fixed during
the MM simulation along with the periodic boundary condi-
tions at both ends and out-of-plane perturbations are intro-
duced to trigger the buckling deformation. The excess energy
is calculated as the total energy increase per unit length of
the free edges relative to the ground state of graphene, thus
including both the edge energy and the interior bending en-
ergy of the ribbon. It is found that the excess energy depends
on both the end-to-end distance �L� and the buckling wave
number �n�. For each L, different buckling modes are ob-
tained from the MM simulations, indicating that more than
one local energy minimum exists. Figure 9 replots the excess
energy as a function of the buckle wavelength, 	=L /n, in
which the MM results in Fig. 8 collapse onto one single
curve and the excess energy minimizes at a particular wave-
length for each edge configuration. Therefore, an intrinsic
wavelength for edge buckling exists, which is 6.2 nm for the
zigzag edge and is 8.0 nm for the armchair edge, according
to Fig. 9.

FIG. 5. �Color online� Average energy per atom and longitudinal
force �F� versus imposed longitudinal strain for a graphene ribbon
with zigzag edges. The ribbon width W=3.8 nm. The dashed lines
are predicted by Eqs. �7� and �8� for the energy and force,
respectively.
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FIG. 6. �Color online� Longitudinal strain of graphene nanorib-
bons after 2D relaxation: comparing MM calculations �open sym-
bols� and the predictions by Eq. �10�. fZ and fA are the edge forces
for the zigzag and armchair edges, respectively.
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Previous studies19–21 have reported wavelengths of edge
buckling in a wide range �3–10 nm�. A continuum model
based on elastic plate theory was used to determine the scal-
ing laws for the buckle amplitude and penetration depth as
the buckle wavelength varies, where bending stiffness of the
graphene was ignored and no intrinsic wavelength was de-
termined for either zigzag or armchair edge.20 On the other
hand, a standard linear perturbation analysis reportedly pre-
dicted the buckle wavelength to scale with the ratio between
the bending stiffness and the edge force, i.e., 	�−4�2D / f .21

Using the edge forces obtained from the present study along
with the bending stiffness D=0.225 nN nm,27 the buckle

wavelength would be 3.4 nm for the zigzag edge and 6.5 nm
for the armchair edge, both considerably shorter than the
present MM results. Furthermore, the intrinsic buckle wave-
lengths for the zigzag and armchair edges do not scale in-
versely with the edge forces. It is thus necessary to develop a
more rigorous continuum model for edge buckling, which
should take into account both the bending stiffness and in-
plane stiffness of graphene as well as the effect of bending
curvature on the edge energy.

We have performed MM simulations for graphene nano-
ribbons with different widths and found that the wavelength
of edge buckling is independent of the ribbon width for wide
ribbons with W
6 nm. However, for narrower ribbons, the
buckle wavelength changes slightly with the ribbon width,
most likely due to the proximity of the two edges that inter-

FIG. 7. �Color online� Edge buckling of graphene nanoribbons
with �a� zigzag edges �W=7.7 nm, L=23.6 nm� and �b� armchair
edges �W=7.9 nm, L=23.4 nm�. W and L are the width and
length of the ribbons, respectively. Color bar indicates the out-of-
plane displacement �in angstrom�.
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FIG. 8. �Color online� Excess energy of graphene nanoribbons
with edge buckling for different wave numbers �n�. �a� Zigzag edge
�W=7.7 nm� and �b� armchair edge �W=7.9 nm�. W is the ribbon
width.
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FIG. 9. �Color online� Excess energy of graphene nanoribbons
with edge buckling, replotted against the buckle wavelength using
the same results in Fig. 8. �a� Zigzag edge �W=7.7 nm� and �b�
armchair edge �W=7.9 nm�. W is the ribbon width and n is the
wave number. The MM results are fitted by fourth-order polynomial
functions �plotted as solid lines�: y=0.00002x4−0.00071x3

+0.0093x2−0.054x+10 in �a� and y=0.000002x4−0.00011x3

+0.0019x2−0.014x+11 in �b�.

FIG. 10. �Color online� Antiphase correlation of edge buckling
in a narrow graphene ribbon �W=3.4 nm, L=14.8 nm�. W and L
are the width and length of the ribbon, respectively.
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act with each other. It is also noted that the edge-edge inter-
action in narrow graphene ribbons �W�6 nm� can lead to
antiphase correlation of the buckling waves along the two
parallel edges �Fig. 10� in which case the nanoribbon appears
to be twisted like those reported in previous studies.20,21

V. SUMMARY

We present a quantitative study of the excess energy and
induced deformation along zigzag and armchair edges of
graphene nanoribbons by atomistic simulations using a
REBO potential. The in-plane 1D relaxation of the edges
leads to an edge energy �10.91 eV/nm for armchair and 10.41
eV/nm for zigzag� and a compressive edge force
�−8.53 eV /nm for armchair and −16.22 eV /nm for zigzag�.
The compressive edge force motivates elongation of the
graphene ribbon in the 2D relaxation and out-of-plane buck-
ling along the edges. An intrinsic wavelength for edge buck-
ling is predicted to be 8.0 nm for the armchair edge and 6.2

nm for the zigzag edge. We note that the atomistic simula-
tions in the present study are limited to equilibrium states at
temperature T=0 K, and effects of finite temperature are
expected for both the excess edge energy and the edge forces
as well as the induced deformation of graphene nanoribbons.
Furthermore, it has been noted that hydrogen absorption is
favorable along both the armchair and the zigzag edges of
graphene,23 which could significantly change the edge en-
ergy and edge force. While the edge structures of real
graphene nanoribbons could be complicated with passiva-
tion, impurities, and/or defects, the unpassivated edges con-
sidered in the present study and the fully passivated edges
considered in previous studies6,23 represent two models at the
limiting cases, with the reality lying in between.
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