
Anomalous spin-related quantum phase in mesoscopic hole rings

M. Jääskeläinen
Institute of Fundamental Sciences and MacDiarmid Institute for Advanced Materials and Nanotechnology, Massey University,

Manawatu Campus, Private Bag 11 222, Palmerston North 4442, New Zealand

U. Zülicke
Institute of Fundamental Sciences and MacDiarmid Institute for Advanced Materials and Nanotechnology, Massey University,

Manawatu Campus, Private Bag 11 222, Palmerston North 4442, New Zealand
and Centre for Theoretical Chemistry and Physics, Massey University, Albany Campus,

Private Bag 102904, North Shore MSC, Auckland 0745, New Zealand
�Received 21 January 2010; revised manuscript received 26 March 2010; published 29 April 2010�

We have obtained numerically exact results for the spin-related geometric quantum phases that arise in
p-type semiconductor ring structures. The interplay between gate-controllable �Rashba� spin splitting and
quantum-confinement-induced mixing between hole-spin states causes a much higher sensitivity of magneto-
conductance oscillations to external parameters than previously expected. Our results imply a much-enhanced
functionality of hole-ring spin-interference devices and shed new light on recent experimental findings.
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I. INTRODUCTION, MOTIVATION AND SUMMARY

Quantum-interference effects dominate electric transport
through conductors that are mesoscopic, i.e., have a smaller
size than the decoherence length set by inelastic interactions
of charge carriers with other degrees of freedom �e.g.,
phonons, disorder�.1 In particular, mesoscopic ring structures
exhibit magnetoconductance oscillations2 that reveal geomet-
ric quantum �Berry,3 Aharonov-Anandan �AA� �Refs. 4 and
5�� phases acquired by charge carriers propagating quantum
coherently through a multiply connected geometry. Coupling
of orbital motion to the spin of charge carriers affects the
quantum interference and geometric phases manifested in
charge transport through rings.6 Such spin-dependent elec-
tronic interference effects could form the operational basis
for novel transistor devices7 and quantum logic gates.8

Strong experimental efforts have been undertaken to iden-
tify and measure spin-related geometric phases in magne-
totransport through arrays of mesoscopic rings,9,10 single-
ring structures,11–15 and antidot superlattices.16 Many recent
experiments were performed in p-type semiconductor
structures11,14–16 because charge carriers from the valence
band �holes� are expected to be subject to much larger
momentum-dependent spin splittings than conduction-band
electrons.17 In contrast, many theoretical works have consid-
ered spin-dependent interference in n-type semiconductor
rings18–23 while the electronic properties of p-type rings re-
main largely unexplored. As conduction-band electrons and
valence-band holes are not merely distinguished by the sign
of their charge but are known to exhibit very different spin
properties, especially in quantum-confined structures,17 a
careful analysis of tunable spin-related quantum phases in
p-type mesoscopic rings is needed.

Recent calculations24–26 of the magnetoconductance in
hole rings adopted a purely heavy-hole �HH� model where
only the valence-band states with spin projection �3 /2
�heavy holes� and their effective Rashba-type spin splitting
are taken into account. It is tempting to follow such a route
because the highest quasi-two-dimensional �2D� valence

subband is mostly of HH character for typical hole sheet
densities,17 and the HH model bears resemblance to the one
that applies to conduction-band electrons. However, such an
approach neglects the hole-spin mixing induced by quantum
confinement in ring structures. Here we report results of a
theoretical study that fully accounts for spin splitting and
spin mixing in the valence band. Interestingly, we find a
synergistic relation between gate-tunable Rashba spin split-
ting, which arises from the structural inversion asymmetry
�SIA� in the 2D semiconductor heterostructure, and the hole-
spin mixing due to the ring confinement. This is illustrated in
Fig. 1 where the dependence of magnetoconductance oscil-
lations on the Fermi energy in the hole-ring structure is
shown.27 The more complete theory underlying our calcula-
tion predicts a much more frequent change between maxima
and minima of the magnetoconductance as a function of the
Fermi energy than is found for the same ring geometry and
materials parameters within the HH model. Hence, an analy-
sis of experimental databased on the latter would have to
assume an unrealistically large SIA in the measured sample.
Conversely, our results suggest that moderate changes in
hole density and/or SIA, routinely achieved using gate volt-
ages, will be sufficient to operate a spin-interference-based
nanoelectronic device.

This paper is organized as follows. Section II presents our
theoretical model for mesoscopic hole rings. Zero-field spin
splitting of holes due to SIA is discussed in Sec. III. Section
IV focuses on the spin-related Aharonov-Anandan phase and
how it is revealed in magnetoconductance oscillations. The
frequently used24–26 heavy-hole model for p-type mesos-
copic rings is introduced in Sec. V and results obtained using
it are compared with those found within our more complete
theory. The penultimate Sec. VI presents an interpretation of
recent experiments in light of our new results, discussing
also possible effects of spin splitting due to bulk inversion
asymmetry �BIA�. Our conclusions are given in Sec. VII.
Some relevant mathematical derivations are given in the Ap-
pendix.
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II. MODEL FOR A MESOSCOPIC HOLE RING

Our calculations are based on the 4�4 Luttinger model
for the uppermost valence band in typical semiconductors,28

which takes both the heavy-hole and the light-hole states into
account. For simplicity, we neglect band warping due to the
cubic crystal symmetry. The ring confinement is assumed to
be due to a quantum-well potential in z direction �width d�
and a singular-oscillator potential V��r�=m0�2

�r− �R2 /r��2 /2 for the radial coordinate r in the xy plane.
Here R is the effective ring radius, and the oscillator poten-
tial defines a length scale ��=���1� / �m0�� that is a mea-
sure of the in-plane ring width. Only the lowest 2D quantum-
well bound state is taken into account, hence our theory
applies in the �typically realistic� case d���. The energy
splitting between 2D heavy-hole and light-hole subband
edges is accounted for by the Hamiltonian �we use the hole
picture for the valence band, counting energies as positive
from the bulk valence-band edge�

Hqw = �1 − 2�̄�Ĵz
2 −

5

4
�	E0, �1�

where E0=�2�2�1 / �2m0d2�, Ĵz is the operator for the spin-
3/2 angular-momentum component perpendicular to the ring
plane, and �̄= �2�2+3�3� / �5�1� in terms of Luttinger
parameters.28 The in-plane hole motion is governed by

Hrg =
�d

4

�1 + �̄�Ĵz

2 −
5

4
�	��

2 k̂�
2 − �̄��

2 �k̂−
2Ĵ+

2 + k̂+
2Ĵ−

2�

+ � r

��

− �R
��

r
	2�E0 �2�

with �d= �2d / ������2 and �R= �R /���2. Here k̂�= �k̂x , k̂y� is

the in-plane hole wave vector, k̂�= k̂x� ik̂y and Ĵ�

= �Ĵx� iĴy� /�2.

The hole-ring Hamiltonian Hqw+Hrg commutes with M̂z

= L̂z+ Ĵz, where L̂z=xk̂y −yk̂x. The eigenvalues m of M̂z can
thus be used to label states within the quasi-one-dimensional
�1D� ring subbands.29 Adopting polar coordinates r and 	 for
the in-plane motion and making the Ansatz

�r,	
�

 = ei�m−Ĵz�	�m�r� �3�

for the four-spinor hole wave function generates a purely
radial Schrödinger equation that we solve numerically using
a pseudospectral method30,31 tailored to our needs. Figure 2
shows a representative result for ring subbands Es

�n��m�,
where s= �1 distinguishes spin-split dispersions with eigen-
values related via Es

�n��m�=E−s
�n��−m�, and n=0,1 , . . . labels

the doublets starting with the lowest-lying one.

III. EFFECTS OF SIA SPIN SPLITTING

To investigate spin-related geometric phases in hole rings,
we include the dominant SIA contribution to the bulk-hole

Hamiltonian,17 which is given by HSIA
�bulk�=r41

8v8v�k̂�E� · Ĵ. In
our case of interest, the SIA electric field E has a z compo-
nent Ez determined by the 2D quantum-well confinement. In
addition, the radial in-plane �ring� confinement induces an
SIA spin splitting. We find HSIA

�rg� =HSIA
�rg,qw�+HSIA

�rg,rg� with

HSIA
�rg,qw� =

VSIA

V41
��d

2
��i�k̂+Ĵ− − k̂−Ĵ+�E0, �4a�

FIG. 1. �Color online� Dependence of hole-ring magnetocon-
ductance oscillations on the Fermi energy E. The latter is linearly
related to the hole sheet density in the semiconductor heterostruc-
ture and can be controlled by gate voltages. � denotes the magnetic
flux penetrating the ring and �0 is the flux quantum. Panel �a�
shows results from calculations based on our more complete theory,
whereas use of the simplified heavy-hole model for the same ring
device yields panel �b�. See text for more details. The range of
energies shown corresponds to the situation where only the lowest
ring subband is occupied.
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FIG. 2. Hole-ring subbands in a quantum well without SIA.
Parameters: in-plane aspect ratio �radius/width� ��R=20, �d=0.5,
and �̄=0.37 �value applies to GaAs�. m is the eigenvalue of total

angular-momentum component M̂z= L̂z+ Ĵz perpendicular to the
ring. E0=�2�2�1 / �2m0d2� is the energy scale set by size quantiza-
tion in the 2D quantum well from which the ring is fabricated.
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HSIA
�rg,rg� = �41

�d

2
�1 − �R

2���

r
	4�L̂zĴzE0. �4b�

The voltage VSIA=Ezd is a measure for SIA in the quantum
well and V41=��1�2 / �m0�r41

8v8v�� is a materials parameter
�11.44 V in GaAs�. �41= �r41

8v8v� / �e��
2 � is typically very small

unless the ring becomes narrow on the scale ��r41
8v8v� /e,

which is of order angstrom. We checked that matrix elements
of Eq. �4b� are negligible for typical hole-ring device param-
eters. Thus, SIA splitting due to the in-plane ring confine-
ment can be disregarded.

The hole-ring Hamiltonian including the SIA terms still

commutes with M̂z. Using the same procedure as outlined in
Sec. II, we obtain the ring-subband dispersions including the
SIA term HSIA

�rg,qw�.

IV. AHARONOV-ANANDAN PHASE AND
MAGNETOCONDUCTANCE OSCILLATIONS

Knowledge of the ring-subband dispersions makes it
possible7,18,19,24,29 to extract the AA phase4 for holes travers-
ing the ring at a particular energy E �generally, the Fermi
energy of holes in the 2D semiconductor heterostructure�. In
the following, we focus entirely on the energy range where
only the lowest spin-split ring subband is relevant, but our
results can easily be generalized. In terms of the two Fermi
angular momenta m��E� defined by E=Es

�0���sm��, the AA
phase is given by �see the Appendix for details of the deri-
vation�


G = ��m+ − m− − 3� . �5�

The dependence of this spin-related geometric phase on the
Fermi energy E and SIA strength VSIA is shown in Fig. 3 for
a set of typical hole-ring parameters.

At low-enough temperatures, the electric conductance G
of a mesoscopic ring attached to ideal leads32 exhibits a
quantum-interference contribution that makes it possible to
measure the Aharonov-Anandan phase. Quite generally, it is
given by the expression �see the Appendix for more details�

G = G0�1 + A cos�2�
�

�0
	cos 
G� , �6�

where A�1 measures the visibility of quantum interference
in the ring. The first cosine term contains the magnetic flux
� penetrating the ring’s area, measured in units of the flux
quantum �0=2�� /e. It gives rise to magnetoconductance
oscillations33 that are the electric analog of the Aharonov-
Bohm effect.34 The modulation of the magnetoconductance
as a function of SIA strength achieved, e.g., by external gate
voltages, reveals the presence of the spin-related quantum
phase 
G. This is illustrated in Fig. 4�a�.

Experimentally, a change in the strength of SIA while
keeping all other parameters �in particular, the hole density�
constant can be achieved by simultaneously applied front
and back-gate voltages.35 However, in the majority of
samples,10,11,13,15 only a single �front or back� gate is avail-
able. In such a situation, both SIA and the density of charge
carriers in the semiconductor heterostructure are changed by
a gate voltage. For holes, changing the density �i.e., the
Fermi energy� has a profound effect on the spin-related quan-
tum phase. This can be inferred from the strong dependence
of 
G on E for constant VSIA seen in Fig. 3. The modulation
of magnetoconductance oscillations when changing only the
hole density �keeping VSIA=0.1V41 constant, and with A=1�
is illustrated in Fig. 1�a�. Up to a constant shift, E is directly

FIG. 3. �Color online� Spin-related quantum �Aharonov-
Anandan� phase for holes in a mesoscopic ring, plotted as a func-
tion of hole energy E and the voltage VSIA associated with SIA in
the semiconductor heterostructure from which the ring is fabricated.
Other parameters are the same as in Fig. 2. The energy range shown
corresponds to the situation where only the lowest ring subband is
populated. The band-structure parameter V41 is 11.44 V in GaAs.

FIG. 4. �Color online� Magnetoconductance oscillations for a
mesoscopic hole ring attached to ideal leads, shown as a function of
the voltage VSIA associated with SIA in the semiconductor hetero-
structure. Panel �a� is obtained from our more complete theory,
whereas panel �b� results from application of the HH model to the
same ring device. The band-structure parameter V41 is 11.44 V in
GaAs. In the calculation, the Fermi level was assumed to be at
0.6E0, and the visibility A was set to 1. Other parameters are as for
Fig. 2.
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proportional to the 2D sheet density of holes in the hetero-
structure.

V. COMPARISON WITH THE HEAVY-HOLE MODEL

The necessity to fully account for valence-band mixing in
hole rings can be illustrated by a direct comparison with the
simpler HH model. The latter results from a perturbative
�Löwdin-partitioning� treatment17 of valence-band mixing
and SIA splitting for the lowest 2D HH subband, neglecting
further spin splitting and mixing due to the in-plane confine-
ment. The Hamiltonian of the HH-model ring is Hqw

�HH�

+Hrg
�HH�+HSIA

�HH� with

Hqw
�HH� = �1 − 2�̄�E0, �7a�

Hrg
�HH� =

�d

4

�1 + �̄���

2 k̂�
2 + � r

��

− �R
��

r
	2�E0, �7b�

HSIA
�HH� =

VSIA

V41
��d

8
	3/2

��
3 i�k̂+

3Ĵ−
3 − k̂−

3Ĵ+
3�E0, �7c�

�
3

4

VSIA

V41
��d

4
	3/2

��
3 i�k̂+

3�̂− − k̂−
3�̂+�E0. �7d�

The second line defining HSIA
�HH� applies when the HH �Jz

= �3 /2� amplitudes are treated as an effective spin-1/2 de-
gree of freedom; this is the way SIA spin splitting for heavy
holes is usually written.17 No coupling to light-hole ampli-
tudes is present in the HH model, even after the in-plane ring
confinement is introduced.

Using the same numerical method as for the full spin-3/2
Luttinger theory of hole rings outlined above, we find the
subbands of the HH-model ring and the spin-related quantum
phase associated with the lowest one. Its dependence on both
energy E and strength of SIA turns out to be much weaker
than in the more complete theory. For the energy dependence
of magnetoconductance oscillations, this is illustrated in Fig.
1 for a ring with VSIA=0.1V41 and all other parameters as in
Fig. 2. A similar result is obtained when energy E is fixed
and VSIA is varied, see Fig. 4. The different behavior exhib-
ited by the full Luttinger model as compared with the HH
model arises from HH-LH mixing induced by the in-plane
ring confinement. Hence, differences in quantitative predic-
tions from the two models scale with �d and thus vanish in
the 2D limit.

VI. APPLICATION TO REAL HOLE-RING SAMPLES

Our theory enables a more detailed quantitative interpre-
tation of experimental results. Applied gate voltages have
been observed to shift magnetoconductance
oscillations.13,15,36 Comparison with Shubnikov-de Haas data
measured in the unstructured 2D HH system enabled experi-
mentalists to quantify the change in SIA strength required for
a �-phase shift. The HH model predicts �VSIA
=V41 / �nF

2�d�R�1/2 for a ring with nF occupied 1D
subbands.24,25 Interestingly, the experiment reported in Ref.
15 observed an order-of-magnitude discrepancy between the

measured value and that expected from application of the
HH model. As the comparison given in Table I shows, taking
into account the enhancement due to HH-LH mixing within
the full Luttinger model markedly reduces this discrepancy.
We suspect that even better agreement could be reached if �a�
more details about the ring structure were known, thus facili-
tating a more realistic modeling of the quantum-well and
in-plane confinement potentials and �b� the effect of band-
warping corrections were included. Finally, typical ring de-
vices are fabricated in semiconductors whose unit cell lacks
inversion symmetry and, thus, are subject to an additional
spin splitting due to BIA. We will briefly discuss BIA effects
before concluding.

The most important BIA spin-splitting term in the bulk-
hole Hamiltonian is17 HBIA

�bulk�=b41
8v8v��kx ,ky

2−kz
2�Jx+c.p.�. In-

troducing the 2D quantum-well confinement by replacing

k̂z→ �k̂z
�0 and k̂z
2→ �k̂z

2
��2 /d2 yields the BIA contribu-
tion to the model-ring Hamiltonian as HBIA

�rg� =HBIA
�rg,qw�

+HBIA
�rg,rg�, where

HBIA
�rg,qw� =

�BIA

d
��d

2
���k̂+Ĵ+ + k̂−Ĵ−� , �8a�

HBIA
�rg,rg� =

�BIA

d
��d

8
	3/2

��
3 �k̂+

2 − k̂−
2��k̂+Ĵ− − k̂−Ĵ+� . �8b�

The length scale �BIA=�m0�b41
8v8v� / ��1�2��4.83 Å in GaAs.

As typical quantum-well widths are on the order of 10 nm,
we have �BIA /d�0.05. This value is an order of magnitude
smaller than VSIA /V41 measured in GaAs ring samples with
the strongest Rashba splitting.15 Hence, as a first approxima-
tion, it is admissible to neglect BIA spin splitting when
discussing this experiment.

Formally, the BIA terms do not commute with M̂z, and the
Ansatz given in Eq. �3� will not eliminate the 	 dependence
from the BIA part of the ring Hamiltonian. In essence, pre-
vious eigenstates with quantum number m are coupled via
the BIA term to those with m�2. A reduced-band model
may be adequate to explore BIA effects in the lowest ring
subband.

VII. CONCLUSIONS

We have obtained numerically exact results for electronic
subbands and spin-related geometric phases for holes in me-

TABLE I. Phase shift of magnetoconductance oscillations in-
duced by varying VSIA /V41 between 0.527 and 0.551, as measured
for a 1D GaAs hole ring �Ref. 15� and calculated using the full
Luttinger model and the simpler HH model, respectively. Param-
eters used in the calculations are �̄=0.37, �d=1.0, �R=28, and E
=1.1E0 �Luttinger model�, nF=1 �HH model�. In general, E can be
determined from the 2D hole sheet density and details of the sam-
ple’s quantum-well confinement.

Experiment Luttinger model HH model

� 0.25� 0.13�
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soscopic rings. Unlike previous models, we account fully for
spin splitting and mixing arising in the quantum-confined
valence band. For quasi-one-dimensional ring structures, a
much stronger modulation of magnetoconductance oscilla-
tions �as a function of Fermi energy and/or SIA spin-splitting
strength� is found as compared with simplified �purely HH�
models. This effect arises due to HH-LH mixing induced by
the in-plane ring confinement, and the magnitude of the en-
hanced dependence is quantified by the parameter �d, which
is related to the ratio of quantum-well width and in-plane
ring width.

We have applied our model to discuss a recent experiment
where an anomalously strong modulation of Aharonov-
Bohm oscillations was observed. A sizable enhancement of
magnetoconductance-oscillation modulations is obtained
within our �on some level still idealized� model, but its mag-
nitude is smaller than the observed value. A more realistic
modeling of the ring structure may be needed to reach full
agreement. We also ascertained the effect of BIA spin split-
ting. The parameter quantifying its importance is the ratio of
a length scale �BIA �=4.83 Å in GaAs� and the quantum-well
width, which was negligible compared to the strength of SIA
splitting present in the experiment under consideration. Our
theory, possibly with further refinement, should be useful for
guiding efforts7,8 aimed at realizing novel electronic devices
based on spin-dependent quantum interference.
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APPENDIX: DERIVATION OF EXPRESSIONS GIVEN FOR
THE AHARONOV-ANANDAN PHASE AND THE

MAGNETOCONDUCTANCE

We assume a standard two-terminal transport geometry as
shown, e.g., in Fig. 2 of Ref. 29. To keep the notation un-
cluttered, we consider the situation where only the lowest
spin-split subband is relevant, but all formulas can be
straighforwardly generalized to the multisubband case. Holes
with energy E are injected by an external lead at 	=0 in
channel s in a superposition of ring-state amplitudes: �in
s

=�s+
�in��sm+

�s� +�s−
�in��−sm−

�s� . Here �m
�s� denotes the radial four-spinor

wave function �see Eq. �3�� for an eigenstate from subband s,
and the coefficients �s�

�in� depend on details of the coupling
between ring and injecting lead. At a draining lead located

diametrically opposite to the injecting one, holes from chan-
nel s will enter with an amplitude

�out
s = ei��m+−sĴz��s+
�in��sm+

�s� + ei��m−+sĴz��s−
�in��−sm−

�s�

�siM�ei�m+�s+
�in��sm+

�s� − ei�m−�s−
�in��−sm−

�s� � , �A1�

with the matrix M=diag�1,−1,1 ,−1�. Thus the phase dif-
ference between forward- and backward-propagating ampli-
tudes is found to be s
G with 
G given by Eq. �5�. We have
used the freedom that phases are determined only modulo-
integer multiples of 2� to adjust 
G such that it vanishes in
the limit where VSIA=0 and HH-LH mixing is neglected.

When the ring is penetrated by a magnetic flux � and
coupled to ideal leads, the probability for transmission of
holes is obtained as29,37

T = ��
s

�ei��m++s�/�0��s+
�in��s+

�out� − ei��m−−s�/�0��s−
�in��s−

�out���2
,

�A2�
where the factors �s�

�out� depend on the coupling between
states sM�sm�

�s� and the scattering state in the outgoing lead.

The two-terminal ring conductance Grg= e2

2��T is then given,
in full generality, by

Grg = G0�1 + �
s

As
�1� cos�2�

�

�0
+ s
G	

+ A�2� cos 
G + A�3� cos�2�
�

�0
	� . �A3�

The familiar contributions proportional to As
�1� arise from in-

terference between counter-propagating amplitudes from the
same channel and manifest the AA phase. Additional inter-
ference terms �those proportional to A�2,3�� are possible be-
cause coupling to leads may induce a mixing conductance
between the two channels. In practice, this happens when the
Hilbert space spanned by scattering states in the leads does
not fully contain the space spanned by ring eigenstates. Such
a situation could occur, in principle, because of the sensitive
dependence of hole states on quantum confinement in the
leads. As such effects will be small in typical situations and
also depend strongly on the particular realizations of ring-
lead couplings, we have not considered them further in the
context of this work. For similar reasons, we assume that the
leads couple symmetrically to states in the two subbands.
Setting A�2�=A�3�=0 and A+

�1�=A−
�1�=A /2 yields Eq. �6�, after

application of an addition theorem for cosine functions.
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