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We report on the study of the electrical current flowing through weakly coupled superlattice structures under
an applied electric field and at very low temperature, i.e., in the tunneling regime. This low-temperature
transport is characterized by an extremely low tunneling probability between adjacent wells. Experimentally,
I�V� curves at low temperature display a striking feature, i.e., a plateau or null differential conductance. A
theoretical model based on the evaluation of the scattering rates is developed in order to understand this
behavior, exploring the different scattering mechanisms in AlGaAs alloys. The dominant interaction in our
typical operating conditions is found to be the electron-ionized donors scattering. The existence of the plateau
in the I�V� characteristics is physically explained by a competition between the electric field localization of the
Wannier-Stark electron states in the weakly coupled quantum wells and the electric field assisted tunneling
between adjacent wells. The influence of the doping concentration and profile as well as the presence of
impurities inside the barrier are discussed.
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I. INTRODUCTION

Electronic transport in superlattices �SL� has been exten-
sively studied since the early work of Esaki and Tsu.1 How-
ever most studies deal with strongly coupled structures in
order to observe high-field domain formation2 or coherence
effects such as Bloch oscillations.3 In this paper we focus on
the transport in very weakly coupled SL at low temperature.
Only little work has been devoted to the microscopic under-
standing of this type of tunnel transport,4 despite the obser-
vation of new phenomena such as phase transitions5 and the
fact that quantum well infrared photodetectors �QWIPs� op-
erate in the low-coupling regime at low temperature. Most of
the existing models are based on the Wentzel-Kramers-
Brillouin �WKB� approach. However, as we will show, this
model fails to explain the experimental results. We thus de-
veloped a microscopic model of transport at low temperature
for very weakly coupled SL, based on a scattering approach.
This study is of a particularly large scope: indeed, the matu-
rity of GaAs-based materials �low number of defect levels�
and the unipolar character of QWIPs �no passivation needed�
eliminate unwanted parasitic material effects, and thus only
fundamental microscopic interactions are involved in the
transport. Our model takes into account six interactions:
electron-optical phonon, electron-acoustical �AC� phonon,
alloy disorder, interface roughness �IR�, ionized impurities
�II�, and carrier-carrier interactions. Due to the very narrow
ground miniband we expect that coherent transport6 and
second-order effects7 �two successive tunneling processes via
a �virtual� state� stay moderate. As a consequence we inves-
tigate hopping transport8 between ground subbands of adja-
cent wells.9 Several papers already addressed this regime10,11

but generally the coupling between wells investigated by the
authors is far larger than ours and their model fails to explain
our experimental data. Our model provides a full quantum
description of current transport in weakly coupled SLs, vali-
dated by experiments.

In this paper we first present �Sec. II� sample measure-
ments �I�V� curves and spectral response�. The I�V� curves at
low temperature exhibit, in particular, a striking null differ-
ential conductance �i.e., plateau� behavior. In Sec. III, the
usual WKB approximation is shown to fail in reproducing
this striking feature. Our model, based on the calculation of
different scattering rates, is developed in Sec. IV. Section V
presents the results of our model concerning the scattering
rates and the resulting current as a function of the electric
field. The dominant interaction in our experimental condi-
tions is found to be the electron-ionized impurity scattering.
The existence of the plateau in the I�V� characteristics is
explained by a competition between the electric field local-
ization of the Wannier-Stark electron states in the weakly
coupled quantum wells and the electric field assisted tunnel-
ing. Finally, the influence of both the doping profile and the
presence of defects in the barrier is presented in Sec. VI.

II. EXPERIMENTS

A. Structure

The experiments have been done on a QWIP structure12

composed of 40 periods with a 73 Å wide GaAs well and a
350 Å wide Al15.2Ga84.8As barrier. The central third of the
well is silicon doped with a concentration of n2D=3
�1011 cm−2. The structure is sandwiched between two
n-type, silicon-doped contacts ��Si�=1018 cm−3�. This QWIP
is obtained by MBE growth and then processed into mesas of
23.5 �m lateral size. The barrier is 127 meV high and the
ground state is located approximately 40 meV above the bot-
tom of the GaAs conduction band. The doping value leads to
a Fermi level 10.6 meV above the ground state.

B. Measurements

The device was placed on the cold finger of a Janis he-
lium cryostat. The temperature regulation was made with a
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330 Lakeshore control unit. Current-voltage measurements
were carried out with a 6430 Keithley subfemtoampere
source meter. Special care was dedicated to the fine control
of the sample temperature. Figure 1�a� presents dark current
measurements, which displayed a good repeatability in time
and between pixels.

For T�25 K, the current increases monotonously with
the temperature. This regime has been extensively studied
and is well understood, see for instance Ref. 13. Below 25 K,
however, the current is independent on the temperature,
which is the sign of the tunneling regime. The low-
temperature I�V� curve displays three different parts: first, an
ohmic regime �0 V→0.5 V� where the current increases
linearly with the bias.14 Second, a plateau regime �0.5 V
→1.5 V� where the dependence of the current with the bias
is surprisingly low. This plateau is attributed to the transport
between the ground states of two adjacent wells. The main
goal of this paper is to explain the very low dependence of
the current with the bias in this plateau regime. The high
bias regime �V�1.5 V� where the current increases very
rapidly. This rise is the sign of a change in the transport
mechanism. The origin can be attributed to impact
ionization15 in the vicinity of the contact or to transport from
the ground state to the continuum in the center of the struc-
ture. In the following we will not address this high bias part
of the I�V� curve since this transport mechanism has already
been largely investigated in a previous paper.16

One should notice that the I�V� curves present a slight
asymmetry: we will address this effect in Sec. V. Neither
hysteresis nor saw-tooth pattern17 have been observed in our
I�V� curves. The spectral response was measured by a Bruker
Equinox 55 Fourier-transform infrared spectrometer �FTIR�
in which the signal is amplified by a Femto—DLPCA 200
amplifier. The measurements are presented in Fig. 1�b�. The
QWIP displays a spectral response peaked at 14.5 �m, with
a full width at half maximum of 2 �m. The inset of Fig. 1�b�
shows the variations in the spectral response with the applied
bias in the high wavelength part of the spectrum. This point
will be further discussed in Sec. III.

III. WKB MODELING

Tunnel transport in QWIP is generally described using the
WKB approximation,5,17,18 which relies on two assumptions:
�i� the variation in the potential barrier is small compared to
the electron wavelength. �ii� The tunneling probability from
the final state is negligible.

The WKB expression, which gives the tunneling probabil-
ity of a particule of energy E through a potential barrier U�x�
between points a and b, is given by expression �50.9� from
the Landau-Lifchitz book,19

D = exp�− 2

�
�

a

b

p�x�dx� ,

where m� the effective mass of the electron in GaAs, � the
reduced Planck constant, and p�x�=�2m��E−U�x�� is the
electron momentum. Such an approximation leads to the fol-
lowing expression for the current density:

JWKB = e
m�

��2�
E1

�

�WKB
−1 �E�fFD�E�dE

− e
m�

��2�
E1−eFLb

�

�WKB
−1 �E�fFD�E�dE , �1�

where e is the elementary charge, E1 is the ground-state en-
ergy, fFD�E�= �1+exp�

E−Efw

kbT ��−1 the Fermi Dirac population
factor, kb the Boltzmann constant, T the temperature, Efw the
Fermi level in a well, F the electric field, Lb the barrier
width, and �WKB

−1 is the inverse of the time for which an
electron succeeds in crossing the barrier. Following Gomez5

�WKB
−1 could be written �WKB=

2Lw

v P−1 in which Lw is the well
width, v is the electron speed given by E=1 /2m�v2 and

P = exp	−
4�2mb

�

3eF�
��Vb − E�3/2 − �Vb − E − eFLb�3/2�


�2�

is the WKB probability that the electron tunnels through the
trapezoidal barrier. Here Vb is the barrier height and mb

� the
effective mass in the barrier.

Figure 2 shows a comparison between WKB prediction
and the experimental results. Clearly, WKB approximation
fails to reproduce the I�V� plateau. This result is consistent
with the probability P in Eq. �2� being a strict monotonic
function of the applied bias V. This discrepancy is however
unexpected since WKB approximation generally yields a
good agreement with experience for similar devices.5

The reason of this discrepancy is the following. In Ref.
19, it is clearly stated that WKB approximation is valid if
one neglects the reflected wave from the final state �x�b�
�see the discussion below expression 50.2 in Ref. 19�. This

(b)(a)

FIG. 1. �Color online� �a� Dark
current density as a function of the
applied bias for T=4 K, 10, 20,
30, 40, 50, and 60 K. �b� Spectral
response at T=10 K for V
=1.5 V, inset spectral response
for different bias voltages from V
=1 V to V=2 V by step of 0.2 V,
in the 15.5–16 �m range.
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can be easily explained in simple terms. In the WKB ap-
proximation, the potential barrier between points a and b is
split into thin slices �xi ,xi+1� of thickness 	. If one neglects
the reflected waves in the potential barrier (i.e., condition ii�,
the particle wave function between xi and xi+1 is: 
i�x�
=Aie

−Pi/�x so that the probability Di of the wave to reach xi+1
from xi is Di=e−2Pi/�	 if the variation in p�x� is small over 	
�condition i�. The probability of the particule to tunnel
through the potential barrier is thus,

D = 

i

Di = e−2/��
i

Pi	 = e−2/��a
bp�x�dx.

As clearly stated in Ref. 19, this is valid if the electron wave
function is delocalized for x�b but not if the wave function
is localized for x�b in which case the reflected wave from b
to a is of course not negligible. Consequently, the WKB
approximation cannot take into account the effect of scatter-
ing in the neighboring wells, which is the main coupling
mechanism for transporting the electrons from well to well in
this hopping regime.

IV. SCATTERING APPROACH

We thus chose to develop a scattering approach of trans-
port in multiquantum wells �MQW�. Scattering methods
have already been used to model the quantum transport in
heterostructures for resonant tunnel diodes,20 MQW
structures21,22 and more recently in quantum cascade
lasers23,24 �QCLs�. But only little work has been devoted to
applying this method to weakly coupled SLs,25 mainly be-
cause of the difficulty to deal with the low coupling effects.

The high quality of the GaAs material, grown by
molecular-beam epitaxy �MBE�, allows us to evaluate a scat-
tering rate and a current from microscopic Hamiltonians
since no uncontrolled or detrimental material defects �deep
levels, hopping on defects,…� prevail. Our model includes
the six main interactions observed in GaAs-based materials:
optical phonon, acoustical phonon, alloy disorder, interface
roughness, ionized impurities, and interactions between car-
riers �see Appendices A and F for details on the scattering
rate evaluation�. No a priori hypothesis is made concerning
the magnitude of each process. However, we assume that the
GaAs material grown by MBE is of high enough quality to
disregard scattering due to dislocations. We also assume that

no neutral impurities are involved in the transport mecha-
nism.

It is important to understand that the tunnel transport be-
tween ground states is a very inefficient mechanism in the
weakly coupled quantum wells �QW� considered here. In-
deed, we can assume that a MQW is a stack of doped planes
with a typical doping of 3�1011 cm−2. Considering that the
current density in the plateau regime is 10−6 A cm−2 �see
Fig. 1�a�� we can conclude that the typical scattering rate is
given by

� =
en

J
�

1.6 � 10−193 � 1011

10−6 � some 10 ms. �3�

This means that an electron is scattered from one well to
the next every 10 ms. This time should be compared to the
intrawell scattering time which is less than 1 ps �Refs. 21 and
26� within the conduction band �ten orders of magnitude
smaller�. Consequently we are dealing with very unlikely
events.

Our model is based on the evaluation of the interwell
scattering times �−1 using the Fermi golden rule �FGR�. The
tunnel transport between ground states is rather simple to
model since it only couples two-dimensional �2D� levels.
The time �−1 is included in the current expression,

J = �
E1

� em�

��2 · ��E,F��1 − fFD�
 f��fFD�
i�d
i, �4�

where m�

��2 is the 2D density of states. The use of an equilib-
rium population factor is motivated by the fact that the inter-
well scattering rate is several orders of magnitude lower than
the intrawell rate, which leads to a thermalized subband for
each well.27 Our model includes the direct current �J+, the
electron relaxes from the upper well to the lower one� and
the reverse current4 �J−, the electron flows up the structure�,
see Fig. 3. In this Wannier-stark approach, the current writes

FIG. 2. Experimental and theoretical �WKB� current density as
a function of the applied bias.

FIG. 3. Band profile of the QWIP under an electric field of
3 kV cm−1.
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JWannier-Stark = J+ − J−

= �
E1

�

e
m�

��2 · ��E,F��1 − fFD�
 f��fFD�
i�d
i

− �
E1−eFLd

�

e
m�

��2 · ��E,F��1 − fFD�
 f��

�fFD�
i�d
i. �5�

The expression of the scattering rate given by the FGR is

��Ki� =
2�

�
�
Kf

��f �Ĥ�i��2��
i − 
 f� . �6�

In this expression i and f point out the initial and final

states, 
i/f the associated energy and Ĥ the perturbation
Hamiltonian. The wave functions are evaluated in the enve-
lope function formalism28 �i�= �Ki ,kiz���kiz

eiK� i·R� , z being the
direction of the growth. The wave functions �ki/fz

are evalu-
ated using a two-band kp method in a two-well structure.29

The energy associated with this level is 
i=Ei+
�2Ki

2

2m� with Ei

the energy of the ground state. Nonparabolicity for the in-
plane dispersion is neglected in the current calculation. In-
deed the exchanged energies remain very low compared with
the inverse of the coefficient of nonparabolicity of GaAs
�E�1+�E�= �2k2

2m� ,�=0.61 eV−1�.30 The wave functions and
the ground-state energies are evaluated for each value of the
electric field so that Stark effects are taken into account in
our model. The electric field is denominated by F and the
period of the superlattice is Ld. The periodicity allows us to
replace the Ei−Ef quantity by eFLd.

In order to compare the theoretical J�F� curve with the
experimental J�V�, we assume that the electric field on the
structure is homogeneous. It is well known that the electric
field distribution leads, for a given bias, to a higher electric
field in the vicinity of the contact than in the center of the
structure.31,32 Typically the difference between the homoge-
neous electric field and the “real” electric field is about a few
ten percent.33 Nevertheless, the higher the number of peri-
ods, the lower the associated correction. Our structure con-
tains forty periods and this “mean-field” approach should be
adequate. There are two main consequences to this homoge-
neous electric field hypothesis: first we neglect all contact
effects31 and then we assume that no electric field
domain13,34 exists in the QWIP. To justify the last point, we
used the high wavelength part of the FTIR measurement
�Fig. 1�b�� �assuming that the electric field profile is the same
with and without photon flux�. In the high wavelength part of
the spectrum, the photon energy is lower than the bound-to-
extended state transition energy so that the electron does not
have enough energy to be excited directly into the con-
tinuum. In fact, the electron is rather subject to tunneling
assisted by photon and electric field through the triangular
part of the barrier.35 This tunneling probability depends on
the electric field value. Thus, the translation of the photocur-
rent spectrum with the bias reflects the field reigning on each
quantum well, which allows us to conclude that the bias is
effectively applied on the QWIP.

Because of the large barrier involved in our structure,
quantum wells are very weakly coupled and the miniband
width is in the nanoelectron volt range,16 whereas the poten-
tial drop per period is some tens of millielectron volt. Elec-
trons are thus highly localized and their wave functions are
consistently described by their unperturbed quantum well
wave functions. Consequently our approach is based on a
hopping mechanism from one well to the next one. This is an
important difference with the paper of Castellano et al.16 in
which the I�V� plateau is attributed to a saturation of the
electronic velocity in a very narrow miniband �Esaki-Tsu ap-
proach�.

V. RESULTS

A. Parameters used for modeling

A temperature of 10 K is used. The other parameters used
for the evaluation of the scattering rates are given in the
following Table I.

B. Scattering rates

Figure 4 shows the product ��E ,F�� �1− fFD�
 f�� of the
scattering rates, for a null initial wave vector �Ki=0�, by the
population factor of the arrival level, as a function of the
bias. One of the main results of this graph is the fact that at
low field �V�2 V� the dominant interaction is the one be-
tween the electrons and the ionized donors. In the plateau
regime �0.5 V�V�1.5 V�, this interaction is at least one
order of magnitude higher than the others. At higher bias
�V�2 V�, other interactions such as longitudinal optical
�LO� phonon and alloy disorder also become important. Con-
cerning LO phonon, we have to underline that this effect will

TABLE I. Interaction parameters used for simulation �see Ap-
pendices A and F� with m0 the free-electron mass and 
0 the
vacuum permittivity.

Parameter Unit Value

m� a kg 0.067m0


r�
s
b,c A2 s4 m−3 kg−1 12.9
0


�
c A2 s4 m−3 kg−1 10.9
0

�wLO
c meV 36.6

� d Kg m−3 5320

cs
d ms−1 5220

Dc
d eV 12

	 e–h nm 0.3

� e–h nm 6.5

	V=VAlAs−VGaAs
e eV 0.836

a c nm 0.565

Vb=	Vx b eV 0.128

aReference 21.
bReference 13.
cReference 36.
dReference 20.

eReference 22.
fReference 37.
gReference 38.
hReference 39.
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not happen in a higher wavelength QWIP because of smaller
exchanged energy.

One should also notice that for very low bias
�V�0.5 V� the product of the scattering rate by the popula-
tion factor is increasing, which is the consequence of the
�1− fFD�
 f�� factor. Electron-electron �EE� interactions do
not show this behavior because this factor was not included
due to the difficulty to evaluate the energy of the arrival
states.24

Figure 4 shows that a plateau is theoretically obtained in
the scattering rates vs bias, which will lead to a constant
current in this range. One might wonder what the physical
origin of this plateau is. In fact, the plateau regime results
from the competition between two different effects of the
electric field. On the one hand, as described above, an in-
crease in the electric field tends to enhance the wave function
in the neighboring well, see Fig. 5�c�, enhancing the scatter-
ing and thus the electrical current. On the other hand, the
increase in the electric field tends to localize the wave func-
tion in each well �Wannier-Stark effect2�, see Fig. 5�b�, lead-
ing to a decrease in the electrical current, i.e., a negative
differential resistance �see Fig. 5�.

C. Level broadening

When the electric field is very low in the structure, the
electron wave functions, which are unperturbed in our first-
order perturbation theory, tend to be degenerate and delocal-
ized. This leads to an unrealistic infinite conductivity as it is
well known in transport theory.40 Rott et al.41 and Wacker42

have already demonstrated that for Wannier-Stark hopping a
1 /Fn law is expected at low field, where the n value depends
on the considered Hamiltonian. To correctly describe the
ohmic regime it is of course necessary to take into account
the decoherence effects on the transport mechanism. The
question of the decoherence may be treated using a nonequi-
librium Green’s-function method but this method is highly
computationally demanding.43 Other teams have also tried to
include decoherence using the density-matrix formalism, see
the work of Iotti et al.,44 Callebaut and Hu,45 and more re-

cently Gordon and Majer.46 In order to take this effect into
account while keeping a simple first-order calculation, the
easiest way is to introduce a lifetime broadening.40

Following a Wannier-Stark approach,2 the delocalized
part of the wave functions magnitude is given by J1�

	0

2eFLd
�,

with J1 the first-order Bessel function �see Fig. 5�b��. The
current density is proportional to the part of carrier wave
function delocalized in the next well. So the associated cur-
rent is JWannier-Stark�J1�

	0

2eFLd
�2. In the Wannier-Stark ap-

FIG. 4. �Color online� Product of the scattering rates, for Ki

=0, by the population factor of the arrival level, as a function of the
bias for the six considered processes.

Electric field
localization

F

J

Total current

Level
broadening

Electric field
assisted tunneling

Electric field
localization

F

J

Total current

Level
broadening

Electric field
assisted tunneling

(b)

(a)

(c)

FIG. 5. �Color online� �a� The current variation for an increasing
electric field is the result of a competition between the enhanced
probability of the electron to be in the neighboring well �enhancing
scattering� and an enhanced Wannier-Stark localization of the elec-
trons in their well. For very low fields, the dephasing time �equiva-
lently the coherence length� of the electrons localize the electron in
the wells. �b� Effect of the electric field on the downstream wave
function, the arrow shows the effect of the localization on the wave
function. �c� Effect of the electric field on the upstream wave func-
tion, the arrow shows the effect of the barrier lowering on the wave
function.
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proach the role of the electric field is to localize the wave
function when the field is higher than 	0. When F→0, this
latter expression diverges as explained above. To take into
account the level broadening due to intrawell scattering, we
introduce a imaginary part i �

� to the transition energy47 which
leads to an effective field eFef fLd=eFLd+ i �

� . It may be easily
shown that it is also equivalent to introducing a coherence
length for the electron wave function. The value of the
dephasing time � has been taken equal to the intrawell scat-
tering time �scattering between two states of the same sub-
band and the same well� 1

� =1.1�1013 Hz and has been ob-
tained with the same scattering method. Such a value is
consistent with previous theoretical21 and experimental26 re-
sults. This value is also very close to the broadening energy
�50 fs� extracted from our spectral measurements. The ex-
pression of the current is thus

J � J1� 	0/2

�eFLd + i
�

�
��

2

. �7�

Using the fact that eFLd�	0, and J1�x��
0

x
2 , one finds

J = JWannier-Stark
�eFLd�2

�eFLd�2 + 	�

�

2 .

From this latter expression, it is clear that the diverging ef-
fect of the Wannier-Stark delocalization is smoothed out by
the dephasing time �.

D. Theoretical dark current

Figure 6 shows the predicted current as a function of the
electric field for the six interactions. The theoretical curve
taking into account the six mechanisms �full line� can be
compared with the experimental curve �squares�. Our model
is able to reproduce the null differential conductance behav-
ior. We can observe that on the plateau regime the agreement
between theory and measurement is quite good, typically a

factor three. Because of the quadratic dependence with the
doping of the current due to ionized donors �see Appendix E�
this factor three may result of an uncertainty of “only” 70%
on the doping value. Other effects such as uncertainty on
aluminum concentration or segregation of aluminum and sili-
con may also be involved in this difference.

VI. INFLUENCE OF THE DOPING
DENSITY AND PROFILE

One of the main advantages of our microscopic approach
is that we can describe the effects linked to the doping den-
sity and profile. Such effects are expected to be quite impor-
tant since we have demonstrated that the electron-ionized
donors interaction dominates the plateau regime. We under-
line that our model gives a quadratic dependence of the cur-
rent with the doping density,

J � en��n� �8�

with an explicit sum over the number of electrons �equal to
the doping� and one implicit sum included in the scattering
rate over all the scattering centers.

To experimentally validate this dependence of the current
as a function of the doping magnitude we have grown two
series of samples which only differ by the magnitude of the
doping. The first structure is very close to the previous
sample with a well �barrier� width of 7.2 nm �34 nm�, the
aluminum content in the barrier is 15%, and a Si doping in
the central part of the well. The sheet densities are, respec-
tively, 1�1011 cm−2 �component B1� and 2�1011 cm−2

�component B2�. The structure includes sixty periods. Figure
7 presents the associated dark current. The ratio of the two
plateau magnitudes is 4.6, whereas 4 was expected. Similar
results have been obtained in a second structure �Lw=8 nm,
Lb=40 nm, %Al=13%, 40 periods, and a doping of 2
�1011 and 4�1011 cm−2�, where a ratio very close to 4 was
effectively measured.

There is a clear added value relatively to the
Esaki-Tsu-type16 model which is independent of the doping.
Even more, the current is not only sensitive to the doping
value but also to its position. This last part will study effects
such as segregation or the influence of impurities inside the

FIG. 6. �Color online� Current density as a function of the bias
for the six processes considered.

FIG. 7. �Color online� Dark current as a function of the applied
bias for component B1 �doping level of 1�1011 cm−2� and B2

�doping level of 2�1011 cm−2�.
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barrier since those two parameters are difficult to control
precisely and may have significant effect on the current.

A. Doping position

We have first theoretically studied the dependence of the
current as a function of the position of these impurities. We
have scanned the position of an ideal delta doping �1 Å�
through the well and plot the associated current in Fig. 8.
The electron sheet density is kept constant through the scan.
In our model, we expect the current to decrease while driving
the doping layer away from the wave-function maximum
since the scattering overlap integrals are strongly reduced.
This behavior is clearly observed in Fig. 8. Let us note that,
because of the applied electric field of 10 kV cm−1, the
maximum of the curve is not at the center of the well but
shifted of nearly 15 Å in the direction of the electric field.

Thus it may be possible to reduce the dark current by
shifting the doping position from the center of the well to
another position. To confirm this prediction, we have grown
two samples �Lw=6.8 nm, Lb=39 nm, %Al=15%, 40 peri-
ods, and sheet density 3�1011 cm−2�. The doping is, respec-
tively, in the central third of the well �component C1� and on
the last third �grating side� of the well �C2�.

We have plotted on Fig. 9, the magnitude of the dark
current as a function of the temperature under a bias of
−1.5 V. Using x-ray diffraction and spectral measurements
we have measured that the structure C2 presents a lower
confinement �transition energies, respectively, of 88.3 meV
for C1 and 87.4 meV for C2�. Consequently at high tempera-
ture �T�35 K�, this sample presents a higher thermoionic
dark current due to a more efficient thermal activation of the
electron. At low temperature, however, in spite of its lower
confinement, this C2 structure displays a less important tun-
nel current, which results from the fact that the interwell
hopping scattering rate has been effectively reduced, as ex-
pected fro our theory.

B. Segregation and I(V) asymmetry

Since our model takes into account the doping profile, it
can also be used to predict the effect of doping segregation.48

The segregation length is a function of the growth
temperature49 and partial pressure of the different deposited
elements. As a realistic approximation,31 we assumed that
our doping distribution is an asymmetric trapezoid. This
trapezoid is composed of three zones, see the inset of Fig.
10.

The first zone of length L1 represents the segregation in
the direction opposite to the growth. This segregation is quite
low and thus the segregation length �L1� is taken equal to
5 Å. The second zone corresponds to the nominal place of
doping. The last zone corresponds to a segregation in the
direction of the growth and consequently shows a higher
segregation length �L2�. For our typical growth temperature
the segregation length is in the range 25–50 Å, as reported
by Wasilewski et al.49

The volume doping density has been chosen such that,
whatever the values of the segregation lengths, the sheet den-
sity remains unchanged. We observe that the segregation re-
duces the dark current �Fig. 10�. This is explained by the fact
that the segregation tends to move the doping away from the
center of the well.

FIG. 8. Dark current density �full line� as a function of the
doping position in the well, under an electric field of 10 kV cm−1.
The dotted line is the current value for the same electric field but
without ionized impurities.

FIG. 9. �Color online� Dark current as a function of the tem-
perature, under a voltage bias of −1.5 V, for the component C1 and
C2. The gray pattern indicates the doping position into the well.

FIG. 10. �Color online� Theoretical dark current density, as a
function of the electric field, for different values of segregation
lengths �L1 and L2�. Inset: doping profile in a quantum well.
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The asymmetry of the I�V� curves is often attributed to
the doping segregation. Rather than changing the polarity of
the applied field in our simulation �which implies to re-
evaluate all wave functions and energy values�, we changed
the direction of segregation, L1 becoming L2 and vice versa.

Using our segregated profile �L1=5 Å,L2=50 Å�, our
model predicts a ratio of I+ �current under positive bias� over
I− �current under negative bias of 1.3, for a bias of 1 V �on
the plateau��. The experimental value of this ratio is included
in the 1.5–1.6 range, leading to a difference between experi-
mental and theoretical value of 20%.

As expected, the segregation introduces an asymmetry
with the bias polarity. The quantitative agreement is accept-
able if we consider the hypothesis made on the doping pro-
file shape.

C. Importance of the growth method

As we have shown that the ionized impurities play a ma-
jor role in the value of the dark current, it is important to
study the influence of the growth method. Indeed, because of
the high reactivity of the aluminum,50 nondesired impurities
can be present in the barrier. Impurities such as carbon, oxy-
gen, silicon, sulfur, tellurium, and germanium can be incor-
porated with a concentration which is dependent on the
growth method. With MBE the residual concentration is be-
low secondary-ion-mass spectroscopy resolution,50 typically
�some 1014 cm−3. With metal organic chemical vapor phase
epitaxy �MOVPE� this concentration is typically one order of
magnitude higher. As shown in Fig. 11, the presence of these
impurities in the barrier, added to the nominal doping, has no
influence for MBE and is also negligible in the MOVPE
case. Such a result is very important for the QWIP designer
since both methods can be used without major impact on the
device performances.

VII. CONCLUSION

We have studied the electronic transport under dark con-
dition of weakly coupled QWs at very low temperature, i.e.,

in the tunneling regime. The I�V� curves exhibit a plateau
region, where the current displays a very low dependence
with respect to the applied electric field. We have checked
that this does not originate from electric field domain effects.
We have shown that the usual WKB approximation is unable
to reproduce this striking plateau regime. Consequently we
developed a full quantum-scattering approach of the trans-
port, based on the Fermi golden rule and taking into account
all the main interactions met in AlGaAs heterostructures. Our
model suggests that the plateau regime is due to a competi-
tion between two mechanisms when the electric field is en-
hanced in the QWs: a decrease in the current due to the
electric field localization of the carriers �Wannier-Stark ef-
fect� and an increase due to a higher scattering probability
due to an increasing tunnel effect. We conclude that the
electron-ionized donors interaction is the dominant one and
obtain a good agreement between theory and experiment for
the plateau value. We have applied our model to predict the
influence of the doping density and profile on the dark cur-
rent. We showed that our model is able to reproduce the I�V�
curves asymmetry, at low bias, by the use of a segregated
doping profile. We also demonstrated the very low effect of
the choice of the growth method on the dark current. This
work may promote the development of new doping profiles
for QWIP operating in the low photon flux regime.
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APPENDIX A: ELECTRON-LONGITUDINAL
OPTICAL PHONON

The typical value of the energy drop per period �10–35
meV in the plateau regime� remains lower than the GaAs LO
phonon energy �36 meV�. Consequently there is a very low
probability that this mechanism is the main one, at least for
F�10 kV cm−1. Moreover the very low operating tempera-
ture is not favorable to this type of scattering.

The Hamiltonian describing the interaction between elec-
tron and longitudinal phonon can be written as20,21

He−/phonon=�q��q�eiq�r�bq
++hc, where q is the momentum of

the phonon, ��q� describes the strength of the interaction and
bq

+ the phonon creation operator. In the particular case of
optical phonon ��q� is linked to the Frölich interaction,36

where the electric field due to the dipole of the GaAs doublet
interacts with an electron,

�LO�q�2 =
e2�wLO

2�
p

1

q2 + q0
2 , �A1�

with 1

p

= 1

�

− 1

s

. Here �wLO is the energy of the optical pho-
non is GaAs, � the volume of the sample, 
� and 
s are,
respectively, the dielectric constant at infinite and null fre-
quency, and q0 the inverse of the screening length. Such a
Hamiltonian considers only bulk phonons. Readers interested
in other types of phonons �surface phonon for example�
could read Refs. 51 and 52. The matrix element is equal to

FIG. 11. �Color online� Dark current density as a function of the
concentration of undesired ionized impurities in the barrier under an
electric field of 10 kV cm−1. The two rectangles highlight the typi-
cal range of concentration for MBE �leaned pattern� and for
MOVPE �horizontal pattern�.
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MLO
2 = �LO

2 �
q

1

q2 + q0
2 ��kf�e�iqr�ki��2

= �
qz,Q

�LO
2

q2 + q0
2 ��� f�eiqzz��i��2��eiKfr��eiQr��eiKir���2.

�A2�

Here we can define the form factor related to this interaction
FLO�qz�= ��� f�eiqzz��i��2. Now this expression can be included
in the FGR giving

�LO�Ki� =
�LO

2

4�2�
� � � KfdKfd�dqz

FLO�qz�
q2 + q0

2

� ��Ei − Ef +
�2

2m�
�Ki

2 − Kf
2� − �wLO� .

�A3�

By evaluating the integral over Kf one finds24

�LO�Ki� =
�LO

2 m�

�2��2�3� d�� dqz
FLO�qz�
q2 + q0

2 , �A4�

where

q2 = Q2 + qz
2, �A5�

and

Q2 = Ki
2 + Kf

2 − 2KiKf cos��� �A6�

and

Kf
2 = Ki

2 +
2m�

�2 �Ei − Ef − �wLO� . �A7�

In such an expression, the Bose-Einstein factor which de-
scribes the population of phonons is taken equal to unity.
This choice is justified by the fact that temperature is very
low, which implies that no optical phonon absorption is pos-
sible.

APPENDIX B: ELECTRON-LONGITUDINAL
ACOUSTICAL PHONON

As for optical phonons, the very low temperature is again
not favorable to the interaction between acoustical phonons
and electrons. However, because of their lower energy, our
model needs to include both emission and absorption of
acoustical phonons.

The considered Hamiltonian is a classical electron-bulk
acoustical phonon interaction, based on Debye dispersion,
i.e., He−/phonon=�q��q�eiq�r�bq

++hc �Ref. 20� with

�AC�q�2 =
�Dc

2

2�� · cs
q , �B1�

where Dc is the acoustic deformation potential, � the volume
of the sample, � the density, cs the sound velocity, q the
phonon wave vector, and bq

+ the phonon creation operator.

We define �AC
2 =

�Dc
2

2�·cs
�Ref. 20� for an easier reading. The

matrix element associated with this interaction can be written
as

MAC
2 = �

q

�AC
2 q��f �eiqr�i��2 �B2�

or

MAC
2 = �

qz,Q
�AC

2 q��� f�eiqzz��i��2��eiKfr��eiQr��eiKir���2. �B3�

The form factor associated to this interaction is defined by
the following expression FAC= ��� f�eiqzz��i��2. Finally the tran-
sition rate is given by24

�AC =
�AC

2

4�2�2cs
�

0

�

KfdKf�
0

2�

d�
q2

qz
�1 + nBE��w��FAC�qz�

�B4�

with

q =

Ei − Ef +
�2

2m�
�Ki

2 − Kf
2�

�cs
, �B5�

Q2 = Ki
2 + Kf

2 − 2KiKf cos��� , �B6�

and

qz = �q2 − Q2. �B7�

Here nBE is the Bose-Einstein distribution. In the case of
absorption, this 1+nBE factor is replaced by nBE.

APPENDIX C: ALLOY DISORDER (AL)

In AlxGa1−xAs alloy the presence of aluminum in substi-
tution of the gallium induces scattering because of the differ-
ent atomic potential of the two atoms. It is quite hard to
evaluate a priori the magnitude of this interaction. Such a
scattering is usually treated by a potential proportional to the
deformation. V=	V�x�r�,22 where 	V is the band offset be-
tween GaAs and AlAs. Generally, the calculation consists in
defining a statistical correlation function between the alumi-
num atoms positions, following the Nordheim rule:53

��x�r��x�r��� = �0�x�1 − x����r − r�� , �C1�

where �0 is the size of the primitive cell. We can now evalu-
ate the mean value of the matrix element

�MAL�2 = ���i�	V�x�f��2� �C2�

and so

�MAL�2 = 	V2��� f
��r��x�r��i�r�d3r�2� . �C3�

We define the associated form factor

FAL = �
alloy

�� f�z��2��i�z��2dz . �C4�

To conclude, the expression of the scattering rate is given by
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�AL =
	V2�0�x�1 − x��FAL

2��
� m�

�2 d
 f� d���
i − 
 f� ,

�C5�

which is equal to

�AL =
m�

�3 	V2�0�x�1 − x��FAL. �C6�

APPENDIX D: INTERFACE ROUGHNESS

Because of the wide barriers and the small number of
interfaces we do not expect this process to be dominant. This
is a main difference between QWIP and quantum cascade
detector54 or QCL. In the latter, wells are highly coupled and
barriers are quite thin, making interface roughness a non-
negligible interaction at low temperature.23 The treatment for
interface roughness22,39 is very close from the one made for
alloy disorder: Unuma22 makes the remark that interface
roughness is the sheet equivalent of the alloy disorder. As for
alloy disorder we start by defining a linear potential with the
perturbation,

VIR�r� = Vb	��z − zi�F�r� , �D1�

where Vb is the band offset between GaAs and AlxGa1−xAs,
	 is the magnitude of the interface defects, and F�r� is the
spatial distribution of defects. The delta function underlines
the local character of this interaction. Most often F�r� is
chosen to follow a Gaussian correlation function,

�F�r�F�r��� = exp	−
�r − r��2

�2 
 �D2�

with � the correlation length. The matrix element is now
given by

�MIR�2 = ���f �Vb	��z − zi�F�r��i��2� �D3�

or

�MIR�2 = Vb
2	2��� d3r� f

��r��i�r���z − zi�F�r��2�
�D4�

and the very simple form factor can be written as

FIR = ��i�zi��2�� f�zi��2. �D5�

In the case of multiple interface the form factor is summed
over all interface positions �zi�. Considering the elastic char-
acter of the interaction

Kj
2 = Ki

2 +
2m�

�2 �Ei − Ef� , �D6�

the exchanged wave vector Q=Ki−Kf becomes

Q2 = 2Ki
2 + 2

m�

�2 �Ei − Ef� − 2Ki�Ki
2 + 2

m�

�2 �Ei − Ef� cos��� .

�D7�

To finish, the scattering rate is

�IR =
m�Vb

2	2�2FIR

2�3 �
0

2�

e−Q2�2/4d� . �D8�

APPENDIX E: IONIZED IMPURITIES

Scattering by ionized impurities is involved in two differ-
ent ways in QWIP: first, through the doping which is gener-
ally localized in the well. Then the high reactivity of the
aluminum in the barrier leads to the inclusion of undesirable
impurities �mostly carbon� in the barrier. Concentration of
residual impurities is highly dependent of the growth
method.50 As shown in Sec. VI C, our model can conclude
on the importance of residual impurities. It is also able to
take into account the segregation of the doping, which leads
to asymmetric I�V� curves with bias polarity.

In the following we assume that impurities are completely
ionized, even at low temperature. The Coulombian Hamil-
tonian is

V�r� =
e2

4�
0
r

1

r
. �E1�

V is the Fourier transformed41

V�Q� =
e2

2
0
r
�
Q

e−Q�z−zi�eiQ�r�−ri��

Q
. �E2�

Thus the matrix element is given by

MII
2 = 	 e2

2
0
r

�� dzd2r�

�� d2Q� f
��z�e−iKfr�e−Q�z−zi�eiQ�r�−ri��

Q
�i�z�eiKir��2

.

�E3�

We can also define the associated form factor

FII�Q� = �� dz� f
��z�e−Q�z−zi��i�z��2

, �E4�

so we get MII by

MII
2 =

e4

4
0
2
r

2

FII�Ki − Kf�
�Ki − Kf�2

. �E5�

The scattering rate is obtained by summing over all positions
of the doping �zii�,

�II =
e4

8��
0
2
r

2

m�

�2�
impurities

dziiN�zii�

�� d�
FII���Ki − Kf�2 + q0

2�
�Ki − Kf�2 + q0

2 , �E6�

where

�Ki − Kf� = �Ki
2 + Kf

2 − 2KiKf cos��� �E7�

and
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Kf
2 = Ki

2 +
2m�

�2 �Ei − Ef� . �E8�

In order to take into account the screening of the interaction,
we used a Thomas-Fermi approach with a constant screening
length36 q0

2= e2n

0
rkbT , n the volumic doping and 
r the permit-

tivity of the materials. It leads to an effective wave
vector41,55 qef f =�q2+q0

2. Note that unlike the previous pro-
cess �LO, AC, AL, and IR�, Coulombian interactions will
lead to a quadratic dependence with the doping.

APPENDIX F: ELECTRON ELECTRON

Electron-electron interaction is certainly the most difficult
interaction to understand. To deal with it, some authors use
Green’s function formalism.56,57 Only little work has been
devoted to the treatment of this interaction using the envelop
formalism, we could quote works of Smet,58 Harrison,24 and
Kinsler.59 This lack is the consequence of the very time con-
suming numerical treatment. All theoretical difficulties in the
treatment of this interaction are due to the two bodies type of
this interaction. Initial states will be noted as �i� and �j�, and
the final states as �f� and �g�. The interaction potential is, as
for ionized impurities, the Coulombian potential, so the ma-
trix element can be written

Mee =� � f�z�eikfr�

�A

�g�z��eikgr�

�A

�� e2

4�
0
r

1

r
� �i�z�eikir�

�A

� j�z��eikjr�

�A
� . �F1�

After having Fourier transformed the potential and defined
the form factor by

Fijfg
ee �qxy� =� � � f

��z��g
��z���i�z�� j�z��e−qxy�z−z��dzdz�,

�F2�

the matrix element Mee becomes

Mee =
e2

2
0
rAqxy
Fijfg

ee �qxy���kf + kg − ki − kj� . �F3�

This expression could be injected in the FGR to obtain the
expression of the scattering rate,

�ee =
2�

�
�
f ,g
� 2�e2

4�
0
rA

Fijfg
ee �qxy�

qxy
�2

� ��kf + kg − ki − kj���
 f + 
g − 
i − 
 j� . �F4�

This expression depends on the kinetic energy of the two
initial states �i� and �j�. In order to use the scattering rate of
the process in the same way as the previous ones, we sum
this expression over all j initial states,

�ee =
e4

2���4�
0
r�2� � � �Fijfg
ee �qxy�

qxy
�2

Pj,f ,g�kj,kf,k�

� ��kf + kg − ki − kj���
 f + 
g − 
i − 
 j�dkjdkfdkg,

�F5�

where

Pj,f ,g = fFD�
 j��1 − fFD�
 f���1 − fFD�
g�� �F6�

is the population factor of the different states which appear in
the expression. Because it is very difficult to obtain sepa-
rately 
 f and 
g, the expression is simplified into
Pj,f ,g�kj ,kf ,k�= fFD�
 j�. This approximation allows us to ob-
tain an upper limit of the scattering rate, which is not an
issue if this interaction is not the main one. Kinsler et al.59

have however proposed a solution to avoid this approxima-
tion. To finish the expression of the scattering rate is given
by

�ee =
m�e4

�4���3
0
2
r

2� �
0

2� �
0

2� �Fijfg
ee �qxy�

qxy
�2

� Pj,f ,g�kj,kf,kg�kjdkjd�d� �F7�

with � and � two angles. The expression of qxy is the fol-
lowing one

qxy
2 =

2kij
2 + 	ko

2 − 2kij
�kij

2 + 	ko
2 cos �

4
�F8�

with

kij
2 = ki

2 + kj
2 − 2kikj cos � �F9�

and

	ko
2 =

4m�

�2 �Ei + Ej − Ef − Eg� . �F10�

For a more detailed calculation one should read Harrison‘s
book.24
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