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For a semiconductor quantum dot strongly coupled to a microcavity, we theoretically investigate phonon-
assisted transitions from the exciton to a cavity photon, where the energy mismatch is compensated by phonon
emission or absorption. By means of a Schrieffer-Wolff transformation we derive an effective Hamiltonian,
which describes the combined effect of exciton-cavity and exciton-phonon couplings, and compute the scat-
tering rates within a Fermi-golden-rule approach. The results of this approach are compared with those of a
recently reported description scheme based on the independent boson model [U. Hohenester ef al., Phys. Rev.
B 80, 201311(R) (2009)] and a numerical density-matrix approach. All description schemes are shown to give
very similar results. This demonstrates that phonon-assisted cavity feeding can be described in terms of a
simple scattering process and does not require a non-Markovian treatment as suggested elsewhere. We present
results for the spontaneous emission lifetime of a quantum dot initially populated with a single exciton or
biexciton and for the spectral properties of an optically driven dot-cavity system operating in the strong-
coupling regime. Our results demonstrate that phonon-assisted feeding plays a dominant role for strongly
coupled dot-cavity systems when the detuning is of the order of a few millielectron volts.
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I. INTRODUCTION

Cavity quantum electrodynamics (QED) investigates
hybrid systems consisting of a quantum emitter coupled
to a quantized cavity mode. It has been first implemented
with atoms in high-finesse optical resonators.'~3 Semicon-
ductor systems allow for the design of monolithic structures.*
A particularly promising approach is based on semicon-
ductor quantum dots embedded in microcavities, such
as micropillars,>® microdisks,” or photonic crystal
nanocavities.'®!" With these systems many cavity-QED phe-
nomena have been observed, including Purcell
enhancement,>'? photon bunching and antibunching,® single
and entangled photon sources,®'3"!> and strong light matter
coupling.”!%1® Possible applications range from ultralow
threshold nanolasers,!” over efficient single and entangled
photon sources, to various applications in quantum informa-
tion science.’

In contrast to atoms, semiconductor quantum dots, some-
times referred to as artificial atoms, are in intimate contact
with their solid-state environment. This leads to enhanced
scattering and dephasing contributions. Indeed, cavity-QED
experiments with semiconductor quantum dots have revealed
a significant feeding channel for the cavity mode,®!%!% even
for largely detuned dot-cavity systems, which has been at-
tributed to the influence of the environment. However, the
microscopic origin of such feeding has been discussed con-
troversially in the literature. Shake-up processes in charged
quantum dots'! and quasicontinuum excitonic transitions!®
have been suggested as possible processes for populating the
cavity mode even in the presence of large detuning of several
tens of meV. For smaller detunings, of the order of a few
meV, phonon processes are expected to play an important
role. It is now well established that phonon dephasing?®?!
and relaxation?>2* govern the coherent optical response of
quantum dots. As for cavity-QED, theoretical work has sug-
gested that such pure phonon dephasing might be responsible
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for cavity feeding at detunings of the order of the polariton
linewidths.>>-?° Experimental work has confirmed that for
small detunings dephasing plays a crucial role.3%-3!

In a recent paper,? it has been demonstrated theoretically
and experimentally that, besides phonon dephasing, there ex-
ists another phonon-mediated feeding channel for the cavity
that works efficiently over a broad detuning range of several
meV. Similar results have been independently obtained by
other authors.’®3* The cavity feeding relies on a combined
effect of exciton-cavity and exciton-phonon couplings and
accounts for a process where the exciton decays into a cavity
photon and the energy mismatch is compensated by the
emission or absorption of a phonon.

In this paper, we present the detailed analysis of the the-
oretical framework given in Ref. 32 and provide a simple
description scheme for phonon-assisted cavity feeding. More
specifically, we bring, by means of a unitary Schrieffer-Wolff
transformation, the electron-phonon Hamiltonian to a form
that precisely describes the combined effect of exciton-cavity
and exciton-phonon couplings. We compare our results with
those of the previously used independent boson model and of
a numerical density-matrix approach and find almost identi-
cal results for all approaches. We also present results for the
decay of excitons and biexcitons in the presence a phonon-
assisted cavity feeding and analyze the impact of such feed-
ing on the spectral properties of a driven dot-cavity system.

Cavity-QED with semiconductor quantum dots is usually
described in terms of the cavity-exciton coupling g and the
cavity and exciton loss rates « and . As an important result
of this work, we show that vy consists of two terms associated
with radiative losses (which are typically small within the
microcavity) and phonon-assisted cavity feeding. The latter
process is responsible for the population of the cavity mode
and, in turn, for photon emission at the cavity frequency.
Depending on the relative importance of the coupling g and
the loss terms « and 7, the composite cavity-exciton systems
operate in the strong- or weak-coupling regime. Although
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phonon feeding works in both regimes, it is only important
for strong coupling and for detunings larger than g, where
the dynamics is dominated by the exciton decay y. For a
broad detuning range of several meV, phonon-assisted decay
process can supersede radiative losses, and the decay and
luminescence properties of the cavity-exciton system be-
come drastically altered. In contrast, for weak coupling the
dynamics is dominated by the strong cavity losses «, and
phonon feeding is of only minor importance.

We have organized our paper as follows. In Sec. II we
present the theoretical description scheme for phonon-
assisted cavity feeding in semiconductor quantum dots. We
start with the Schrieffer-Wolff transformation, where the cav-
ity and phonon couplings are treated as perturbations, which
allows us to compute the feeding rates by means of a simple
Fermi-golden-rule approach. Due to the simple structure of
the independent boson Hamiltonian, one can also describe
the phonon dynamics exactly and only treat the exciton-
cavity coupling as a perturbation. We finally introduce a
density-matrix approach, whose only approximation is a
(controllable) truncation of the density-matrix hierarchy.
Some details of this approach are presented in Appendixes A
and B. In Sec. III we present results for these different de-
scription schemes. We discuss the feeding rates and the re-
sulting spontaneous emission (SE) lifetimes for different de-
tunings, temperatures, and cavity quality factors. We also
investigate the spectra for a driven dot-cavity system and
analyze the detuning dependence of the polariton intensities.
Our results demonstrate that phonon-assisted feeding plays a
dominant role for strongly coupled dot-cavity systems when
the detuning is of the order of a few meV. Finally, in Sec. IV
we summarize and draw some conclusions.

II. THEORY
A. Model
1. Hamiltonian

In the following we consider a quantum dot embedded in
a microcavity, which interacts with phonons.3>% We will
show that, due to the coupling of the quantum-dot state with
the phonons, excitonic states can decay into cavity photons
even for relatively large exciton-cavity detunings of a few
meV. We start with a description of the excitonic states in
terms of a generic two-level system, where e denotes the
excited and g denotes the ground state. Although we shall be
primarily concerned with the exciton to ground-state decay,
our description scheme also applies to the biexciton to exci-
ton decay. With the quantum-dot operators o,,=|g)(g| and
0,.=|e)Xe| and a and b, as the bosonic annihilation operators
for the cavity mode and the kth phonon mode (with energies
wgy and wy), the Hamiltonian for the uncoupled system
reads as

Hy=(E;0,,

+E,0,,) + ougaia+ D wb)by. (1)
k

Here E, and E, are the energies of the ground and excited

quantum-dot states. We set =1 throughout this paper. The

exciton-cavity coupling in the rotating-wave approx-

imation3%37 is of the form
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— T
H,=g(o,,a+0,a'), (2)

where o,,=|g){(e| and o,,=|e)(g| are the lowering and raising
operators for the quantum dot and g is the coupling constant,
which depends on the exciton dipole moment and the field
distribution of the cavity mode.3%® Through H ¢» €xciton and
cavity become coupled, and new polariton modes are formed
which have partial exciton and partial cavity character.”-10-3¢
In the strong-coupling regime, the coupling is stronger than
the quantum dot and cavity losses, and excitation is coher-
ently transferred between the dot and the cavity. In contrast,
in the weak-coupling regime losses dominate over the coher-
ent coupling and the excited state decays monoexponentially.
Quite generally, the calculation of the phonon-assisted scat-
tering rates, to be discussed below, works in both strong- and
weak-coupling regimes, and we thus will not be specific
about this point until Sec. I A2 where we introduce our
master-equation approach.

The coupling between the quantum-dot states and the
phonons is described by the generic -electron-phonon
Hamiltonian,33-39:40

H, =o0,B

ep 8888 + UeeBee? (3)

where we have introduced the bath operators,*!
B;;= E )\ij,k(bk + bZ)~ (4)
k

Here, \;;; denotes the electron-phonon matrix elements. In
case of the exciton to ground-state decay, By, is zero, since
only the exciton interacts with the lattice degrees of freedom,
whereas for the biexciton to exciton decay both B,, and B,,
are nonzero. The diagonal bath operators B,, and B,, de-
scribe a coupling where the lattice becomes distorted, but no
transitions between quantum-dot states are induced. The cor-
responding model is usually denoted as the independent bo-
son model ?"¥3%40 In Eq. (4) we have defined the bath op-
erators in a slightly more general way, such that also
transitions between different quantum-dot states can be de-
scribed for reasons that will become clear further below.

2. Scattering rate

To compute the phonon-assisted scattering rates between
the quantum dot and the cavity, we employ a master-equation
approach. Let

H=Hy+V (5)

be the Hamiltonian composed of a part H,, which can be
treated exactly, and a perturbation part V. In the most simple

approach, H, is associated with the Hamiltonian in Eq. (1)
and V with the exciton-cavity and exciton-phonon couplings
in Egs. (2) and (3). However, as we will show in Sec. II B,
due to the simple structure of the independent boson Hamil-
tonian in Eq. (3) we can even describe the full dynamics of
Hy+H,, exactly and only consider H, as a perturbation.

The time evolution of the composite quantum-dot-cavity
system, described by the density matrix p and the phonon
part p,;, can be approximately described by the master equa-
tion in Born approximation,36:#!
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dz_(:) == f o, ({V(O),[V(7),p(t) @ pp]Dd7,  (6)

0

where V(z) is the perturbation in the interaction representa-

tion of Hy. In Eq. (6) we have assumed a factorizable density
matrix*!' at the initial time #,. In the following we consider
transitions between the initial and final states i and f of the
quantum-dot-cavity system, which, e.g., for the phonon-
assisted decay read |e;0) and |g;1). Here, the first entry cor-
responds to the quantum-dot state and the second one to the
number of photons in the cavity. Upon explicit evaluation of
the double commutator in Eq. (6) we encounter contributions
where both V operators act from either the left- or right-hand
side on p, which can be associated with generalized out scat-
terings and dephasing.*'*> The other contributions can be
associated with generalized in scatterings. More specifically,
we find for the increase of population in the final state,

0
Prr= f tro[AVO) D pisppnli[ V(Df) + c.c.Jdr,  (7)

—o0

where c.c. denotes the complex conjugate of the preceding
term. We have used the adiabatic approximation of letting
the lower integration limit approach minus infinity and intro-
ducing a small damping term inside the integral (not shown),
which allows us to perform the time integration prior to the
phonon trace.*? From Eq. (7) we can infer the scattering rate

0
Fy=2 Ref tfph[Pph<i|V(T)|f><f| V(0)[i)]dT (8)

—oo

for a transition from the initial state i to the final state f. To
arrive at our final expression, we have exploited the cyclic
permutation of operators under the trace. The generalized
Fermi-golden-rule expression in Eq. (8) will serve us as the
starting point for the calculation of the phonon-assisted scat-
tering rates.

B. Schrieffer-Wolff transformation

The decay of an exciton to the cavity under off-resonant
conditions requires both the coupling between states e and g,
by means of the exciton-cavity Hamiltonian H,, and the
emission or absorption of a phonon in order to compensate
for the energy mismatch. The scattering rate will thus depend
on both cavity and phonon couplings g and A;. A convenient
way to account for the combined cavity-phonon character of
the scattering is to remove, in lowest perturbation order, the
exciton-cavity coupling by means of a Schrieffer-Wolff
transformation.*** Let us consider first the Hamiltonian H
=Hy+H, composed of the free part and the exciton-cavity
coupling. By means of a unitary transformation,*

H=e'He™ =H+[s,H] + %[s,[s,H]] + oo, 9)

we can remove the exciton-cavity coupling to the lowest
order of g by choosing s such that [s,Hy]+H,=0. This is
achieved through the operator
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8 1
5=Z(0-ega_a-gea )’ (10)

where A=E,—E,— w,, is the detuning between the quantum-

dot transition and the cavity. Then, H=H,+O(g?) describes
the uncoupled exciton-cavity system, and the second-order
corrections can be identified as the Lamb and Stark shifts**
which will be neglected below.

1. Diagonal electron-phonon coupling

Let us investigate how the unitary transformation in Eq.
(9) affects the electron-phonon coupling. After some simple
calculation we arrive at

~ 8
Hep =~ Hep— A

(O-ega - UgeaT)(Bee - ng) (1 1)

for the lowest order correction of f]ep, which is the expres-
sion we are seeking for. The second term on the right-hand
side describes a combined interaction of H,, which couples
the quantum-dot states e and g via emission or absorption of
a cavity photon, and H,,, which can compensate for the en-
ergy mismatch A via emission or absorption of a phonon. In
what follows, we assign the perturbation V to the Hamil-
tonian given by Eq. (I11) and consider an interaction repre-
sentation according to Hy. Upon insertion of the Hamiltonian
in Eq. (11) into the scattering rate in Eq. (8), we obtain for
the transition from the initial state |e;0) to the final state
g 1) the rate

A

2 (0
Feg=2 Rel(§> f =07 5B(7) B(0))d |, (12)
with 0F being a small positive quantity and 6B=B,,—B,,
being the bath fluctuation operator. We have used (-)
=tryp(ppy). In thermal equilibrium only the phonon occupa-
tions (b;b;)=i1, are nonzero (i, is the Bose-Einstein distri-
bution at temperature T), and we can evaluate the phonon
correlation function analytically.*! We then get

2

8

Feg = (X) 2772 |}\ee,k - )\gg,k|2
k

X[, 0(A + wp) + (71, + 1) (A — )] (13)

for the phonon-assisted feeding rate of the cavity through
decay of the exciton state. Equation (13) is our final expres-
sion. It accounts for the phonon-assisted exciton decay to the
cavity, where the phonons are assumed to be in thermal equi-
librium.

If the exciton decays within a cavity populated with n
photons, the scattering rate has to be multiplied by n+1 (be-
cause of the cavity field operators acting on the Fock state
with n photons). We can also derive along the same lines the
scattering rate Iy, for the reversed process, where the photon
is removed from the cavity and an exciton is created. The
resulting expression is identical to Eq. (13) except that A has
to be replaced by —A. This backscattering, however, is usu-
ally inefficient due to the strong losses of the cavity.
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2. Off-diagonal electron-phonon coupling

Our above derivation can also be applied to the case
where more than two quantum-dot states are involved. In-
deed, it has been demonstrated that in the cascade multiex-
citon decay of an optically excited quantum dot the emission
of cavity photons plays an important role.'"!° Since there is
practically always an energy mismatch between the transi-
tion energies of the quantum-dot states and the cavity pho-
ton, phonons are expected to play a decisive role also in this
cascade. As a simple model for a phonon-assisted cascade
decay, we consider again two states e and g which are elec-
tromagnetically coupled through H,. However, for the pho-
non coupling we assume that the lower state g is coupled
through phonon emission or absorption to some other state
g', viz.,

Hép=(0'gg/+0'grg)ngl. (14)

The additional state g’ might be even optically inactive, cor-
responding, e.g., to the excitation of one hole or electron out
of the ground state of a multiexciton state. It turns out that
for this off-diagonal phonon Hamiltonian the scattering rate
can be computed in a completely similar fashion, and we
arrive at

g 2
Feg’ = (Z) 27T2 |)\gg’,k|2
k

X[ (A" + o) + (e + 1) (A" — wp)],  (15)

where A'=E,~E, — 0y, is the detuning with respect to state
g'. Equation (15) accounts for an indirect transition, where
the system decays via the optical channel to g, and becomes
promoted through phonon emission or absorption to the final
state g’. As a result, multiexciton states can easily decay
even in absence of strict energy conservation for the exciton-
cavity system.

C. Independent boson model

Due to the particular structure of the independent boson
Hamiltonian in Eq. (3) it is possible to treat the electron-
phonon interaction without further approximation. In this ap-
proach, we introduce an interaction representation according

to 1?10=H0+Hep and treat the exciton-photon coupling H, as
the perturbation.

The key to the success of the independent boson model is
provided by the phonon displacement operator,3%3740 which,
for a single phonon mode, reads e® with s=\/w(b-b").
Through the unitary transformation e‘be™=b+(N/w) the
phonon field becomes displaced by a constant value. Then,

A A . A2
e(wb'b)e™ = w(bT + —)(b + —) =wb'b+Nb+b")+—
w w

(16)

gives the free-phonon Hamiltonian for the displaced phonon
fields. Let us first assume that only the upper state interacts
with the phonons, i.e., Hy=0,,.B,, (the case where phonon
coupling is also present in the lower state, such as for the
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biexciton to exciton decay, will be addressed below). The
transformation e“¢¢* with

A .
s= > ~“k(b - b)) (17)
ko Ok

then allows us to generate the independent boson Hamil-
tonian through* Hy+H,,~ e“«*Hye™ %<, apart from an en-
ergy renormalization —o,, 2 )\5&,{/ w, of the quantum-dot
state, which is usually referred to as the polaron shift and
which can be easily absorbed into the definition of the dot
energies.?!3%40 This transformation is known as the polaron
transformation, as it displaces, depending on the state of the
quantum dot, the phonon fields to the new equilibrium posi-
tions. For the exciton decay, the ground state is associated
with an undistorted lattice, and only for the exciton state the
lattice becomes distorted due to the formation of a polaron.
Then, we obtain from Eq. (8) the scattering rate

— 9,2
F,=2g ReJ

0
trph X (pph<g; 1

eiHOT|g : 1 >

X{(e;0|e’e”M07e™5|e;0))d T, (18)

where we have used e“«*=0,,+0,.e°. We next evaluate all
matrix elements in Eq. (18) to transform the integrand to
e 2(e5Me=5) where s(7) is the expression in Eq. (17) in the
interaction representation of H, and the brackets denote the
expectation value over the phonon density matrix. In thermal
equilibrium the expectation value (¢~*(7¢*) can be evaluated
analytically,3*-41:43

2
C(n) =expd - > (AM}C) [+ 1)e ™ + e’ ¢ (19)
k Wy

This correlation function also determines pure phonon
dephasing and the spectral line shape in optically excited
semiconductor quantum dots.?>?! The phonon-assisted scat-
tering rate within the independent boson model then
becomes??

0
r,= 2g> Ref e A7C(- 1dr. (20)

—o0

One can easily show that, by expanding the integrand in Eq.
(19) to lowest order, we precisely recover the result in Eq.
(13) for the Schrieffer-Wolff transformation. Finally, when
phonon interactions are present in both the excited and the
ground states, we have to replace in Eq. (19) the phonon
matrix elements simply by A, x— A, «- This is due to the fact
that only the difference in phonon equilibrium positions af-
fects the phonon dephasing and, in turn, the phonon-assisted
scattering rates.

D. Master-equation approach

With the phonon-assisted scattering rates, obtained within
either the Schrieffer-Wolff or independent boson model ap-
proach, we can describe the dynamics of the coupled dot-
cavity system by means of a master-equation approach.>® In
this work we will consider the level schemes depicted in Fig.
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FIG. 1. (Color online) Level schemes used in our simulations.
(a) Ground and excited quantum-dot states e, g and cavity. The
exciton state is coupled to the cavity, with the cavity coupling g.
The exciton and cavity decay with rates 7y,,q and «. In case of laser
pumping, we also consider transitions from g to e. (b) Biexciton
level scheme, consisting of the dot ground state g, the exciton states
x and y, with orthogonal polarizations, and the biexciton state XX.
In our simulations we use a basis of the bare quantum-dot states and
these states together with up to two photons in the cavity. When the
cavity and the dot are not perfectly aligned, both exciton transitions
can couple to the cavity. We assume that the XX—x and x— g
transitions couple with strength g cos 6 and the XX—y and y—g
transitions with strength g sin 6 to the cavity. Here 6 is an angle that
determines the degree of mixing. Pumping brings the system from
the ground state via the exciton states x and y to the biexciton state
XX.

(a

1, which consist of a different number of composite dot-
cavity states. We describe the coherent dynamics by the
Hamiltonian H, which accounts for the single-particle ener-
gies and the dot-cavity couplings. For instance, for the two-
level system depicted in Fig. 1(a) the Hamiltonian reads as
H=EJe;0)(e; 0+ wlg: 1)(g: 1] +g(|g: 1){e;0]+]e;0)(g: 1]).
The incoherent dynamics, which accounts for radiative dot
and cavity losses, phonon-assisted cavity feeding, and dot
pumping in the presence of an external laser pulse, is de-
scribed by the Lindblad operators®*#! L, where u labels the
different scattering channels. The time evolution of the den-
sity matrix is then determined by a master equation of Lind-
blad form,304!

p=—ilHpl-2 (%{LLLM,p} - L,mLL) .y
o

Depending on the relative importance of the dot-cavity cou-
pling g and the various scattering losses, the solutions of this
master equation exhibit strong- or weak-coupling effects. In
Appendixes A and B we give some details about our solution
scheme for the master equation and show how to compute
luminescence spectra.

E. Density-matrix approach

We finally present an approach suited for the numerical
solution of the coupled dot-cavity dynamics in the presence
of phonon interactions, whose only approximation is a (con-
trollable) truncation of the density-matrix hierarchy. We con-
sider the situation where the system is initially in the excited
dot state and subsequently decays through radiative decay or
coupling to the cavity photon, which then leaks out of the
cavity. In the absence of dot pumping, we are left with a
generic two-level system consisting of the excited quantum-
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dot state together with the dot ground state and one photon in
the cavity. We can describe the system in terms of an effec-
tive Hamiltonian,

K
Heff= (A_ i%>a-ee_ lE gg+g(0-eg+ o-ge)v (22)
where v is the radiative decay rate of the excited quantum-
dot state and « is the leakage rate of the cavity. Note that, in
contrast to the above analysis, here g denotes the state com-
posed of the dot ground state and the cavity photon. It is
important to realize that any scattering, described by the loss
terms proportional to y and «, brings the system to a state
(dot ground state without cavity photon) that is not coupled
to our two-level system.

The total Hamiltonian then consists of H g together with
the electron-phonon coupling in Eq. (3) and the free-phonon
Hamiltonian. For simplicity, we consider the situation where
only the excited state couples to phonons, but our results
could be easily generalized if phonon coupling was also
present in the dot ground state.

We next employ a density-matrix approac
this end, we start from the density matrix p;=(0;;), where
the brackets denote tr(po;), and compute its equation of mo-
tion from the Heisenberg equation of motion,

h 40,42,46-48 To

ipij = <Uinfo— Heff"'ij) + <[Uijso-ee]Bee>~ (23)

Because of the phonon coupling, the density matrix couples
to the phonon-assisted density matrix* (o;;b;). If we com-
pute next the equation of motion for the phonon-assisted
density matrix, we find that it couples to a density matrix
with two-phonon operators, whose time evolution, in turn,
involves density matrices with three phonon operators. This
reflects the fact that the interacting dot-phonon system con-
stitutes a highly nontrivial many-body problem, with an in-
finite hierarchy of equations of motion for the density matri-
ces. To truncate this infinite hierarchy, it is convenient to
employ a cumulant expansion,*>*14® where one introduces
correlation functions by subtracting from the higher-order
density-matrix contributions of lower-order density matrices.
For instance, we obtain for the phonon-assisted density ma-
trix

(0ibi) = () b) + (oD (24)

where ((-)) denotes the correlation function. On general
physical grounds, we expect that higher-order phonon-
assisted correlation functions will play no significant role in
the dynamics of p;;.

In our density-matrix equation approach we first select a
set of representative correlation functions. Here we restrict
ourselves, in accordance to related work,**% to those corre-
lation functions which contain less than three phonon opera-
tors (see Table I for a complete list). Their equations of mo-
tions are obtained by using the Heisenberg equation of
motion, performing the cumulant expansion, and keeping
only the relevant correlation functions. By neglecting higher-
order correlations, we truncate the infinite hierarchy of equa-
tions of motions and obtain a closed set of equations of mo-
tion (see Appendixes A and B). This set can be solved
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TABLE I. Correlation functions used in our density-matrix ap-
proach. We consider all correlation functions which contain less
than three phonon operators. The equations of motion for the dif-
ferent correlation functions are given in Appendixes A and B.

Correlation function Symbol Expression
Density matrix pij (o))
Phonon amplitude Sk (bp
Phonon-assisted density matrix Siik {obe)
Two-phonon amplitude Skt (b))
Phonon occupation Mgt ((b,tbkr»
Two-phonon-assisted density matrix Sij k! (o)
nyj k! <<0'ijb}:bk'>>

through direct numerical integration. Results of these calcu-
lations and a comparison with the perturbative approach will
be given in Sec. IIL

III. RESULTS
A. Model

In our simulations we use a quantum dot and phonon
model similar to Ref. 21, with Gaussian electron and hole
wave functions and phonon parameters representative for
GaAs (see Table IT). Quite generally, we expect that a more
realistic description scheme, including the effects due to
strain, the more complicated valence band structure, or the
heterogeneous material composition, might somewhat alter
our results. On the other hand, our model has proven suc-
cessful in reproducing the dominant effects of phonon
dephasing?!#%46 and is sufficiently generic to include pos-
sible modifications from a microscopic model description by
simply adapting the effective parameters (quantum-dot form

TABLE II. Material, dot, and cavity parameters used in our
simulations. The phonon parameters are representative for GaAs.
For the electron and hole wave functions, we assume Gaussians
with a full width at half maximum (FWHM) of L,  and L, along the
lateral and growth directions, respectively. Throughout we use an
exciton-cavity coupling strength of 150 weV and a radiative dot
lifetime of 7 ns. The cavity quality factor is Q=15 000 unless stated
differently.

Parameter Symbol Value
Mass density p 5.37 g/em™
Sound velocity ce 5110 m/s
Deformation potential for electrons D, -14.6 eV
Deformation potential for holes D, -4.8 eV
In-plane confinement (FWHM) Liy 10 nm
Confinement in z direction (FWHM) L, 4 nm
Biexciton binding energy A, 2 meV
Radiative decay time of dot Trad 7 ns
Exciton-cavity coupling g 150 weV
Cavity photon energy Weay 1.3 eV
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Cavity feeding rate (1/ns)

Detuning Ex -0, (meV)

FIG. 2. (Color online) Cavity feeding rate for the phonon-
assisted transition from the exciton to the cavity. We use the dot and
material parameters listed in Table II and an exciton-cavity coupling
g=150 weV. The solid and dashed lines report results obtained
from Egs. (20) and (13) for the independent boson model and the
Schrieffer-Wolff perturbation approach, respectively.

factor and phonon coupling). We only consider deformation
potential phonon coupling, which is expected to be the domi-
nant contribution. For the cavity feeding through decay of
the exciton, the exciton-phonon coupling is of the form?!3°

[k )
)\ee,k = 2 f e_lk'r[De|¢e(r)|2 - Dh|¢h(r)|2]d3rv (25)
pCe

where k denotes the wave vector and ¢, ;,(r) are the electron
and hole wave functions for which we assume Gaussians
(see Table II for parameters). Piezoelectric coupling, de-
scribed by performing angular averages over the longitudinal
and transverse modes separately,’®>! turned out to give only
negligible corrections and was thus neglected. Coupling to
LO phonons leads to the formation of a tightly bound
polaron.?>?3 The resulting energy shift can be easily ab-
sorbed into the exciton and biexciton energies. The polaron-
mediated relaxation channel for excited states, provided by
the anharmonic decay of LO phonons, is expected to be of
minor importance since we are dealing with the exciton and
biexciton ground states (where polarons are stable) and are
only interested in energy transfers much smaller than the LO
phonon energy.

B. Phonon-assisted cavity feeding

Figure 2 shows the cavity feeding rates for the phonon-
assisted transition from the exciton to the cavity (and the dot
ends up in the ground state). The solid lines report results
from independent boson model (20) and the dashed lines
result in Eq. (13) for the Schrieffer-Wolff perturbation ap-
proach. At low temperatures, the feeding rate I',, as a func-
tion of detuning is strongly asymmetric. For positive detun-
ing A=E,~E,~w,, i.e., when the exciton has a higher
energy than the cavity mode, the transition from the exciton
to the cavity is accompanied by a phonon emission. In this
regime there is a substantial scattering probability even at
low temperatures. With increasing temperature the phonons
become thermally populated, as described by the Bose-
Einstein factors 7 in the scattering rates in Egs. (13) and
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(20), leading to a noticeable scattering probability also for
negative detunings. These processes are associated with pho-
non absorption. At sufficiently high temperatures, say above
20 K, the feeding rate as a function of detuning becomes
almost symmetric.

The dependence of the feeding rate on A is governed by
the exciton form factor, as given by the integral in Eq. (25).
For the Gaussian carrier wave functions, the width of the
Fourier-transformed probability distribution is again a
Gaussian, with a width given by the inverse of the confine-
ment length L. Due to energy conservation in the scattering,
the wave number k, at which the form factor has to be com-
puted, is determined by cok=A. Thus, a small confinement
length L translates to a broad k-space distribution of the form
factor and, in turn, to a broad Feg(A) distribution. In contrast,
for a larger confinement length the feeding rate as a function
of detuning becomes narrower. Additionally, the feeding rate
is directly proportional to the Purcell enhancement'? (g/A)?
caused by the photon confinement within the microcavity.
We emphasize that the scattering rates of both the indepen-
dent boson model and the Schrieffer-Wolff perturbation ap-
proach directly scale with g and do not depend on the qual-
ity factor Q of the cavity. However, O determines the
lifetime of the cavity photon and thus has a decisive impact
on the efficiency of phonon-assisted cavity feeding.

From the comparison of the solid and dashed lines in Fig.
2 we observe that the results of the Schrieffer-Wolff pertur-
bation approach and the independent boson model are in
almost perfect agreement for temperatures below, say, 20 K.
For elevated temperatures, the Schrieffer-Wolff approach
overestimates the feeding rate. We attribute this to the ne-
glect of reabsorption processes of phonons, which are natu-
rally included within the independent boson model. From
now on we will only consider the feeding rates for indepen-
dent boson model (20), although our results would look very
similar for I',, computed within the Schrieffer-Wolff pertur-
bation approach.

C. Spontaneous emission lifetime

We next consider the situation where the dot is initially in
the exciton state and subsequently decays through either cou-
pling to the leaky cavity mode, phonon-assisted cavity feed-
ing, or radiative decay. This situation approximately corre-
sponds to experiments where the exciton becomes populated
through electrons and holes photoexcited in excited dot
states or in the wetting layer, which consecutively relax to
the exciton state of lowest energy. From Fig. 3, which shows
luminescence spectra for a driven dot-cavity system, to be
discussed further below, we observe that for the chosen dot
and cavity parameters the system operates in the strong-
coupling regime for quality factors above approximately Q
=2000. Indeed, for Q=5000 the decay transients in Fig. 4
display at early times population oscillations between exci-
ton and cavity (best visible for zero or small detunings).
These oscillations are a clear signature of strong coupling.

The solid lines report results of our density-matrix ap-
proach. When comparing the decay for positive and negative
detunings *+A, we find that the decay is always faster for
positive detunings than for negative detunings. This is due to
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FIG. 3. (Color online) Spectra for driven dot-cavity system and
for different quality factors. We use a level scheme consisting of the
quantum-dot ground and excited states and the cavity. The panels
report results for detunings of (a) A=-50 weV, (b) A=0, and (c)
A=50 peV. The temperature is set to 7=10 K.

the enhancement of phonon emissions in comparison to pho-
non absorptions attributed to the different bosonic factors of
n+1 and 7 in the scattering rates. The dashed lines show
results of the corresponding master-equation simulations. We
find nice agreement, with exception of small detunings,
where probably higher-order scattering or renormalization
processes play some role.

In the decay of the exciton, the population decays mo-
noexponentially at times above approximately 20 ps. We can
thus assign a lifetime to the excited quantum-dot state, which
we shall denote as the SE lifetime. In Fig. 5 we show the
extracted lifetimes 7g5(A) for a variety of quality factors and
temperatures. Quite generally, we find that 7g(A) dramati-
cally decreases when exciton and cavity come into reso-
nance. This is attributed to the formation of a polariton with
a significant cavity admixture, such that the exciton can de-
cay through the leaky cavity. 7qz(A) has a broad dip for small
quality factors, which significantly narrows for higher Q val-
ues.

The gray lines in Fig. 5 show results of simulations where
phonon scatterings have been artificially neglected. When
phonon scatterings are included, 7gg as a function of detun-

T T T T T
OmeV +0.5meV +1.0meV +1.5meV +2.0meV Q =5000

Excited state population
3>
T

107°F "o 2 4 6 E

I I I I
0 20 40 60 80 100 120 140 160 180
Time (ps)

FIG. 4. (Color online) Exciton decay for a dot embedded in the
cavity and in the presence of phonon-assisted transitions. The solid
and dashed lines report results of our density-matrix and master-
equation approaches, respectively. For clarity, the decay transients
for different detunings are offset in time. Throughout, the decay for
positive (blue) detuning (exciton energy larger than cavity energy
Weqy) 1s faster than for negative (red) detuning. In all simulations we
use 0=5000 and T=10 K. The inset reports results for the corre-
lation function C(7) of the independent boson model (19). The solid
lines correspond to the analytic expressions, and the symbols show
the results of the density-matrix approach. Both results are in per-
fect agreement, thus demonstrating the accuracy of our numerical
approach.
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FIG. 5. (Color online) SE decay time of initially excited quantum dot for different quality factors and temperatures (same line labeling
as in Fig. 2). The gray lines report results where phonon scatterings have been artificially neglected. In the insets we compare, for a smaller
range of detunings, the density-matrix approach (symbols) with the perturbation approach (solid lines), finding perfect agreement throughout.

ing becomes strongly asymmetric. In particular for the higher
quality factors, 7gp(A) is significantly reduced at positive de-
tunings. This is due to the aforementioned cavity feeding
through phonon emission, which is the dominant scattering
mechanism at low temperatures. With increasing temperature
7sg(A) becomes also reduced at negative detunings as a re-
sult of thermally activated phonon absorption. In the insets
of the figure we show, for a smaller range of detunings, re-
sults obtained within our density-matrix approach (symbols)
and master-equation approach (solid lines). One clearly ob-
serves that both approaches give almost identical results for
all the quality factors and temperatures investigated. We thus
conclude that the master-equation approach with phonon
feeding rates, computed from either Eq. (13) or (20), pro-
vides an accurate description scheme for the problem under
consideration. The scattering rates from the Schrieffer-Wolff
transformation provide an accurate description only for low
temperatures. For higher temperatures the independent boson
results should be used.

From now on we will only use the master-equation ap-
proach described in Sec. I D, as it is computationally much
simpler. This is especially an advantage when it comes to the
luminescence spectra (to be discussed below), whose calcu-
lation would be highly cumbersome in case of a density-
matrix approach. On the other hand, we do not expect sig-
nificant differences between the two approaches provided
that the process of phonon feeding occurs on a time scale
significantly shorter than the dynamics induced by the
exciton-cavity coupling g. The phonon-assisted exciton de-
cay is described by the correlation function in Eq. (19),
which drops on a time scale of a few picoseconds (see the
inset of Fig. 4). This has to be compared with the time scale
A/g? of the exciton-cavity coupling, which is much longer,
at least for sufficiently large detunings. Thus, in the calcula-
tion of the scattering rates in Eq. (20) we can use the bare
exciton and cavity energies. For small detunings this ap-
proximation becomes questionable. On the other hand, in
this regime the dynamics is dominated by the cavity leakage
« and phonon scatterings do not play an important role. In
addition, for small A the energy renormalizations ~g of the
polaritons would not significantly alter the phonon scattering
rates (see Fig. 2).

D. Spectrum

We next discuss the influence of phonon-assisted cavity
feeding on the spectral properties of the coupled dot-cavity

system. In our simulations we consider the level scheme de-
picted in Fig. 1(a), consisting of the dot ground and excited
states and the cavity mode. The system is weakly driven by
an external laser pulse, as described by a Lindblad operator
which promotes the system from g to e. If the pump rate is
sufficiently small, in our case much smaller than the radia-
tive decay rate of the quantum dot, only the overall intensi-
ties of the spectrum (but not the relative intensities of the
upper and lower polariton branches) depend on the pump
rate. In our simulations we also include a dephasing rate for
the exciton primarily for visualization purposes to broaden
the exciton line. We found that for detunings larger than the
polariton linewidths this dephasing has an only minor impact
on our results.

Figure 6(b) shows the computed spectra for different
exciton-cavity detunings. At zero detuning we observe an
anticrossing of the lower and upper polariton branches,
which is the signature of strong coupling in the frequency
domain.”'%36-38 In panel (a) of Fig. 6 we plot the intensity of
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FIG. 6. (Color online) Spectrum of driven dot-cavity system, as
depicted in Fig. 1. (b) Spectrum as a function of detuning between
exciton and cavity. One observes the formation of polariton states,
which anticross at zero detuning as a result of strong coupling. In
our simulations we use a quality factor of Q=15 000, a temperature
of T=10 K, a radiative dot lifetime of 7,4=7 ns, and an exciton
dephasing time of 50 ps. (a) Intensity of lower and upper polariton
branches. The intensity is integrated over the regions indicated by
the dashed lines in panel (b). The bright lines show results of simu-
lations where phonon scatterings have been artificially neglected.
The numbers in circles are used for the discussion in the text, and
the dashed line indicates the position of zero detuning where the
two polariton modes have equal intensity.
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the lower (red) and upper (blue) polariton branches, which is
obtained by integrating in the spectra over the spectral region
indicated by the dashed lines.

We observe, in accordance to related work,* a highly
nontrivial dependence of the polariton intensity as a function
of exciton-cavity detuning. To understand this dependence,
we first note that the system is driven through the quantum-
dot state and the transition with the higher intensity is
the one associated with the quantum-dot state unless there
is an efficient feeding of the cavity. Quite generally, the
polariton modes can be approximately determined from the
eigenvalues and eigenvectors of the effective two-mode
Hamiltonian,38

X

—i— g
Heff= > (26)
g A—iZ
2

where the diagonal terms account for the cavity and excited
dot states, including radiative damping and the off-diagonal
terms for the dot-cavity coupling. In the following we dis-
cuss for the plait pattern of the polariton intensities, depicted
in Fig. 6(a), the different regions indicated by numbers in
circles. (1) For large negative detunings, the lower polariton
branch has a dominant exciton character, and the probability
for cavity feeding through phonon absorption (which is
needed since the exciton has a lower energy than the cavity)
is negligible. Here, the exciton decay becomes enhanced
through the cavity, but the system decays at the exciton fre-
quency. In this regime the lower polariton branch has the
higher intensity. (2) When the detuning is reduced, phonon-
assisted feeding becomes more likely due to the small energy
mismatch and the upper polariton (which has a predominant
cavity contribution) emits with a slightly higher intensity. We
will show in a moment that this cavity transfer through pho-
non absorption can be suppressed at even lower tempera-
tures. (3) When the detuning is further reduced, the lower
polariton branch acquires a larger contribution from the cav-
ity and can thus decay more efficiently through the leaky
cavity. In this regime the lower polariton has a higher inten-
sity. (4) At zero detuning the two polariton modes have equal
exciton and cavity characters and the intensities of the two
polariton branches are equal. (5) For positive detuning, the
upper (blue) polariton branch has a stronger exciton charac-
ter. When the detuning is sufficiently small, the upper polar-
iton has a noticeable cavity contribution and thus emits with
higher intensity (analogously to the case of red detuning). (6)
At larger positive detunings phonon-assisted cavity feeding
through phonon emission becomes the dominant mechanism
and the lower (cavitylike) polariton has a much higher inten-
sity.

From the figure we clearly observe a strong asymmetry
between negative and positive detunings, which is attributed
to the different probabilities for cavity feeding through pho-
non absorption or emission. These results are in complete
accordance to the above discussion about the spontaneous
emission lifetime. Simulations performed by artificially ne-
glecting phonon scatterings (bright lines) only give a Purcell

PHYSICAL REVIEW B 81, 155303 (2010)

EEET .
0.3 0.4 0.5 0.6 0.7

-1

Detuning E, - o, (meV)

-2

1500 5000 10000 15000 10 20 30 40
Quality factor Temperature (K)

FIG. 7. (Color online) Relative intensity of quantum-dot-like
polariton branch as a function of (a) quality factor Q (with T
=10 K) and (b) temperature (with Q=15 000). The dashed lines
indicate zero detuning. The relative intensity of the polariton modes
is computed by integrating over the area for the lower (red) [upper
(blue)] polariton for negative (positive) detunings, as indicated in
Fig. 6(b), and dividing by the sum of the upper and lower polariton
intensities. For discussion see text.

enhancement around zero detuning. Otherwise the results to-
tally differ from those of the simulations including phonon-
assisted cavity feeding, thus highlighting the importance of
this scattering channel.

In Fig. 7 we investigate the polariton intensities for dif-
ferent quality factors and temperatures. Panel (a) reports the
influence of the quantum-dot-like polariton (lower polariton
branch for negative detunings and upper branch for positive
detunings) intensity on the quality factor (we use T=10 K).
For small Q values, say below 2500, this branch is strongest
for all detunings. For larger Q values the effect of cavity
feeding becomes more important, and the intensity signifi-
cantly drops for positive detunings where the exciton can
decay into a cavity photon. We observe that the plait pattern
intensity dependence as a function of detuning is most pro-
nounced for high Q values. Here, the cavity photon has the
longest lifetime, and accordingly phonon-assisted cavity
feeding becomes most efficient. Nevertheless, the influence
of Q on the polariton intensity is not overly pronounced in
this strong-coupling regime. Panel (b) reports the relative
intensity of the lower polariton branch as a function of tem-
perature. The values at 10 K exactly correspond to the graph
of Fig. 6, which we have discussed above. We observe that
cavity feeding through phonon absorption [point (2) of the
above discussion] becomes completely suppressed at low
temperatures. On the other hand, feeding gains importance at
elevated temperatures. At temperature above 30 K the system
already predominantly emits at the cavity frequency.

We note that the plait pattern of the intensity also depends
decisively on other feeding channels of the cavity. Such feed-
ing is usually present in experiments due to cavity-assisted
relaxation processes of carriers initially excited in the wet-
ting layer.'""' We model it by an additional Lindblad opera-
tor that brings the system directly from g to the cavity (see
Fig. 1). Our results (not shown) reveal that the characteristic
plait pattern almost disappears when the cavity feeding rate
is twice as large as the dot pumping rate. Thus, the polariton
intensity dependence could serve as a sensitive measure for
additional cavity feeding processes.
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E. Biexciton decay and driven biexciton system

In the following we consider a more complete level
scheme for the quantum dot, depicted in Fig. 1(b), consisting
of the dot ground state, the two exciton states x and y with
orthogonal linear polarization, and the biexciton state XX.
We also include states where, in addition, one or two photons
are present in the cavity. We will primarily investigate how
our conclusions for the two-level system, discussed above,
become modified when considering this more complete dot
description.

From the beginning we introduce a few simplifications.
First, we consider neither (spin forbidden) dark states, which
might play some role for small detunings or for the driven
biexciton system,>> nor charged exciton states, which
seem to be ubiquitous for quantum dots embedded in
nanocavities.'>!! Also the fine structure splitting between the
two exciton states is ignored. In principle, such splitting
could be easily included in our simulations, but we do not
expect that the resulting modifications are of relevance for
the relatively large detunings (up to several meV) considered
here. In our simulations we assume that both exciton states x
and y can couple to the cavity and introduce a mixing angle
6 that determines the relative coupling strengths of g cos 6
and g sin 6, respectively. We will only be interested in small
mixing angles and will consequently denote the excitons
with the fast (g cos 6) and slow (g sin §) decay characteris-
tics as Xy, and X,y respectively.

Figure 8 shows simulation results of a dot that is initially
populated with a biexciton and subsequently decays through
radiative couplings and phonon-assisted transitions to the
cavity. No pumping is considered here. The situation under
investigation approximately corresponds to experiments
where at time zero electron-hole pairs are excited in the wet-
ting layer or in excited dot states and consecutively relax on
a short time scale to the biexciton state of lowest energy. Let
us first consider a zero mixing angle (left column). In accor-
dance to the spontaneous emission lifetimes of the exciton,
shown in Fig. 5, we observe for the biexciton (lower left
panel) an asymmetric detuning dependence for the popula-
tion decay, which, however, is less pronounced than for the
exciton. The fastest decay is now at a detuning correspond-
ing to the biexciton binding energy A, of 2 meV, where the
biexciton to exciton decay is in resonance with the cavity.

For our quantum-dot model, the phonon-assisted cavity
feeding rates for the biexciton are the same as for the exci-
ton. According to the discussion in Sec. Il A 2, we have to
use in the scattering rates the difference A, x— N, Of biex-
citon and exciton-phonon coupling constants. If we neglect
possible modifications of the carrier wave functions in the
biexciton state, which is certainly a good approximation that
will be adopted in this work, the scattering rates for phonon-
assisted biexciton and exciton decays are the same, apart
from the inclusion of the biexciton binding A, in the detun-
ings.

A striking feature of the biexciton decay depicted in Fig. 8
is the sharp feature around 1 meV, best visible from the
contour line that indicates where the population has dropped
to 37% of its initial value (see closeup where the time scale
has been reduced by a factor of 50). The detuning of 1 meV
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FIG. 8. (Color online) Time evolution of biexciton and exciton
populations in the biexciton cascade decay. In the simulations, at
time zero only the biexciton is populated, which decays via the
exciton states to the ground state. The different rows report the
population transients for the exciton Xp,, which couples with
g cos 6 strongly to the cavity, the exciton X, which couples with
g sin 6 weakly to the cavity, and the biexciton XX. The different
columns report results for different mixing angles 6 [see Fig. 1(b)].
In our simulations we use Q=15000 and 7=10 K. The contour
lines indicate where the population has decayed to 37% of its maxi-
mum value. For the fast exciton and the biexciton decay these con-
tour lines are also magnified to make the features at early times
better visible. The dashed lines indicate the position where the biex-
citon is in resonance with two cavity photons.

corresponds to the two-photon resonance conditions
2E, - Ap=2w.y, (27)

where the biexciton can decay by emitting two cavity pho-
tons simultaneously.’* Here E, is the exciton energy. Be-
cause the transition involves a tunnelinglike transition,
through the off-resonant exciton state, the detuning width
where this process is efficient is extremely narrow.

Through the biexciton decay, the exciton states become
populated and consecutively further decay to the ground
state. Let us first concentrate on the fast exciton component
Xtast- We observe for the population decay a strongly asym-
metric detuning dependence in accordance to our previous
discussion for the two-level dot model. However, the mini-
mum is now shifted to larger detunings. This is due to the
fact that the biexciton decays fast, and correspondingly the
exciton population builds quickly. Thus, the exciton decay
reflects the combined effects of population buildup, through
the biexciton decay, and exciton decay. Incidentally, the fast-
est exciton decay is at the detuning where the biexciton is in
resonance with two cavity photons, and also the exciton de-
cay is fast as a result of the Purcell enhancement. We note
that for this detuning also the population that is channeled
through the exciton is smallest since the biexciton can bypass
the excitons in the direct two-photon decay.

We next investigate the decay of the slow exciton compo-
nent Xg.,. For zero mixing angle, =0, exciton feeding
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FIG. 9. (Color online) Steady-state exciton and biexciton popu-
lations of a driven biexciton system. We use Q=15000 and T
=10 K. The labeling of the exciton and biexciton states is identical
to Fig. 8. The different columns correspond to different pumping
rates, indicated on top of the panels.

(through the biexciton) and decay are not enhanced by the
cavity. We observe in Fig. 8 that for sufficiently large nega-
tive detunings, where the biexciton decays without a signifi-
cant Purcell enhancement, both fast and slow exciton com-
ponents are populated equally. X, decays with the radiative
decay time 7,4 in contrast to the fast component, whose de-
cay is enhanced through cavity coupling. For increased de-
tunings, the biexciton decay becomes enhanced through pho-
non feeding and the Purcell effect and decays primarily via
the Xy, channel. Thus, for #=0 the decay of the slow exci-
ton component directly mirrors the decay characteristics of
the biexciton. In the presence of a nonzero mixing angle
X ow acquires a small cavity admixture through the coupling
g sin 6, and its feeding and decay become enhanced. Indeed,
we observe a pronounced lifetime decrease for small cavity
detunings, with the minimum being at the two-photon reso-
nance.

Finally, in Fig. 9 we analyze the steady-state populations
of the driven biexciton system depicted in Fig. 1. In the spirit
of incoherent pumping, we introduce Lindblad operators
which bring the system from g to x, y and from these exciton
states to b. We chose pumping rates, indicated on top of the
panels, which are smaller or larger than the radiative decay
rates of the isolated exciton states. For essentially all pump-
ing rates we observe a significant population of the biexciton
state. This is due to the fact that the X, population is usu-
ally large due to the long lifetime originating from the weak
cavity coupling. Thus, there exists an efficient population
channel of the biexciton via the intermediate X, state. The
steady-state populations of all states reflect the respective
decay characteristics. The populations are large when the
lifetime is long and small when the lifetime is short. As
expected, with increasing pumping rate the steady-state
populations increase.

F. Biexciton spectra

We finally compute luminescence spectra for a driven
biexciton system. Figure 10 shows the spectra as a function
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FIG. 10. (Color online) Simulated spectra for driven biexciton
system. We use Q=15 000, 7=10 K, a mixing angle of #=5°, and
a pump rate of 1/(5 ns). To make the biexcitonic features better
visible, we use a logarithmic color scale. The intensities of the
polariton modes are computed in accordance to the prescription
given in the caption of Fig. 6. The numbers in circles are used in the
discussion in the text.

of detuning. We use a logarithmic color scale to make the
weak biexciton features better visible. In the luminescence
spectra we observe, in addition to the lower and upper polar-
iton branches of the coupled exciton-cavity system, peaks
that are shifted by approximately 2 meV to the red, as indi-
cated in Fig. 10 by (1). These features are associated with the
biexciton to exciton decay. (2) The anticrossing at zero de-
tuning is attributed to the biexciton decay to the strongly
coupled upper and lower exciton polaritons.>> At point (3)
we observe a crossing with the lower exciton-polariton
branch. As the two branches are associated with the cavity-
like polaritons, this crossing point precisely indicates the
point where the biexciton is in resonance with the two-
photon transition. (4) Finally, when the biexciton to exciton
transition is in resonance with the cavity mode, we observe
an anticrossing of the polaritons associated with this transi-
tion. At the same spectral position there is additionally the
emission of the cavitylike polariton of the coupled exciton-
cavity system.

The intensity of the lower (red) polariton branch, shown
in panel (a), exhibits a small bump at the point of two-photon
resonance. When comparing the results of Fig. 10(a) with
those of the two-level system [Fig. 6(a)], we find that the
relative intensities are very similar and only the detuning
dependences of the absolute intensities differ. This is due to
the more complicated excitation dynamics in case of biexci-
ton pumping. Nevertheless, the main conclusions for the dot-
cavity system regarding quality factor and temperature pre-
vail.

IV. SUMMARY AND CONCLUSIONS

To summarize, we have investigated phonon-assisted tran-
sitions for a coupled quantum-dot-cavity system, where the
exciton decays into the cavity and the energy mismatch is
compensated through phonon emission or absorption. Such
processes play an important role for energy detunings of the
order of a few meV and for dot-cavity systems operating in
the strong-coupling regime. The basic mechanism underlying
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phonon-assisted cavity feeding can be encapsulated in the
effective Hamiltonian

,_ 8
H = X(O'ega - (TgeaT)% Neex(bi+ b)), (28)

which has been derived within the framework of a
Schrieffer-Wolff transformation [Eq. (11)]. It describes a
combined phonon and cavity effect, where o'gea* accounts
for the exciton decay and the creation of a cavity photon and
the phonon field operators bZ and b, for the accompanying
emission or absorption of a phonon. Although such processes
can in principle also occur for quantum dots outside a micro-
cavity, they become strongly enhanced within a cavity be-
cause of the Purcell enhancement of g/A.

In addition to the Schrieffer-Wolff perturbation approach,
we have derived a similar expression for independent boson
model (20), where the phonon dynamics has been accounted
for in an exact manner. We have also analyzed the problem
within a numerical density-matrix approach, without em-
ploying any perturbation procedure. For realistic dot and
cavity parameters, all approaches give more or less the same
results at least for temperatures below 20 K.

The method of choice for the modeling of cavity-QED
with quantum dots is a master equation with scattering rates
obtained from the independent boson model. It is computa-
tionally much simpler than the density-matrix approach,
which in particular is an advantage for the calculation of
luminescence spectra, and gives reliable results for a broad
range of temperatures, in contrast to the Schrieffer-Wolff-
transformation approach whose applicability is bound to low
temperatures.

We have investigated the role of phonon-assisted cavity
feeding in the exciton and biexciton decays and have found a
strong detuning asymmetry in agreement with experiment.*
This has been attributed to the different importances of pho-
non emissions and absorptions. For the spectra of a driven
dot system, we have found an intriguing plait pattern for the
intensities of the upper and lower polariton branches.’3 We
have shown that these features prevail for more realistic dot
level schemes. For the biexciton cascade decay, we have ana-
lyzed the different decay channels via the intermediate exci-
ton states and have found the fast and slow decay compo-
nents, in agreement with experiment.32 For a driven
biexciton state, an efficient population channel of the biexci-
ton via one of the exciton states (weakly coupled to the cav-
ity) has been identified.

Phonon-assisted cavity feeding plays a dominant role in
cavity-QED experiments whenever the dot and cavity are
detuned by only a few meV and might be of importance for
quantum-dot-based lasers,'” single or entangled photon
sources,®!3~15 or in quantum information science.® Although
in this work we have concentrated on GaAs based materials,
our results can be easily generalized to other material classes,
such as the nitrides, provided that phonon scattering occurs
on a time scale significantly shorter than the dynamics in-
duced by the exciton-cavity coupling.
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APPENDIX A: SOLUTION OF MASTER EQUATION

The master equation in Eq. (21) can be rewritten in the
form p=-ilLp, where L is the Liouvillian of the dot-cavity
system. If we interpret p as a column vector, with matrix
elements p;; ordered in some unique fashion, L becomes a
matrix, whose elements can be directly read off from Eq.
(21). A convenient way to solve the master equation is to

seek for the right and left eigenvectors X and X, which are
defined through

LX=XA, XL=AX, (A1)

where A is a diagonal matrix containing the eigenvalues. The

eigenvectors form two biorthogonal sets with XX=XX=1.
The master equation, subject to the initial condition p(0)
=py, can then be easily solved through

p(1) = (Xe ™ X)py,

with the expression in parenthesis being the time evolution
operator for the density matrix. Equation (A2) is extremely
useful for computational purposes since it allows for the full
solution of the master equation by simply diagonalizing once
the L matrix.

From the solutions of the eigenvalue problem in Eq. (Al)
we can also obtain analytic expressions for the spectrum of
the coupled dot-cavity system. We start from the Wiener-
Khinchin theorem,3*37 which, in case of continuous dot
pumping, reads

(A2)

©

S(w) «Re f e'“%a’(0)a(n)s o dr,
0

(A3)

where the brackets denote the expectation value at late times
when the system has reached its steady state. Equation (A3)
relates the spectrum to the two-time correlation function of
the cavity fields, which can be computed by means of the
quantum regression theorem.” Let A be the matrix of expec-
tation values for the cavity field operator a between the com-
posite dot-cavity states of our master-equation approach. The
quantum regression theorem then allows us to express the
correlation function as

(a"(0)a(7)ss = tr[Aji(Xe_iATi)ij,kl(pssAT)kl],

where we have implicitly assumed summation over repeated
indices. p,, denotes the density matrix in the steady state,
which can be computed as the long time limit in Eq. (A2).
Equation (A4) has to be interpreted as follows.’® First, the
operator at the earlier time, a', acts from the right-hand side
on p,,, thereby creating a fluctuation in the system. Next, this
fluctuation propagates in time, which is described by the
time evolution operator in Eq. (A2). Finally, we determine
the expectation value for the operator at the later time, a,
with the propagated fluctuation operator. Again, the knowl-

(A4)
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edge of the eigenvectors and eigenvalues allows us to easily
evaluate the two-time correlation function. Upon insertion of
the correlation function into the Wiener-Khinchin expression
for the spectrum [Eq. (A3)], we can compute the spectrum of
the driven dot-cavity system according to

S(w) o Im tfA;(X(A = )7 X); upsA D).

In a very similar fashion we could also compute photon cor-
relation functions.’”=’

(AS)

APPENDIX B: DENSITY-MATRIX APPROACH

In this appendix we give some details of our density-
matrix approach. For each correlation function ((A)) we de-
rive the dynamic equation from the Heisenberg equation of
motion,

d ;

1E<A> = <AHeff_ HeffA> + <[A’0'ee]Bee>’ (B 1)
and subtract the contributions from the lower-order density
matrices. In the following we only consider the nontrivial
terms according to phonon coupling. The contributions due
to H.g can be added in a straightforward fashion.

As for the density matrix of the two-level system we ob-
tain

iPge =g+ Qe (B2a)

ipeg == Qpeg - Qega (B2b)

together with p,,=p,.=0. Here we have introduced the ab-
breviations

Q=2 Nooslsi+57), (B3a)
k

Qeg = E )\ee,k(seg,k + sze,k) (B3b)
k

for the energy renormalization (), as well as the source terms
Q,, and Qge=9:g, which describe the coupling to the
phonon-assisted density matrices. For the time evolution of

the phonon density matrices we get

ijk = )\ee,kpew (B4a)
is'kk’ = )\ee,ksee,k’ + )\ee,k’see,k’ (B4b)
.. ES
g = Nee kS g 0 = Nee k! See s (B4c)

and for that of the phonon-assisted density matrix

PHYSICAL REVIEW B 81, 155303 (2010)

ijge,k = nge,k + )\ee,k(l - pee)pge + Qkpge + Qge,k’
i‘s:eg,k == Qseg,k - )\ee,kpeepeg - Qkpeg - Qeg,k’
is:ee,k = )\ee,k(l - pee)pee’

iS40 = 0. (BS)

We have introduced for the coupling to the higher-order pho-
non correlations the abbreviations

Oy = E Nee st (Sger + ) s
k!

(B6a)

Qeg,k = 2 )\ee,k’(seg,kk’ + neg,kk') . (B6b)

k/

For the two-phonon-assisted density matrices we finally ob-
tain

i‘szge,kk’ = nge,kk’ + kage,k’ + Qk’sge,k + )\ee,k[(l - pee)sge,k’

- pgesee,k’] + )\ee,k’[(l - pee)sge,k - pgesee,k]s (B7a)

i‘s:eg,kk’ == Qseg,kk’ - kaeg,k’ - Qk'seg,k - )\ee,k(peeseg,k’
+ pegsee,k’) - )\ee,k’(peeseg,k + pegsee,k) s (B7b)
i*s:ee,kk' = (1 - zpee) ()\ee,ksee,k’ + )\ee,k’see,k) (B7C)

and
.. * * #
lnge,kk’ = Qnge,kk’ + kagg!k’ + Qk’sge,k + )\ee,k[(l - pee)seg,k/

- pgesze,k/] + )\ee,k’(peesge,k + pgesee,k)’ (B8a)

Meg kk' = — Qneg,kk' - kage,k’ - ‘Q’k’seg,k - )\ee,k(peesge’k’

*
+ pegsee,k’) - )\ee,k’[(l - pee)seg,k - pegsee,k]’

(B8b)

iﬂee,kk’ = (1 - 2p€€)()\'€€,ks:g,k’ - )\ee,k’see,k)’ (B8C)

together with §,, 14/ =7, 14=0. This provides us with a
closed set of equations. In our computational approach, we
introduce a surrogate Hamiltonian, with a finite number of
representative phonon modes (typically a few hundreds),*
and solve the equations of motion through direct numerical
integration.
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